dao-ai 0.0.25__py3-none-any.whl → 0.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dao_ai/__init__.py +29 -0
- dao_ai/agent_as_code.py +5 -5
- dao_ai/cli.py +245 -40
- dao_ai/config.py +1863 -338
- dao_ai/genie/__init__.py +38 -0
- dao_ai/genie/cache/__init__.py +43 -0
- dao_ai/genie/cache/base.py +72 -0
- dao_ai/genie/cache/core.py +79 -0
- dao_ai/genie/cache/lru.py +347 -0
- dao_ai/genie/cache/semantic.py +970 -0
- dao_ai/genie/core.py +35 -0
- dao_ai/graph.py +27 -228
- dao_ai/hooks/__init__.py +9 -6
- dao_ai/hooks/core.py +27 -195
- dao_ai/logging.py +56 -0
- dao_ai/memory/__init__.py +10 -0
- dao_ai/memory/core.py +65 -30
- dao_ai/memory/databricks.py +402 -0
- dao_ai/memory/postgres.py +79 -38
- dao_ai/messages.py +6 -4
- dao_ai/middleware/__init__.py +125 -0
- dao_ai/middleware/assertions.py +806 -0
- dao_ai/middleware/base.py +50 -0
- dao_ai/middleware/core.py +67 -0
- dao_ai/middleware/guardrails.py +420 -0
- dao_ai/middleware/human_in_the_loop.py +232 -0
- dao_ai/middleware/message_validation.py +586 -0
- dao_ai/middleware/summarization.py +197 -0
- dao_ai/models.py +1306 -114
- dao_ai/nodes.py +261 -166
- dao_ai/optimization.py +674 -0
- dao_ai/orchestration/__init__.py +52 -0
- dao_ai/orchestration/core.py +294 -0
- dao_ai/orchestration/supervisor.py +278 -0
- dao_ai/orchestration/swarm.py +271 -0
- dao_ai/prompts.py +128 -31
- dao_ai/providers/databricks.py +645 -172
- dao_ai/state.py +157 -21
- dao_ai/tools/__init__.py +13 -5
- dao_ai/tools/agent.py +1 -3
- dao_ai/tools/core.py +64 -11
- dao_ai/tools/email.py +232 -0
- dao_ai/tools/genie.py +144 -295
- dao_ai/tools/mcp.py +220 -133
- dao_ai/tools/memory.py +50 -0
- dao_ai/tools/python.py +9 -14
- dao_ai/tools/search.py +14 -0
- dao_ai/tools/slack.py +22 -10
- dao_ai/tools/sql.py +202 -0
- dao_ai/tools/time.py +30 -7
- dao_ai/tools/unity_catalog.py +165 -88
- dao_ai/tools/vector_search.py +360 -40
- dao_ai/utils.py +218 -16
- dao_ai-0.1.2.dist-info/METADATA +455 -0
- dao_ai-0.1.2.dist-info/RECORD +64 -0
- {dao_ai-0.0.25.dist-info → dao_ai-0.1.2.dist-info}/WHEEL +1 -1
- dao_ai/chat_models.py +0 -204
- dao_ai/guardrails.py +0 -112
- dao_ai/tools/human_in_the_loop.py +0 -100
- dao_ai-0.0.25.dist-info/METADATA +0 -1165
- dao_ai-0.0.25.dist-info/RECORD +0 -41
- {dao_ai-0.0.25.dist-info → dao_ai-0.1.2.dist-info}/entry_points.txt +0 -0
- {dao_ai-0.0.25.dist-info → dao_ai-0.1.2.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Base classes and types for DAO AI middleware.
|
|
3
|
+
|
|
4
|
+
This module re-exports LangChain's middleware types for convenience.
|
|
5
|
+
Use LangChainAgentMiddleware directly with DAO AI's state and context types.
|
|
6
|
+
|
|
7
|
+
Example:
|
|
8
|
+
from langchain.agents.middleware import AgentMiddleware
|
|
9
|
+
from dao_ai.state import AgentState, Context
|
|
10
|
+
from langgraph.runtime import Runtime
|
|
11
|
+
|
|
12
|
+
class MyMiddleware(AgentMiddleware[AgentState, Context]):
|
|
13
|
+
def before_model(
|
|
14
|
+
self,
|
|
15
|
+
state: AgentState,
|
|
16
|
+
runtime: Runtime[Context]
|
|
17
|
+
) -> dict[str, Any] | None:
|
|
18
|
+
print(f"About to call model with {len(state['messages'])} messages")
|
|
19
|
+
return None
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
from langchain.agents.middleware import (
|
|
23
|
+
AgentMiddleware,
|
|
24
|
+
ModelRequest,
|
|
25
|
+
after_agent,
|
|
26
|
+
after_model,
|
|
27
|
+
before_agent,
|
|
28
|
+
before_model,
|
|
29
|
+
dynamic_prompt,
|
|
30
|
+
wrap_model_call,
|
|
31
|
+
wrap_tool_call,
|
|
32
|
+
)
|
|
33
|
+
from langchain.agents.middleware.types import ModelResponse
|
|
34
|
+
|
|
35
|
+
# Re-export LangChain types for convenience
|
|
36
|
+
__all__ = [
|
|
37
|
+
# Base middleware class
|
|
38
|
+
"AgentMiddleware",
|
|
39
|
+
# Types
|
|
40
|
+
"ModelRequest",
|
|
41
|
+
"ModelResponse",
|
|
42
|
+
# Decorators
|
|
43
|
+
"before_agent",
|
|
44
|
+
"before_model",
|
|
45
|
+
"after_agent",
|
|
46
|
+
"after_model",
|
|
47
|
+
"wrap_model_call",
|
|
48
|
+
"wrap_tool_call",
|
|
49
|
+
"dynamic_prompt",
|
|
50
|
+
]
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Core middleware utilities for DAO AI.
|
|
3
|
+
|
|
4
|
+
This module provides the factory function for creating middleware instances
|
|
5
|
+
from fully qualified function names.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from typing import Any, Callable
|
|
9
|
+
|
|
10
|
+
from langchain.agents.middleware import AgentMiddleware
|
|
11
|
+
from loguru import logger
|
|
12
|
+
|
|
13
|
+
from dao_ai.state import AgentState, Context
|
|
14
|
+
from dao_ai.utils import load_function
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def create_factory_middleware(
|
|
18
|
+
function_name: str,
|
|
19
|
+
args: dict[str, Any] | None = None,
|
|
20
|
+
) -> AgentMiddleware[AgentState, Context]:
|
|
21
|
+
"""
|
|
22
|
+
Create middleware from a factory function.
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
This factory function dynamically loads a Python function and calls it
|
|
26
|
+
with the provided arguments to create a middleware instance.
|
|
27
|
+
|
|
28
|
+
The factory function should return a middleware object compatible with
|
|
29
|
+
LangChain's create_agent middleware parameter (AgentMiddleware or any
|
|
30
|
+
callable/object that implements the middleware interface).
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
function_name: Fully qualified name of the factory function
|
|
34
|
+
(e.g., 'my_module.create_custom_middleware')
|
|
35
|
+
args: Arguments to pass to the factory function
|
|
36
|
+
|
|
37
|
+
Returns:
|
|
38
|
+
An AgentMiddleware instance returned by the factory function
|
|
39
|
+
|
|
40
|
+
Raises:
|
|
41
|
+
ImportError: If the function cannot be loaded
|
|
42
|
+
|
|
43
|
+
Example:
|
|
44
|
+
# Factory function in my_module.py:
|
|
45
|
+
def create_custom_middleware(threshold: float = 0.5) -> AgentMiddleware[AgentState, Context]:
|
|
46
|
+
return MyCustomMiddleware(threshold=threshold)
|
|
47
|
+
|
|
48
|
+
# Usage:
|
|
49
|
+
middleware = create_factory_middleware(
|
|
50
|
+
function_name="my_module.create_custom_middleware",
|
|
51
|
+
args={"threshold": 0.8}
|
|
52
|
+
)
|
|
53
|
+
"""
|
|
54
|
+
if args is None:
|
|
55
|
+
args = {}
|
|
56
|
+
|
|
57
|
+
logger.trace("Creating factory middleware", function_name=function_name, args=args)
|
|
58
|
+
|
|
59
|
+
factory: Callable[..., AgentMiddleware[AgentState, Context]] = load_function(
|
|
60
|
+
function_name=function_name
|
|
61
|
+
)
|
|
62
|
+
middleware: AgentMiddleware[AgentState, Context] = factory(**args)
|
|
63
|
+
|
|
64
|
+
logger.trace(
|
|
65
|
+
"Created middleware from factory", middleware_type=type(middleware).__name__
|
|
66
|
+
)
|
|
67
|
+
return middleware
|
|
@@ -0,0 +1,420 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Guardrail middleware for DAO AI agents.
|
|
3
|
+
|
|
4
|
+
This module provides middleware implementations for applying guardrails
|
|
5
|
+
to agent responses, including LLM-based judging and content validation.
|
|
6
|
+
|
|
7
|
+
Factory functions are provided for consistent configuration via the
|
|
8
|
+
DAO AI middleware factory pattern.
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
from typing import Any, Optional
|
|
12
|
+
|
|
13
|
+
from langchain.agents.middleware import hook_config
|
|
14
|
+
from langchain_core.language_models import LanguageModelLike
|
|
15
|
+
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
16
|
+
from langgraph.runtime import Runtime
|
|
17
|
+
from loguru import logger
|
|
18
|
+
from openevals.llm import create_llm_as_judge
|
|
19
|
+
|
|
20
|
+
from dao_ai.messages import last_ai_message, last_human_message
|
|
21
|
+
from dao_ai.middleware.base import AgentMiddleware
|
|
22
|
+
from dao_ai.state import AgentState, Context
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def _extract_text_content(message: BaseMessage) -> str:
|
|
26
|
+
"""
|
|
27
|
+
Extract text content from a message, handling both string and list formats.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
message: The message to extract text from
|
|
31
|
+
|
|
32
|
+
Returns:
|
|
33
|
+
The extracted text content as a string
|
|
34
|
+
"""
|
|
35
|
+
content = message.content
|
|
36
|
+
|
|
37
|
+
if isinstance(content, str):
|
|
38
|
+
return content
|
|
39
|
+
elif isinstance(content, list):
|
|
40
|
+
# Extract text from content blocks (e.g., Claude's structured content)
|
|
41
|
+
text_parts = []
|
|
42
|
+
for block in content:
|
|
43
|
+
if isinstance(block, dict) and block.get("type") == "text":
|
|
44
|
+
text_parts.append(block.get("text", ""))
|
|
45
|
+
elif isinstance(block, str):
|
|
46
|
+
text_parts.append(block)
|
|
47
|
+
return " ".join(text_parts)
|
|
48
|
+
else:
|
|
49
|
+
return str(content)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
__all__ = [
|
|
53
|
+
"GuardrailMiddleware",
|
|
54
|
+
"ContentFilterMiddleware",
|
|
55
|
+
"SafetyGuardrailMiddleware",
|
|
56
|
+
"create_guardrail_middleware",
|
|
57
|
+
"create_content_filter_middleware",
|
|
58
|
+
"create_safety_guardrail_middleware",
|
|
59
|
+
]
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class GuardrailMiddleware(AgentMiddleware[AgentState, Context]):
|
|
63
|
+
"""
|
|
64
|
+
Middleware that applies LLM-based guardrails to agent responses.
|
|
65
|
+
|
|
66
|
+
Uses an LLM judge to evaluate responses against a prompt/criteria and
|
|
67
|
+
can request improvements if the response doesn't meet the criteria.
|
|
68
|
+
|
|
69
|
+
This is equivalent to the previous reflection_guardrail pattern but
|
|
70
|
+
implemented as middleware for better composability.
|
|
71
|
+
|
|
72
|
+
Args:
|
|
73
|
+
guardrail_name: Name identifying this guardrail
|
|
74
|
+
model: The LLM to use for evaluation
|
|
75
|
+
prompt: The evaluation prompt/criteria
|
|
76
|
+
num_retries: Maximum number of retry attempts (default: 3)
|
|
77
|
+
"""
|
|
78
|
+
|
|
79
|
+
def __init__(
|
|
80
|
+
self,
|
|
81
|
+
name: str,
|
|
82
|
+
model: LanguageModelLike,
|
|
83
|
+
prompt: str,
|
|
84
|
+
num_retries: int = 3,
|
|
85
|
+
):
|
|
86
|
+
super().__init__()
|
|
87
|
+
self.guardrail_name = name
|
|
88
|
+
self.model = model
|
|
89
|
+
self.prompt = prompt
|
|
90
|
+
self.num_retries = num_retries
|
|
91
|
+
self._retry_count = 0
|
|
92
|
+
|
|
93
|
+
@property
|
|
94
|
+
def name(self) -> str:
|
|
95
|
+
"""Return the guardrail name for middleware identification."""
|
|
96
|
+
return self.guardrail_name
|
|
97
|
+
|
|
98
|
+
def after_model(
|
|
99
|
+
self, state: AgentState, runtime: Runtime[Context]
|
|
100
|
+
) -> dict[str, Any] | None:
|
|
101
|
+
"""
|
|
102
|
+
Evaluate the model's response using an LLM judge.
|
|
103
|
+
|
|
104
|
+
If the response doesn't meet the guardrail criteria, returns a
|
|
105
|
+
HumanMessage with feedback to trigger a retry.
|
|
106
|
+
"""
|
|
107
|
+
messages: list[BaseMessage] = state.get("messages", [])
|
|
108
|
+
|
|
109
|
+
if not messages:
|
|
110
|
+
return None
|
|
111
|
+
|
|
112
|
+
ai_message: AIMessage | None = last_ai_message(messages)
|
|
113
|
+
human_message: HumanMessage | None = last_human_message(messages)
|
|
114
|
+
|
|
115
|
+
if not ai_message or not human_message:
|
|
116
|
+
return None
|
|
117
|
+
|
|
118
|
+
# Skip evaluation if the AI message has tool calls (not the final response yet)
|
|
119
|
+
if ai_message.tool_calls:
|
|
120
|
+
logger.trace(
|
|
121
|
+
"Guardrail skipping evaluation - AI message contains tool calls",
|
|
122
|
+
guardrail_name=self.guardrail_name,
|
|
123
|
+
)
|
|
124
|
+
return None
|
|
125
|
+
|
|
126
|
+
# Skip evaluation if the AI message has no content to evaluate
|
|
127
|
+
if not ai_message.content:
|
|
128
|
+
logger.trace(
|
|
129
|
+
"Guardrail skipping evaluation - AI message has no content",
|
|
130
|
+
guardrail_name=self.guardrail_name,
|
|
131
|
+
)
|
|
132
|
+
return None
|
|
133
|
+
|
|
134
|
+
# Extract text content from messages (handles both string and structured content)
|
|
135
|
+
human_content = _extract_text_content(human_message)
|
|
136
|
+
ai_content = _extract_text_content(ai_message)
|
|
137
|
+
|
|
138
|
+
logger.debug(
|
|
139
|
+
"Evaluating response with guardrail",
|
|
140
|
+
guardrail_name=self.guardrail_name,
|
|
141
|
+
input_length=len(human_content),
|
|
142
|
+
output_length=len(ai_content),
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
evaluator = create_llm_as_judge(
|
|
146
|
+
prompt=self.prompt,
|
|
147
|
+
judge=self.model,
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
eval_result = evaluator(inputs=human_content, outputs=ai_content)
|
|
151
|
+
|
|
152
|
+
if eval_result["score"]:
|
|
153
|
+
logger.debug(
|
|
154
|
+
"Response approved by guardrail",
|
|
155
|
+
guardrail_name=self.guardrail_name,
|
|
156
|
+
comment=eval_result["comment"],
|
|
157
|
+
)
|
|
158
|
+
self._retry_count = 0
|
|
159
|
+
return None
|
|
160
|
+
else:
|
|
161
|
+
self._retry_count += 1
|
|
162
|
+
comment: str = eval_result["comment"]
|
|
163
|
+
|
|
164
|
+
if self._retry_count >= self.num_retries:
|
|
165
|
+
logger.warning(
|
|
166
|
+
"Guardrail failed - max retries reached",
|
|
167
|
+
guardrail_name=self.guardrail_name,
|
|
168
|
+
retry_count=self._retry_count,
|
|
169
|
+
max_retries=self.num_retries,
|
|
170
|
+
critique=comment,
|
|
171
|
+
)
|
|
172
|
+
self._retry_count = 0
|
|
173
|
+
|
|
174
|
+
# Add system message to inform user of guardrail failure
|
|
175
|
+
failure_message = (
|
|
176
|
+
f"⚠️ **Quality Check Failed**\n\n"
|
|
177
|
+
f"The response did not meet the '{self.guardrail_name}' quality standards "
|
|
178
|
+
f"after {self.num_retries} attempts.\n\n"
|
|
179
|
+
f"**Issue:** {comment}\n\n"
|
|
180
|
+
f"The best available response has been provided, but please be aware it may not fully meet quality expectations."
|
|
181
|
+
)
|
|
182
|
+
return {"messages": [AIMessage(content=failure_message)]}
|
|
183
|
+
|
|
184
|
+
logger.warning(
|
|
185
|
+
"Guardrail requested improvements",
|
|
186
|
+
guardrail_name=self.guardrail_name,
|
|
187
|
+
retry=self._retry_count,
|
|
188
|
+
max_retries=self.num_retries,
|
|
189
|
+
critique=comment,
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
content: str = "\n".join([str(human_message.content), comment])
|
|
193
|
+
return {"messages": [HumanMessage(content=content)]}
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
class ContentFilterMiddleware(AgentMiddleware[AgentState, Context]):
|
|
197
|
+
"""
|
|
198
|
+
Middleware that filters responses containing banned keywords.
|
|
199
|
+
|
|
200
|
+
This is a deterministic guardrail that blocks responses containing
|
|
201
|
+
specified keywords.
|
|
202
|
+
|
|
203
|
+
Args:
|
|
204
|
+
banned_keywords: List of keywords to block
|
|
205
|
+
block_message: Message to return when content is blocked
|
|
206
|
+
"""
|
|
207
|
+
|
|
208
|
+
def __init__(
|
|
209
|
+
self,
|
|
210
|
+
banned_keywords: list[str],
|
|
211
|
+
block_message: str = "I cannot provide that response. Please rephrase your request.",
|
|
212
|
+
):
|
|
213
|
+
super().__init__()
|
|
214
|
+
self.banned_keywords = [kw.lower() for kw in banned_keywords]
|
|
215
|
+
self.block_message = block_message
|
|
216
|
+
|
|
217
|
+
@hook_config(can_jump_to=["end"])
|
|
218
|
+
def before_agent(
|
|
219
|
+
self, state: AgentState, runtime: Runtime[Context]
|
|
220
|
+
) -> dict[str, Any] | None:
|
|
221
|
+
"""Block requests containing banned keywords."""
|
|
222
|
+
messages: list[BaseMessage] = state.get("messages", [])
|
|
223
|
+
|
|
224
|
+
if not messages:
|
|
225
|
+
return None
|
|
226
|
+
|
|
227
|
+
first_message = messages[0]
|
|
228
|
+
if not isinstance(first_message, HumanMessage):
|
|
229
|
+
return None
|
|
230
|
+
|
|
231
|
+
content = str(first_message.content).lower()
|
|
232
|
+
|
|
233
|
+
for keyword in self.banned_keywords:
|
|
234
|
+
if keyword in content:
|
|
235
|
+
logger.warning(f"Content filter blocked request containing '{keyword}'")
|
|
236
|
+
return {
|
|
237
|
+
"messages": [AIMessage(content=self.block_message)],
|
|
238
|
+
"jump_to": "end",
|
|
239
|
+
}
|
|
240
|
+
|
|
241
|
+
return None
|
|
242
|
+
|
|
243
|
+
def after_model(
|
|
244
|
+
self, state: AgentState, runtime: Runtime[Context]
|
|
245
|
+
) -> dict[str, Any] | None:
|
|
246
|
+
"""Block responses containing banned keywords."""
|
|
247
|
+
messages: list[BaseMessage] = state.get("messages", [])
|
|
248
|
+
|
|
249
|
+
if not messages:
|
|
250
|
+
return None
|
|
251
|
+
|
|
252
|
+
last_message: AIMessage | None = last_ai_message(messages)
|
|
253
|
+
if not last_message:
|
|
254
|
+
return None
|
|
255
|
+
|
|
256
|
+
content = str(last_message.content).lower()
|
|
257
|
+
|
|
258
|
+
for keyword in self.banned_keywords:
|
|
259
|
+
if keyword in content:
|
|
260
|
+
logger.warning("Content filter blocked response", keyword=keyword)
|
|
261
|
+
# Modify the last message content
|
|
262
|
+
last_message.content = self.block_message
|
|
263
|
+
return None
|
|
264
|
+
|
|
265
|
+
return None
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
class SafetyGuardrailMiddleware(AgentMiddleware[AgentState, Context]):
|
|
269
|
+
"""
|
|
270
|
+
Model-based safety guardrail middleware.
|
|
271
|
+
|
|
272
|
+
Uses an LLM to evaluate whether responses are safe and appropriate.
|
|
273
|
+
This is applied after the agent completes to validate the final output.
|
|
274
|
+
|
|
275
|
+
Args:
|
|
276
|
+
safety_model: The LLM to use for safety evaluation
|
|
277
|
+
"""
|
|
278
|
+
|
|
279
|
+
def __init__(self, safety_model: Optional[LanguageModelLike] = None):
|
|
280
|
+
super().__init__()
|
|
281
|
+
self._safety_model = safety_model
|
|
282
|
+
|
|
283
|
+
@property
|
|
284
|
+
def safety_model(self) -> LanguageModelLike:
|
|
285
|
+
"""Lazily initialize the safety model."""
|
|
286
|
+
if self._safety_model is None:
|
|
287
|
+
from langchain.chat_models import init_chat_model
|
|
288
|
+
|
|
289
|
+
self._safety_model = init_chat_model("gpt-4o-mini")
|
|
290
|
+
return self._safety_model
|
|
291
|
+
|
|
292
|
+
def after_agent(
|
|
293
|
+
self, state: AgentState, runtime: Runtime[Context]
|
|
294
|
+
) -> dict[str, Any] | None:
|
|
295
|
+
"""Evaluate response safety before returning to user."""
|
|
296
|
+
messages: list[BaseMessage] = state.get("messages", [])
|
|
297
|
+
|
|
298
|
+
if not messages:
|
|
299
|
+
return None
|
|
300
|
+
|
|
301
|
+
last_message: AIMessage | None = last_ai_message(messages)
|
|
302
|
+
if not last_message:
|
|
303
|
+
return None
|
|
304
|
+
|
|
305
|
+
safety_prompt = f"""Evaluate if this response is safe and appropriate.
|
|
306
|
+
Respond with only 'SAFE' or 'UNSAFE'.
|
|
307
|
+
|
|
308
|
+
Response: {last_message.content}"""
|
|
309
|
+
|
|
310
|
+
result = self.safety_model.invoke([{"role": "user", "content": safety_prompt}])
|
|
311
|
+
|
|
312
|
+
if "UNSAFE" in str(result.content):
|
|
313
|
+
logger.warning("Safety guardrail blocked unsafe response")
|
|
314
|
+
last_message.content = (
|
|
315
|
+
"I cannot provide that response. Please rephrase your request."
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
return None
|
|
319
|
+
|
|
320
|
+
|
|
321
|
+
# =============================================================================
|
|
322
|
+
# Factory Functions
|
|
323
|
+
# =============================================================================
|
|
324
|
+
|
|
325
|
+
|
|
326
|
+
def create_guardrail_middleware(
|
|
327
|
+
name: str,
|
|
328
|
+
model: LanguageModelLike,
|
|
329
|
+
prompt: str,
|
|
330
|
+
num_retries: int = 3,
|
|
331
|
+
) -> GuardrailMiddleware:
|
|
332
|
+
"""
|
|
333
|
+
Create a GuardrailMiddleware instance.
|
|
334
|
+
|
|
335
|
+
Factory function for creating LLM-based guardrail middleware that evaluates
|
|
336
|
+
agent responses against specified criteria using an LLM judge.
|
|
337
|
+
|
|
338
|
+
Args:
|
|
339
|
+
name: Name identifying this guardrail
|
|
340
|
+
model: The LLM to use for evaluation
|
|
341
|
+
prompt: The evaluation prompt/criteria
|
|
342
|
+
num_retries: Maximum number of retry attempts (default: 3)
|
|
343
|
+
|
|
344
|
+
Returns:
|
|
345
|
+
GuardrailMiddleware configured with the specified parameters
|
|
346
|
+
|
|
347
|
+
Example:
|
|
348
|
+
middleware = create_guardrail_middleware(
|
|
349
|
+
name="tone_check",
|
|
350
|
+
model=ChatDatabricks(endpoint="databricks-meta-llama-3-3-70b-instruct"),
|
|
351
|
+
prompt="Evaluate if the response is professional and helpful.",
|
|
352
|
+
num_retries=2,
|
|
353
|
+
)
|
|
354
|
+
"""
|
|
355
|
+
logger.trace("Creating guardrail middleware", guardrail_name=name)
|
|
356
|
+
return GuardrailMiddleware(
|
|
357
|
+
name=name,
|
|
358
|
+
model=model,
|
|
359
|
+
prompt=prompt,
|
|
360
|
+
num_retries=num_retries,
|
|
361
|
+
)
|
|
362
|
+
|
|
363
|
+
|
|
364
|
+
def create_content_filter_middleware(
|
|
365
|
+
banned_keywords: list[str],
|
|
366
|
+
block_message: str = "I cannot provide that response. Please rephrase your request.",
|
|
367
|
+
) -> ContentFilterMiddleware:
|
|
368
|
+
"""
|
|
369
|
+
Create a ContentFilterMiddleware instance.
|
|
370
|
+
|
|
371
|
+
Factory function for creating deterministic content filter middleware
|
|
372
|
+
that blocks requests/responses containing banned keywords.
|
|
373
|
+
|
|
374
|
+
Args:
|
|
375
|
+
banned_keywords: List of keywords to block
|
|
376
|
+
block_message: Message to return when content is blocked
|
|
377
|
+
|
|
378
|
+
Returns:
|
|
379
|
+
ContentFilterMiddleware configured with the specified parameters
|
|
380
|
+
|
|
381
|
+
Example:
|
|
382
|
+
middleware = create_content_filter_middleware(
|
|
383
|
+
banned_keywords=["password", "secret", "api_key"],
|
|
384
|
+
block_message="I cannot discuss sensitive credentials.",
|
|
385
|
+
)
|
|
386
|
+
"""
|
|
387
|
+
logger.trace(
|
|
388
|
+
"Creating content filter middleware", keywords_count=len(banned_keywords)
|
|
389
|
+
)
|
|
390
|
+
return ContentFilterMiddleware(
|
|
391
|
+
banned_keywords=banned_keywords,
|
|
392
|
+
block_message=block_message,
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
|
|
396
|
+
def create_safety_guardrail_middleware(
|
|
397
|
+
safety_model: Optional[LanguageModelLike] = None,
|
|
398
|
+
) -> SafetyGuardrailMiddleware:
|
|
399
|
+
"""
|
|
400
|
+
Create a SafetyGuardrailMiddleware instance.
|
|
401
|
+
|
|
402
|
+
Factory function for creating model-based safety guardrail middleware
|
|
403
|
+
that evaluates whether responses are safe and appropriate.
|
|
404
|
+
|
|
405
|
+
Args:
|
|
406
|
+
safety_model: The LLM to use for safety evaluation. If not provided,
|
|
407
|
+
defaults to gpt-4o-mini.
|
|
408
|
+
|
|
409
|
+
Returns:
|
|
410
|
+
SafetyGuardrailMiddleware configured with the specified model
|
|
411
|
+
|
|
412
|
+
Example:
|
|
413
|
+
from databricks_langchain import ChatDatabricks
|
|
414
|
+
|
|
415
|
+
middleware = create_safety_guardrail_middleware(
|
|
416
|
+
safety_model=ChatDatabricks(endpoint="databricks-meta-llama-3-3-70b-instruct"),
|
|
417
|
+
)
|
|
418
|
+
"""
|
|
419
|
+
logger.trace("Creating safety guardrail middleware")
|
|
420
|
+
return SafetyGuardrailMiddleware(safety_model=safety_model)
|