d9d 0.1.0__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: d9d
3
- Version: 0.1.0
3
+ Version: 0.1.1
4
4
  Summary: d9d - d[istribute]d - distributed training framework based on PyTorch that tries to be efficient yet hackable
5
5
  License: Apache-2.0
6
6
  Author: Maksim Afanasyev
@@ -38,12 +38,32 @@ Project-URL: Issues, https://github.com/d9d-project/d9d/issues
38
38
  Project-URL: Repository, https://github.com/d9d-project/d9d
39
39
  Description-Content-Type: text/markdown
40
40
 
41
+ ---
42
+ title: Home
43
+ ---
44
+
41
45
  # The d9d Project
42
46
 
43
47
  **d9d** is a distributed training framework built on top of PyTorch 2.0. It aims to be hackable, modular, and efficient, designed to scale from single-GPU debugging to massive clusters running 6D-Parallelism.
44
48
 
45
49
  [LET'S START TRAINING 🚀](https://d9d-project.github.io/d9d/)
46
50
 
51
+ ## Installation
52
+
53
+ Just use your favourite package manager:
54
+ ```bash
55
+ pip install d9d
56
+ poetry add d9d
57
+ uv add d9d
58
+ ```
59
+
60
+ ### Extras
61
+
62
+ * `d9d[aim]`: [Aim](https://aimstack.io/) experiment tracker integration.
63
+ * `d9d[visualization]`: Plotting libraries required to some advanced visualization functionality.
64
+ * `d9d[moe]`: Efficient Mixture of Experts GPU kernels. You should build and install some dependencies manually before installation: [DeepEP](https://github.com/deepseek-ai/DeepEP), [grouped-gemm](https://github.com/fanshiqing/grouped_gemm/).
65
+ * `d9d[cce]`: Efficient Fused Cross-Entropy kernels. You should build and install some dependencies manually before installation: [Cut Cross Entropy](https://github.com/apple/ml-cross-entropy).
66
+
47
67
  ## Why another framework?
48
68
 
49
69
  Distributed training frameworks such as **Megatron-LM** are monolithic in the way you run a script from the command line to train any of a set of *predefined* models, using *predefined* regimes. While powerful, these systems can be difficult to hack and integrate into novel research workflows. Their focus is often on providing a complete, end-to-end solution, which can limit flexibility for experimentally-driven research.
@@ -233,6 +233,6 @@ d9d/tracker/provider/aim/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
233
233
  d9d/tracker/provider/aim/config.py,sha256=7-Kgt2XhdNRhgxLYEWpB27uhgB-RBiPrGvH6S2L3rIM,672
234
234
  d9d/tracker/provider/aim/tracker.py,sha256=g34BdjIYEftEwuK2oTKKzHLN3dpG7-i14zhXIF_onIo,3110
235
235
  d9d/tracker/provider/null.py,sha256=c1nvUaOz8RbRY8XzwSPTi7t0lSsmdlwGAYfYgprwaf8,1440
236
- d9d-0.1.0.dist-info/METADATA,sha256=NyAv5QdE_TtWzvNWcWormljU9O3DzQ8yAEp_8XZJv9s,5681
237
- d9d-0.1.0.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
238
- d9d-0.1.0.dist-info/RECORD,,
236
+ d9d-0.1.1.dist-info/METADATA,sha256=1o7KCl_ts0apFZFdGBcI2kiZqvLs0QricCCQX1q-jos,6437
237
+ d9d-0.1.1.dist-info/WHEEL,sha256=kJCRJT_g0adfAJzTx2GUMmS80rTJIVHRCfG0DQgLq3o,88
238
+ d9d-0.1.1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 2.2.1
2
+ Generator: poetry-core 2.3.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any