cuequivariance-ops-cu12 0.6.0__py3-none-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of cuequivariance-ops-cu12 might be problematic. Click here for more details.
- cuequivariance_ops/VERSION +1 -0
- cuequivariance_ops/__init__.py +42 -0
- cuequivariance_ops/_version.py +20 -0
- cuequivariance_ops/common/common.hpp +98 -0
- cuequivariance_ops/common/nvtx.hpp +29 -0
- cuequivariance_ops/equivariance/batch_dimension.hh +15 -0
- cuequivariance_ops/equivariance/dtypes.hh +65 -0
- cuequivariance_ops/equivariance/fused_tensor_product.cuh +297 -0
- cuequivariance_ops/equivariance/indexed_linear.hh +36 -0
- cuequivariance_ops/equivariance/run_fmha.h +192 -0
- cuequivariance_ops/equivariance/run_fmha_cudafree.h +77 -0
- cuequivariance_ops/equivariance/segmented_transpose.cuh +40 -0
- cuequivariance_ops/equivariance/tensor_product_uniform_1d_jit.hh +38 -0
- cuequivariance_ops/lib/libcue_ops.so +0 -0
- cuequivariance_ops/sleep.hh +18 -0
- cuequivariance_ops/triton/__init__.py +66 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_backward_pregemm_kernel_wrapper.10.0.json +37192 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_backward_pregemm_kernel_wrapper.8.0.json +37133 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_backward_pregemm_kernel_wrapper.8.6.json +37133 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_backward_pregemm_kernel_wrapper.8.9.json +37132 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_backward_pregemm_kernel_wrapper.9.0.json +74262 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_forward_kernel_wrapper.10.0.json +48482 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_forward_kernel_wrapper.8.0.json +55693 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_forward_kernel_wrapper.8.6.json +55692 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_forward_kernel_wrapper.8.9.json +55693 -0
- cuequivariance_ops/triton/cache/fused_sigmoid_gated_dual_gemm_forward_kernel_wrapper.9.0.json +111382 -0
- cuequivariance_ops/triton/cache_manager.py +259 -0
- cuequivariance_ops/triton/fused_layer_norm_triton.py +518 -0
- cuequivariance_ops/triton/gated_gemm_triton.py +380 -0
- cuequivariance_ops/triton/pair_bias.py +324 -0
- cuequivariance_ops/triton/tuning_decorator.py +177 -0
- cuequivariance_ops/triton/utils.py +28 -0
- cuequivariance_ops_cu12-0.6.0.dist-info/METADATA +182 -0
- cuequivariance_ops_cu12-0.6.0.dist-info/RECORD +37 -0
- cuequivariance_ops_cu12-0.6.0.dist-info/WHEEL +6 -0
- cuequivariance_ops_cu12-0.6.0.dist-info/licenses/LICENSE +142 -0
- cuequivariance_ops_cu12-0.6.0.dist-info/licenses/Third_party_attr.txt +24 -0
|
@@ -0,0 +1,192 @@
|
|
|
1
|
+
#ifndef CUDNN_FMHA_RUN_FMHA_H
|
|
2
|
+
#define CUDNN_FMHA_RUN_FMHA_H
|
|
3
|
+
|
|
4
|
+
#include <cstdint> // for uint32_t
|
|
5
|
+
#include <cuda_fp16.h>
|
|
6
|
+
#include <cuda_fp8.h>
|
|
7
|
+
|
|
8
|
+
namespace cudnn_fmha {
|
|
9
|
+
using DataType_TriBias = float;
|
|
10
|
+
|
|
11
|
+
/**
|
|
12
|
+
* @brief Performs Flash Multi-Head Attention computation on GPU using cuDNN
|
|
13
|
+
* @tparam DType Data type for the computation (float, __half, or __nv_bfloat16)
|
|
14
|
+
*/
|
|
15
|
+
template <typename DType>
|
|
16
|
+
void run_fmha(DType* q_ptr,
|
|
17
|
+
DType* k_ptr,
|
|
18
|
+
DType* v_ptr,
|
|
19
|
+
DType* o_ptr,
|
|
20
|
+
bool* mask_bias_ptr,
|
|
21
|
+
DataType_TriBias* triangle_bias_ptr,
|
|
22
|
+
float* softmax_lse_ptr,
|
|
23
|
+
float* softmax_max_ptr,
|
|
24
|
+
const uint32_t B,
|
|
25
|
+
const uint32_t I,
|
|
26
|
+
const uint32_t H,
|
|
27
|
+
const uint32_t S_qo,
|
|
28
|
+
const uint32_t S_kv,
|
|
29
|
+
const uint32_t D,
|
|
30
|
+
const float bmm_scale,
|
|
31
|
+
bool use_tf32,
|
|
32
|
+
void* stream = nullptr);
|
|
33
|
+
|
|
34
|
+
/**
|
|
35
|
+
* @brief Performs the backward pass of Flash Multi-Head Attention computation on GPU using cuDNN
|
|
36
|
+
* Note: Backward pass remains in float before fp16/bf16 integration
|
|
37
|
+
*/
|
|
38
|
+
template <typename DType>
|
|
39
|
+
void run_fmha_bwd(DType* do_ptr, // [B, N, H, S_qo, D]
|
|
40
|
+
DType* o_ptr, // [B, N, H, S_qo, D]
|
|
41
|
+
float* softmax_lse_ptr, // [B, N, H, S_qo, 1]
|
|
42
|
+
DType* q_ptr, // [B, N, H, S_qo, D]
|
|
43
|
+
DType* k_ptr, // [B, N, H, S_kv, D]
|
|
44
|
+
DType* v_ptr, // [B, N, H, S_kv, D]
|
|
45
|
+
bool* mask_bias_ptr, // [B, N, 1, 1, S_kv]
|
|
46
|
+
float* triangle_bias_ptr, // [B, 1, H, S_qo, S_kv]
|
|
47
|
+
DType* dq_ptr, // [B, N, H, S_qo, D] output
|
|
48
|
+
DType* dk_ptr, // [B, N, H, S_kv, D] output
|
|
49
|
+
DType* dv_ptr, // [B, N, H, S_kv, D] output
|
|
50
|
+
float* triangle_dbias_ptr, // [B, 1, H, S_qo, S_kv] output
|
|
51
|
+
float* do_o_dot_ptr,
|
|
52
|
+
float* dq_fp32_buf, // [B, N, H, S_qo, D] worspace
|
|
53
|
+
const uint32_t B,
|
|
54
|
+
const uint32_t I,
|
|
55
|
+
const uint32_t H,
|
|
56
|
+
const uint32_t S_qo,
|
|
57
|
+
const uint32_t S_kv,
|
|
58
|
+
const uint32_t D,
|
|
59
|
+
const float bmm_scale,
|
|
60
|
+
bool use_tf32,
|
|
61
|
+
void* stream = nullptr);
|
|
62
|
+
|
|
63
|
+
// Explicit template declarations for supported types
|
|
64
|
+
extern template void run_fmha<float>(float*,
|
|
65
|
+
float*,
|
|
66
|
+
float*,
|
|
67
|
+
float*,
|
|
68
|
+
bool*,
|
|
69
|
+
DataType_TriBias*,
|
|
70
|
+
float*,
|
|
71
|
+
float*,
|
|
72
|
+
uint32_t,
|
|
73
|
+
uint32_t,
|
|
74
|
+
uint32_t,
|
|
75
|
+
uint32_t,
|
|
76
|
+
uint32_t,
|
|
77
|
+
uint32_t,
|
|
78
|
+
float,
|
|
79
|
+
bool,
|
|
80
|
+
void*);
|
|
81
|
+
|
|
82
|
+
extern template void run_fmha<__half>(__half*,
|
|
83
|
+
__half*,
|
|
84
|
+
__half*,
|
|
85
|
+
__half*,
|
|
86
|
+
bool*,
|
|
87
|
+
DataType_TriBias*,
|
|
88
|
+
float*,
|
|
89
|
+
float*,
|
|
90
|
+
uint32_t,
|
|
91
|
+
uint32_t,
|
|
92
|
+
uint32_t,
|
|
93
|
+
uint32_t,
|
|
94
|
+
uint32_t,
|
|
95
|
+
uint32_t,
|
|
96
|
+
float,
|
|
97
|
+
bool,
|
|
98
|
+
void*);
|
|
99
|
+
|
|
100
|
+
extern template void run_fmha<__nv_bfloat16>(__nv_bfloat16*,
|
|
101
|
+
__nv_bfloat16*,
|
|
102
|
+
__nv_bfloat16*,
|
|
103
|
+
__nv_bfloat16*,
|
|
104
|
+
bool*,
|
|
105
|
+
DataType_TriBias*,
|
|
106
|
+
float*,
|
|
107
|
+
float*,
|
|
108
|
+
uint32_t,
|
|
109
|
+
uint32_t,
|
|
110
|
+
uint32_t,
|
|
111
|
+
uint32_t,
|
|
112
|
+
uint32_t,
|
|
113
|
+
uint32_t,
|
|
114
|
+
float,
|
|
115
|
+
bool,
|
|
116
|
+
void*);
|
|
117
|
+
|
|
118
|
+
extern template void run_fmha_bwd<__half>(__half* do_ptr,
|
|
119
|
+
__half* o_ptr,
|
|
120
|
+
float* softmax_lse_ptr,
|
|
121
|
+
__half* q_ptr,
|
|
122
|
+
__half* k_ptr,
|
|
123
|
+
__half* v_ptr,
|
|
124
|
+
bool* mask_bias_ptr,
|
|
125
|
+
float* triangle_bias_ptr,
|
|
126
|
+
__half* dq_ptr,
|
|
127
|
+
__half* dk_ptr,
|
|
128
|
+
__half* dv_ptr,
|
|
129
|
+
float* triangle_dbias_ptr,
|
|
130
|
+
float* do_o_dot_ptr,
|
|
131
|
+
float* dq_fp32_buf,
|
|
132
|
+
const uint32_t B,
|
|
133
|
+
const uint32_t I,
|
|
134
|
+
const uint32_t H,
|
|
135
|
+
const uint32_t S_qo,
|
|
136
|
+
const uint32_t S_kv,
|
|
137
|
+
const uint32_t D,
|
|
138
|
+
const float bmm_scale,
|
|
139
|
+
bool use_tf32,
|
|
140
|
+
void* stream);
|
|
141
|
+
|
|
142
|
+
extern template void run_fmha_bwd<__nv_bfloat16>(__nv_bfloat16* do_ptr,
|
|
143
|
+
__nv_bfloat16* o_ptr,
|
|
144
|
+
float* softmax_lse_ptr,
|
|
145
|
+
__nv_bfloat16* q_ptr,
|
|
146
|
+
__nv_bfloat16* k_ptr,
|
|
147
|
+
__nv_bfloat16* v_ptr,
|
|
148
|
+
bool* mask_bias_ptr,
|
|
149
|
+
float* triangle_bias_ptr,
|
|
150
|
+
__nv_bfloat16* dq_ptr,
|
|
151
|
+
__nv_bfloat16* dk_ptr,
|
|
152
|
+
__nv_bfloat16* dv_ptr,
|
|
153
|
+
float* triangle_dbias_ptr,
|
|
154
|
+
float* do_o_dot_ptr,
|
|
155
|
+
float* dq_fp32_buf,
|
|
156
|
+
const uint32_t B,
|
|
157
|
+
const uint32_t I,
|
|
158
|
+
const uint32_t H,
|
|
159
|
+
const uint32_t S_qo,
|
|
160
|
+
const uint32_t S_kv,
|
|
161
|
+
const uint32_t D,
|
|
162
|
+
const float bmm_scale,
|
|
163
|
+
bool use_tf32,
|
|
164
|
+
void* stream);
|
|
165
|
+
|
|
166
|
+
extern template void run_fmha_bwd<float>(float* do_ptr,
|
|
167
|
+
float* o_ptr,
|
|
168
|
+
float* softmax_lse_ptr,
|
|
169
|
+
float* q_ptr,
|
|
170
|
+
float* k_ptr,
|
|
171
|
+
float* v_ptr,
|
|
172
|
+
bool* mask_bias_ptr,
|
|
173
|
+
float* triangle_bias_ptr,
|
|
174
|
+
float* dq_ptr,
|
|
175
|
+
float* dk_ptr,
|
|
176
|
+
float* dv_ptr,
|
|
177
|
+
float* triangle_dbias_ptr,
|
|
178
|
+
float* do_o_dot_ptr,
|
|
179
|
+
float* dq_fp32_buf,
|
|
180
|
+
const uint32_t B,
|
|
181
|
+
const uint32_t I,
|
|
182
|
+
const uint32_t H,
|
|
183
|
+
const uint32_t S_qo,
|
|
184
|
+
const uint32_t S_kv,
|
|
185
|
+
const uint32_t D,
|
|
186
|
+
const float bmm_scale,
|
|
187
|
+
bool use_tf32,
|
|
188
|
+
void* stream);
|
|
189
|
+
|
|
190
|
+
} // namespace cudnn_fmha
|
|
191
|
+
|
|
192
|
+
#endif // CUDNN_FMHA_RUN_FMHA_H
|
|
@@ -0,0 +1,77 @@
|
|
|
1
|
+
/*
|
|
2
|
+
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
3
|
+
* SPDX-License-Identifier: LicenseRef-NvidiaProprietary
|
|
4
|
+
*
|
|
5
|
+
* NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
6
|
+
* property and proprietary rights in and to this material, related
|
|
7
|
+
* documentation and any modifications thereto. Any use, reproduction,
|
|
8
|
+
* disclosure or distribution of this material and related documentation
|
|
9
|
+
* without an express license agreement from NVIDIA CORPORATION or
|
|
10
|
+
* its affiliates is strictly prohibited.
|
|
11
|
+
*/
|
|
12
|
+
#ifndef CUDNN_FMHA_RUN_FMHA_CUDAFREE_H
|
|
13
|
+
#define CUDNN_FMHA_RUN_FMHA_CUDAFREE_H
|
|
14
|
+
|
|
15
|
+
#include <cstdint> // for uint32_t
|
|
16
|
+
|
|
17
|
+
namespace cudnn_fmha {
|
|
18
|
+
using DType = void;
|
|
19
|
+
|
|
20
|
+
enum class Datatype : uint32_t {
|
|
21
|
+
kFloat32 = 0,
|
|
22
|
+
kFloat64 = 1,
|
|
23
|
+
kFloat16 = 2,
|
|
24
|
+
kBFloat16 = 3,
|
|
25
|
+
kInt32 = 4,
|
|
26
|
+
kInt64 = 5
|
|
27
|
+
};
|
|
28
|
+
|
|
29
|
+
__attribute__((visibility("default"))) void run_fmha_for_dtype(
|
|
30
|
+
Datatype dtype,
|
|
31
|
+
DType* q_ptr, // [B, N, H, S_qo, D]
|
|
32
|
+
DType* k_ptr, // [B, N, H, S_kv, D]
|
|
33
|
+
DType* v_ptr, // [B, N, H, S_kv, D]
|
|
34
|
+
DType* o_ptr, // [B, N, H, S_qo, D] output
|
|
35
|
+
bool* mask_bias_ptr, // [B, N, 1, 1, S_kv]
|
|
36
|
+
float* triangle_bias_ptr, // [B, 1, H, S_qo, S_kv]
|
|
37
|
+
float* softmax_lse_ptr, // [B, N, H, S_qo, 1] output
|
|
38
|
+
float* softmax_max_ptr, // [B, N, H, S_qo, 1] output
|
|
39
|
+
const uint32_t B,
|
|
40
|
+
const uint32_t I,
|
|
41
|
+
const uint32_t H,
|
|
42
|
+
const uint32_t S_qo,
|
|
43
|
+
const uint32_t S_kv,
|
|
44
|
+
const uint32_t D,
|
|
45
|
+
const float bmm_scale,
|
|
46
|
+
bool use_tf32,
|
|
47
|
+
void* stream = nullptr);
|
|
48
|
+
|
|
49
|
+
__attribute__((visibility("default"))) void run_fmha_bwd_for_dtype(
|
|
50
|
+
Datatype dtype,
|
|
51
|
+
DType* do_ptr, // [B, N, H, S_qo, D]
|
|
52
|
+
DType* o_ptr, // [B, N, H, S_qo, D]
|
|
53
|
+
float* softmax_lse_ptr, // [B, N, H, S_qo, 1]
|
|
54
|
+
DType* q_ptr, // [B, N, H, S_qo, D]
|
|
55
|
+
DType* k_ptr, // [B, N, H, S_kv, D]
|
|
56
|
+
DType* v_ptr, // [B, N, H, S_kv, D]
|
|
57
|
+
bool* mask_bias_ptr, // [B, N, 1, 1, S_kv]
|
|
58
|
+
float* triangle_bias_ptr, // [B, 1, H, S_qo, S_kv]
|
|
59
|
+
DType* dq_ptr, // [B, N, H, S_qo, D] output
|
|
60
|
+
DType* dk_ptr, // [B, N, H, S_kv, D] output
|
|
61
|
+
DType* dv_ptr, // [B, N, H, S_kv, D] output
|
|
62
|
+
float* triangle_dbias_ptr, // [B, 1, H, S_qo, S_kv] output
|
|
63
|
+
float* do_o_dot_ptr, // [B, N, H, S_qo, 1] worspace
|
|
64
|
+
float* dq_fp32_buf_ptr, // [B, N, H, S_qo, D] workspace
|
|
65
|
+
const uint32_t B,
|
|
66
|
+
const uint32_t I,
|
|
67
|
+
const uint32_t H,
|
|
68
|
+
const uint32_t S_qo,
|
|
69
|
+
const uint32_t S_kv,
|
|
70
|
+
const uint32_t D,
|
|
71
|
+
const float bmm_scale,
|
|
72
|
+
bool use_tf32,
|
|
73
|
+
void* stream);
|
|
74
|
+
|
|
75
|
+
} // namespace cudnn_fmha
|
|
76
|
+
|
|
77
|
+
#endif // CUDNN_FMHA_RUN_FMHA_CUDAFREE_H
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
/*
|
|
2
|
+
* Copyright (c) 2021-2024, NVIDIA CORPORATION. All rights reserved.
|
|
3
|
+
*
|
|
4
|
+
* This source code and/or documentation ("Licensed Deliverables") are
|
|
5
|
+
* subject to NVIDIA intellectual property rights under U.S. and
|
|
6
|
+
* international Copyright laws.
|
|
7
|
+
*/
|
|
8
|
+
|
|
9
|
+
#pragma once
|
|
10
|
+
|
|
11
|
+
#include "../common/common.hpp"
|
|
12
|
+
|
|
13
|
+
namespace kernelcatcher::tensor_product {
|
|
14
|
+
|
|
15
|
+
template <typename DataT>
|
|
16
|
+
void segmented_transpose(DataT* tensor_transpose,
|
|
17
|
+
const DataT* tensor,
|
|
18
|
+
const int32_t* segment_info,
|
|
19
|
+
int32_t num_segments,
|
|
20
|
+
int64_t batch_size,
|
|
21
|
+
int64_t stride,
|
|
22
|
+
bool input_contiguous_as_info,
|
|
23
|
+
cudaStream_t stream);
|
|
24
|
+
|
|
25
|
+
extern template void segmented_transpose<float>(
|
|
26
|
+
float*, const float*, const int32_t*, int32_t, int64_t, int64_t, bool, cudaStream_t);
|
|
27
|
+
extern template void segmented_transpose<double>(
|
|
28
|
+
double*, const double*, const int32_t*, int32_t, int64_t, int64_t, bool, cudaStream_t);
|
|
29
|
+
extern template void segmented_transpose<__nv_bfloat16>(__nv_bfloat16*,
|
|
30
|
+
const __nv_bfloat16*,
|
|
31
|
+
const int32_t*,
|
|
32
|
+
int32_t,
|
|
33
|
+
int64_t,
|
|
34
|
+
int64_t,
|
|
35
|
+
bool,
|
|
36
|
+
cudaStream_t);
|
|
37
|
+
extern template void segmented_transpose<__half>(
|
|
38
|
+
__half*, const __half*, const int32_t*, int32_t, int64_t, int64_t, bool, cudaStream_t);
|
|
39
|
+
|
|
40
|
+
} // namespace kernelcatcher::tensor_product
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
/*
|
|
2
|
+
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
|
3
|
+
*
|
|
4
|
+
* This source code and/or documentation ("Licensed Deliverables") are
|
|
5
|
+
* subject to NVIDIA intellectual property rights under U.S. and
|
|
6
|
+
* international Copyright laws.
|
|
7
|
+
*/
|
|
8
|
+
|
|
9
|
+
#pragma once
|
|
10
|
+
|
|
11
|
+
#include "batch_dimension.hh" // for BatchDimension
|
|
12
|
+
#include "dtypes.hh" // for Datatype
|
|
13
|
+
#include <cstdint>
|
|
14
|
+
#include <string>
|
|
15
|
+
#include <vector>
|
|
16
|
+
|
|
17
|
+
namespace kernelcatcher::equivariance::tensor_product_uniform_1d_jit {
|
|
18
|
+
using namespace kernelcatcher::utils;
|
|
19
|
+
|
|
20
|
+
enum class Dimension : int { kScalar = 0, kOneDimensional = 1 };
|
|
21
|
+
|
|
22
|
+
#define KC_UNIFORM_1D_DECL_ARGUMENTS \
|
|
23
|
+
std::string const &name, Datatype math_dtype, int operand_extent, int num_inputs, \
|
|
24
|
+
int num_outputs, int num_index, std::vector<Dimension> const &buffer_dim, \
|
|
25
|
+
std::vector<int> const &buffer_num_segments, \
|
|
26
|
+
std::vector<std::vector<BatchDimension>> const &batch_dim, \
|
|
27
|
+
std::vector<std::vector<int>> const &index_buffer, std::vector<int> const &index_extent, \
|
|
28
|
+
std::vector<Datatype> const &dtypes, std::vector<std::vector<int>> const &operations, \
|
|
29
|
+
std::vector<int> num_paths, std::vector<int> path_indices_start, \
|
|
30
|
+
std::vector<int> path_coefficients_start, std::vector<int> const &path_indices, \
|
|
31
|
+
std::vector<double> const &path_coefficients, std::vector<int> const &batch_sizes, \
|
|
32
|
+
std::vector<void*> const &buffers, std::vector<size_t> const &buffer_bytes, \
|
|
33
|
+
bool zero_output_buffers
|
|
34
|
+
|
|
35
|
+
extern int run_tensor_product_uniform_1d_jit(KC_UNIFORM_1D_DECL_ARGUMENTS, void* stream);
|
|
36
|
+
extern int run_tensor_product_uniform_1d_cpu(KC_UNIFORM_1D_DECL_ARGUMENTS);
|
|
37
|
+
|
|
38
|
+
} // namespace kernelcatcher::equivariance::tensor_product_uniform_1d_jit
|
|
Binary file
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
/*
|
|
2
|
+
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
|
3
|
+
*
|
|
4
|
+
* This source code and/or documentation ("Licensed Deliverables") are
|
|
5
|
+
* subject to NVIDIA intellectual property rights under U.S. and
|
|
6
|
+
* international Copyright laws.
|
|
7
|
+
*/
|
|
8
|
+
|
|
9
|
+
#pragma once
|
|
10
|
+
|
|
11
|
+
#include <cstdint>
|
|
12
|
+
|
|
13
|
+
namespace kernelcatcher::sleep {
|
|
14
|
+
|
|
15
|
+
int run_sleep(float* seconds, int64_t* elapsed_ticks, void* stream);
|
|
16
|
+
int run_synchronize(float* elapsed_seconds, void* stream);
|
|
17
|
+
|
|
18
|
+
} // namespace kernelcatcher::sleep
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
|
|
3
|
+
#
|
|
4
|
+
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
5
|
+
# property and proprietary rights in and to this material, related
|
|
6
|
+
# documentation and any modifications thereto. Any use, reproduction,
|
|
7
|
+
# disclosure or distribution of this material and related documentation
|
|
8
|
+
# without an express license agreement from NVIDIA CORPORATION or
|
|
9
|
+
# its affiliates is strictly prohibited.
|
|
10
|
+
|
|
11
|
+
from .fused_layer_norm_triton import (
|
|
12
|
+
Layout,
|
|
13
|
+
layer_norm_transpose_backward_kernel,
|
|
14
|
+
layer_norm_transpose_backward_single_pass_kernel,
|
|
15
|
+
layer_norm_transpose_forward_kernel,
|
|
16
|
+
layer_norm_transpose_forward_single_pass_kernel,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
from .gated_gemm_triton import (
|
|
20
|
+
fused_sigmoid_gated_dual_gemm_backward_pregemm_kernel,
|
|
21
|
+
fused_sigmoid_gated_dual_gemm_forward_kernel,
|
|
22
|
+
)
|
|
23
|
+
from .utils import Precision
|
|
24
|
+
from .tuning_decorator import autotune_aot
|
|
25
|
+
from .cache_manager import get_cache_manager
|
|
26
|
+
|
|
27
|
+
cached_kernels = [ "fused_sigmoid_gated_dual_gemm_backward_pregemm_kernel",
|
|
28
|
+
"fused_sigmoid_gated_dual_gemm_forward_kernel",
|
|
29
|
+
]
|
|
30
|
+
|
|
31
|
+
def init_triton_cache():
|
|
32
|
+
"""
|
|
33
|
+
Initializes Triton cache manager by pre-loading cache for all available kernels.
|
|
34
|
+
This function is useful to initialize cache in eager mode before running torch.compile()'d methods
|
|
35
|
+
that cannot handle cache initialization code
|
|
36
|
+
"""
|
|
37
|
+
mgr = get_cache_manager()
|
|
38
|
+
for kernel in cached_kernels:
|
|
39
|
+
mgr.load_cache(kernel+'_wrapper')
|
|
40
|
+
|
|
41
|
+
from .utils import (
|
|
42
|
+
Precision,
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
from .pair_bias import (
|
|
46
|
+
pair_bias_norm_linear_mask_forward_kernel,
|
|
47
|
+
pair_bias_linear_mask_forward_kernel,
|
|
48
|
+
pair_bias_mask_forward_kernel,
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
__all__ = [
|
|
53
|
+
"Precision",
|
|
54
|
+
"fused_sigmoid_gated_dual_gemm_backward_pregemm_kernel",
|
|
55
|
+
"fused_sigmoid_gated_dual_gemm_forward_kernel",
|
|
56
|
+
"layer_norm_transpose_backward_kernel",
|
|
57
|
+
"layer_norm_transpose_backward_single_pass_kernel",
|
|
58
|
+
"layer_norm_transpose_forward_kernel",
|
|
59
|
+
"layer_norm_transpose_forward_single_pass_kernel",
|
|
60
|
+
"pair_bias_norm_linear_mask_forward_kernel",
|
|
61
|
+
"pair_bias_linear_mask_forward_kernel",
|
|
62
|
+
"pair_bias_mask_forward_kernel",
|
|
63
|
+
"autotune_aot",
|
|
64
|
+
"get_cache_manager",
|
|
65
|
+
"init_triton_cache"
|
|
66
|
+
] + cached_kernels
|