cuequivariance-ops-cu12 0.4.0__py3-none-manylinux_2_39_aarch64.whl → 0.5.0__py3-none-manylinux_2_39_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of cuequivariance-ops-cu12 might be problematic. Click here for more details.
- cuequivariance_ops/VERSION +1 -1
- cuequivariance_ops/__init__.py +3 -2
- cuequivariance_ops/cache_manager.py +130 -0
- cuequivariance_ops/equivariance/dtypes.hh +21 -0
- cuequivariance_ops/equivariance/indexed_linear.hh +36 -0
- cuequivariance_ops/equivariance/run_fmha.h +192 -0
- cuequivariance_ops/equivariance/run_fmha_cudafree.h +77 -0
- cuequivariance_ops/equivariance/tensor_product_uniform_1d_jit.hh +17 -35
- cuequivariance_ops/fused_layer_norm_triton.py +324 -0
- cuequivariance_ops/fused_sigmoid_gated_dual_gemm_backward_pregemm_kernel_wrapper.json +222844 -0
- cuequivariance_ops/fused_sigmoid_gated_dual_gemm_forward_kernel_wrapper.json +326932 -0
- cuequivariance_ops/gated_gemm_triton.py +340 -0
- cuequivariance_ops/lib/libcue_ops.so +0 -0
- cuequivariance_ops/tuning_decorator.py +328 -0
- {cuequivariance_ops_cu12-0.4.0.dist-info → cuequivariance_ops_cu12-0.5.0.dist-info}/METADATA +4 -1
- cuequivariance_ops_cu12-0.5.0.dist-info/RECORD +23 -0
- {cuequivariance_ops_cu12-0.4.0.dist-info → cuequivariance_ops_cu12-0.5.0.dist-info}/WHEEL +1 -1
- cuequivariance_ops_cu12-0.4.0.dist-info/RECORD +0 -13
- {cuequivariance_ops_cu12-0.4.0.dist-info → cuequivariance_ops_cu12-0.5.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,324 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
2
|
+
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
|
|
3
|
+
#
|
|
4
|
+
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
|
|
5
|
+
# property and proprietary rights in and to this material, related
|
|
6
|
+
# documentation and any modifications thereto. Any use, reproduction,
|
|
7
|
+
# disclosure or distribution of this material and related documentation
|
|
8
|
+
# without an express license agreement from NVIDIA CORPORATION or
|
|
9
|
+
# its affiliates is strictly prohibited.
|
|
10
|
+
|
|
11
|
+
import enum
|
|
12
|
+
|
|
13
|
+
import triton
|
|
14
|
+
import triton.language as tl
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class Layout(enum.IntEnum):
|
|
18
|
+
BND_BND = 0
|
|
19
|
+
BDN_BND = 1
|
|
20
|
+
BND_BDN = 2
|
|
21
|
+
DBN_BND = 3
|
|
22
|
+
BND_DBN = 4
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@triton.jit
|
|
26
|
+
def layer_norm_transpose_forward_kernel(
|
|
27
|
+
x_ptr,
|
|
28
|
+
out_ptr,
|
|
29
|
+
w_ptr,
|
|
30
|
+
b_ptr,
|
|
31
|
+
mean_ptr,
|
|
32
|
+
rstd_ptr,
|
|
33
|
+
B,
|
|
34
|
+
N,
|
|
35
|
+
D: tl.constexpr,
|
|
36
|
+
EPS: tl.constexpr,
|
|
37
|
+
TILE_N: tl.constexpr,
|
|
38
|
+
TILE_D: tl.constexpr,
|
|
39
|
+
ELEMENTWISE_AFFINE: tl.constexpr,
|
|
40
|
+
LAYOUT: tl.constexpr,
|
|
41
|
+
):
|
|
42
|
+
pid_n = tl.program_id(0)
|
|
43
|
+
pid_b = tl.program_id(1)
|
|
44
|
+
|
|
45
|
+
offs_n = pid_n * TILE_N + tl.arange(0, TILE_N)
|
|
46
|
+
offs_d = tl.arange(0, TILE_D)
|
|
47
|
+
|
|
48
|
+
if LAYOUT == 0: # bnd->bnd
|
|
49
|
+
x_ptrs = x_ptr + pid_b * N * D + offs_n[:, None] * D + offs_d[None, :]
|
|
50
|
+
elif LAYOUT == 1: # bdn->bnd
|
|
51
|
+
x_ptrs = x_ptr + pid_b * D * N + offs_d[None, :] * N + offs_n[:, None]
|
|
52
|
+
elif LAYOUT == 2: # bnd->bdn
|
|
53
|
+
x_ptrs = x_ptr + pid_b * N * D + offs_n[:, None] * D + offs_d[None, :]
|
|
54
|
+
elif LAYOUT == 3: # dbn->bnd
|
|
55
|
+
x_ptrs = x_ptr + offs_d[None, :] * B * N + pid_b * N + offs_n[:, None]
|
|
56
|
+
elif LAYOUT == 4: # bnd->dbn
|
|
57
|
+
x_ptrs = x_ptr + pid_b * N * D + offs_n[:, None] * D + offs_d[None, :]
|
|
58
|
+
|
|
59
|
+
mean_ptrs = mean_ptr + pid_b * N + offs_n
|
|
60
|
+
rstd_ptrs = rstd_ptr + pid_b * N + offs_n
|
|
61
|
+
mask_n = offs_n < N
|
|
62
|
+
|
|
63
|
+
num_tiles = D // TILE_D
|
|
64
|
+
|
|
65
|
+
_mean = tl.zeros([TILE_N, TILE_D], dtype=tl.float32)
|
|
66
|
+
for _ in range(0, num_tiles):
|
|
67
|
+
x = tl.load(x_ptrs, mask=mask_n[:, None], other=0.0).to(tl.float32)
|
|
68
|
+
_mean += x
|
|
69
|
+
|
|
70
|
+
if LAYOUT == 0: # bnd->bnd
|
|
71
|
+
x_ptrs += TILE_D
|
|
72
|
+
elif LAYOUT == 1: # bdn->bnd
|
|
73
|
+
x_ptrs += TILE_D * N
|
|
74
|
+
elif LAYOUT == 2: # bnd->bdn
|
|
75
|
+
x_ptrs += TILE_D
|
|
76
|
+
elif LAYOUT == 3: # dbn->bnd
|
|
77
|
+
x_ptrs += TILE_D * B * N
|
|
78
|
+
elif LAYOUT == 4: # bnd->dbn
|
|
79
|
+
x_ptrs += TILE_D
|
|
80
|
+
|
|
81
|
+
mean = tl.sum(_mean, axis=1) / D
|
|
82
|
+
tl.store(mean_ptrs, mean, mask=mask_n)
|
|
83
|
+
|
|
84
|
+
if LAYOUT == 0: # bnd->bnd
|
|
85
|
+
x_ptrs -= D
|
|
86
|
+
elif LAYOUT == 1: # bdn->bnd
|
|
87
|
+
x_ptrs -= D * N
|
|
88
|
+
elif LAYOUT == 2: # bnd->bdn
|
|
89
|
+
x_ptrs -= D
|
|
90
|
+
elif LAYOUT == 3: # dbn->bnd
|
|
91
|
+
x_ptrs -= D * B * N
|
|
92
|
+
elif LAYOUT == 4: # bnd->dbn
|
|
93
|
+
x_ptrs -= D
|
|
94
|
+
|
|
95
|
+
_var = tl.zeros([TILE_N, TILE_D], dtype=tl.float32)
|
|
96
|
+
for d in range(0, num_tiles):
|
|
97
|
+
x = tl.load(x_ptrs, mask=mask_n[:, None], other=0.0).to(tl.float32)
|
|
98
|
+
x = x - mean[:, None]
|
|
99
|
+
_var += x * x
|
|
100
|
+
|
|
101
|
+
if LAYOUT == 0: # bnd->bnd
|
|
102
|
+
x_ptrs += TILE_D
|
|
103
|
+
elif LAYOUT == 1: # bdn->bnd
|
|
104
|
+
x_ptrs += TILE_D * N
|
|
105
|
+
elif LAYOUT == 2: # bnd->bdn
|
|
106
|
+
x_ptrs += TILE_D
|
|
107
|
+
elif LAYOUT == 3: # dbn->bnd
|
|
108
|
+
x_ptrs += TILE_D * B * N
|
|
109
|
+
elif LAYOUT == 4: # bnd->dbn
|
|
110
|
+
x_ptrs += TILE_D
|
|
111
|
+
|
|
112
|
+
var = tl.sum(_var, axis=1) / D
|
|
113
|
+
rstd = 1.0 / tl.sqrt(var + EPS)
|
|
114
|
+
tl.store(rstd_ptrs, rstd, mask=mask_n)
|
|
115
|
+
|
|
116
|
+
if LAYOUT == 0: # bnd->bnd
|
|
117
|
+
x_ptrs -= D
|
|
118
|
+
out_ptrs = out_ptr + pid_b * N * D + offs_n[:, None] * D + offs_d[None, :]
|
|
119
|
+
elif LAYOUT == 1: # bdn->bnd
|
|
120
|
+
x_ptrs -= D * N
|
|
121
|
+
out_ptrs = out_ptr + pid_b * N * D + offs_n[:, None] * D + offs_d[None, :]
|
|
122
|
+
elif LAYOUT == 2: # bnd->bdn
|
|
123
|
+
x_ptrs -= D
|
|
124
|
+
out_ptrs = out_ptr + pid_b * N * D + offs_d[None, :] * N + offs_n[:, None]
|
|
125
|
+
elif LAYOUT == 3: # dbn->bnd
|
|
126
|
+
x_ptrs -= D * B * N
|
|
127
|
+
out_ptrs = out_ptr + pid_b * N * D + offs_n[:, None] * D + offs_d[None, :]
|
|
128
|
+
elif LAYOUT == 4: # bnd->dbn
|
|
129
|
+
x_ptrs -= D
|
|
130
|
+
out_ptrs = out_ptr + offs_d[None, :] * B * N + pid_b * N + offs_n[:, None]
|
|
131
|
+
|
|
132
|
+
if ELEMENTWISE_AFFINE:
|
|
133
|
+
w_ptrs = w_ptr + offs_d
|
|
134
|
+
b_ptrs = b_ptr + offs_d
|
|
135
|
+
|
|
136
|
+
for _ in range(0, num_tiles):
|
|
137
|
+
if ELEMENTWISE_AFFINE:
|
|
138
|
+
w = tl.load(w_ptrs)
|
|
139
|
+
b = tl.load(b_ptrs)
|
|
140
|
+
else:
|
|
141
|
+
w = 1.0
|
|
142
|
+
b = 0.0
|
|
143
|
+
|
|
144
|
+
x = tl.load(x_ptrs, mask=mask_n[:, None], other=0.0).to(tl.float32)
|
|
145
|
+
x_hat = (x - mean[:, None]) * rstd[:, None]
|
|
146
|
+
y = x_hat * w[None, :] + b[None, :]
|
|
147
|
+
tl.store(out_ptrs, y, mask=mask_n[:, None])
|
|
148
|
+
|
|
149
|
+
if LAYOUT == 0: # bnd->bnd
|
|
150
|
+
x_ptrs += TILE_D
|
|
151
|
+
out_ptrs += TILE_D
|
|
152
|
+
elif LAYOUT == 1: # bdn->bnd
|
|
153
|
+
x_ptrs += TILE_D * N
|
|
154
|
+
out_ptrs += TILE_D
|
|
155
|
+
elif LAYOUT == 2: # bnd->bdn
|
|
156
|
+
x_ptrs += TILE_D
|
|
157
|
+
out_ptrs += TILE_D * N
|
|
158
|
+
elif LAYOUT == 3: # dbn->bnd
|
|
159
|
+
x_ptrs += TILE_D * B * N
|
|
160
|
+
out_ptrs += TILE_D
|
|
161
|
+
elif LAYOUT == 4: # bnd->dbn
|
|
162
|
+
x_ptrs += TILE_D
|
|
163
|
+
out_ptrs += TILE_D * B * N
|
|
164
|
+
|
|
165
|
+
if ELEMENTWISE_AFFINE:
|
|
166
|
+
w_ptrs += TILE_D
|
|
167
|
+
b_ptrs += TILE_D
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
@triton.jit
|
|
171
|
+
def layer_norm_transpose_backward_kernel(
|
|
172
|
+
grad_out_ptr,
|
|
173
|
+
grad_x_ptr,
|
|
174
|
+
grad_w_ptr,
|
|
175
|
+
grad_b_ptr,
|
|
176
|
+
x_ptr,
|
|
177
|
+
w_ptr,
|
|
178
|
+
mean_ptr,
|
|
179
|
+
rstd_ptr,
|
|
180
|
+
B,
|
|
181
|
+
N,
|
|
182
|
+
D: tl.constexpr,
|
|
183
|
+
TILE_N: tl.constexpr,
|
|
184
|
+
TILE_D: tl.constexpr,
|
|
185
|
+
ELEMENTWISE_AFFINE: tl.constexpr,
|
|
186
|
+
LAYOUT: tl.constexpr,
|
|
187
|
+
):
|
|
188
|
+
pid_n = tl.program_id(0)
|
|
189
|
+
pid_b = tl.program_id(1)
|
|
190
|
+
|
|
191
|
+
num_tiles = D // TILE_D
|
|
192
|
+
num_tiles_n = tl.cdiv(N, TILE_N)
|
|
193
|
+
|
|
194
|
+
offs_d = tl.arange(0, TILE_D)
|
|
195
|
+
offs_n = pid_n * TILE_N + tl.arange(0, TILE_N)
|
|
196
|
+
mask_n = offs_n < N
|
|
197
|
+
|
|
198
|
+
mean_ptrs = mean_ptr + pid_b * N + offs_n
|
|
199
|
+
rstd_ptrs = rstd_ptr + pid_b * N + offs_n
|
|
200
|
+
mean = tl.load(mean_ptrs, mask=mask_n, other=0.0).to(tl.float32)
|
|
201
|
+
rstd = tl.load(rstd_ptrs, mask=mask_n, other=0.0).to(tl.float32)
|
|
202
|
+
|
|
203
|
+
if LAYOUT == 0: # bnd->bnd
|
|
204
|
+
x_base_ptrs = x_ptr + pid_b * N * D + offs_n[:, None] * D
|
|
205
|
+
grad_x_base_ptrs = grad_x_ptr + pid_b * N * D + offs_n[:, None] * D
|
|
206
|
+
grad_out_base_ptrs = grad_out_ptr + pid_b * N * D + offs_n[:, None] * D
|
|
207
|
+
elif LAYOUT == 1: # bdn->bnd
|
|
208
|
+
x_base_ptrs = x_ptr + pid_b * D * N + offs_n[:, None]
|
|
209
|
+
grad_x_base_ptrs = grad_x_ptr + pid_b * D * N + offs_n[:, None]
|
|
210
|
+
grad_out_base_ptrs = grad_out_ptr + pid_b * N * D + offs_n[:, None] * D
|
|
211
|
+
elif LAYOUT == 2: # bnd->bdn
|
|
212
|
+
x_base_ptrs = x_ptr + pid_b * N * D + offs_n[:, None] * D
|
|
213
|
+
grad_x_base_ptrs = grad_x_ptr + pid_b * N * D + offs_n[:, None] * D
|
|
214
|
+
grad_out_base_ptrs = grad_out_ptr + pid_b * N * D + offs_n[:, None]
|
|
215
|
+
elif LAYOUT == 3: # dbn->bnd
|
|
216
|
+
x_base_ptrs = x_ptr + pid_b * N + offs_n[:, None]
|
|
217
|
+
grad_x_base_ptrs = grad_x_ptr + pid_b * N + offs_n[:, None]
|
|
218
|
+
grad_out_base_ptrs = grad_out_ptr + pid_b * N * D + offs_n[:, None] * D
|
|
219
|
+
elif LAYOUT == 4: # bnd->dbn
|
|
220
|
+
x_base_ptrs = x_ptr + pid_b * N * D + offs_n[:, None] * D
|
|
221
|
+
grad_x_base_ptrs = grad_x_ptr + pid_b * N * D + offs_n[:, None] * D
|
|
222
|
+
grad_out_base_ptrs = grad_out_ptr + pid_b * N + offs_n[:, None]
|
|
223
|
+
|
|
224
|
+
grad_w_base_ptrs = grad_w_ptr + pid_b * num_tiles_n * D + pid_n * D
|
|
225
|
+
grad_b_base_ptrs = grad_b_ptr + pid_b * num_tiles_n * D + pid_n * D
|
|
226
|
+
|
|
227
|
+
c1 = tl.zeros([TILE_N, TILE_D], dtype=tl.float32)
|
|
228
|
+
c2 = tl.zeros([TILE_N, TILE_D], dtype=tl.float32)
|
|
229
|
+
|
|
230
|
+
for _ in range(num_tiles):
|
|
231
|
+
if ELEMENTWISE_AFFINE:
|
|
232
|
+
w_ptrs = w_ptr + offs_d
|
|
233
|
+
w = tl.load(w_ptrs).to(tl.float32)
|
|
234
|
+
else:
|
|
235
|
+
w = 1.0
|
|
236
|
+
|
|
237
|
+
if LAYOUT == 0: # bnd->bnd
|
|
238
|
+
x_ptrs = x_base_ptrs + offs_d[None, :]
|
|
239
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :]
|
|
240
|
+
elif LAYOUT == 1: # bdn->bnd
|
|
241
|
+
x_ptrs = x_base_ptrs + offs_d[None, :] * N
|
|
242
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :]
|
|
243
|
+
elif LAYOUT == 2: # bnd->bdn
|
|
244
|
+
x_ptrs = x_base_ptrs + offs_d[None, :]
|
|
245
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :] * N
|
|
246
|
+
elif LAYOUT == 3: # dbn->bnd
|
|
247
|
+
x_ptrs = x_base_ptrs + offs_d[None, :] * B * N
|
|
248
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :]
|
|
249
|
+
elif LAYOUT == 4: # bnd->dbn
|
|
250
|
+
x_ptrs = x_base_ptrs + offs_d[None, :]
|
|
251
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :] * B * N
|
|
252
|
+
|
|
253
|
+
x = tl.load(x_ptrs, mask=mask_n[:, None], other=0.0).to(tl.float32)
|
|
254
|
+
grad_out = tl.load(grad_out_ptrs, mask=mask_n[:, None], other=0.0).to(
|
|
255
|
+
tl.float32
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
xhat = (x - mean[:, None]) * rstd[:, None]
|
|
259
|
+
|
|
260
|
+
if ELEMENTWISE_AFFINE:
|
|
261
|
+
grad_b = grad_out
|
|
262
|
+
grad_w = grad_out * xhat
|
|
263
|
+
|
|
264
|
+
grad_b = tl.sum(grad_b, axis=0)
|
|
265
|
+
grad_w = tl.sum(grad_w, axis=0)
|
|
266
|
+
|
|
267
|
+
grad_w_ptrs = grad_w_base_ptrs + offs_d
|
|
268
|
+
grad_b_ptrs = grad_b_base_ptrs + offs_d
|
|
269
|
+
|
|
270
|
+
tl.store(grad_w_ptrs, grad_w)
|
|
271
|
+
tl.store(grad_b_ptrs, grad_b)
|
|
272
|
+
|
|
273
|
+
wdo = w * grad_out
|
|
274
|
+
|
|
275
|
+
c1 += xhat * wdo
|
|
276
|
+
c2 += wdo
|
|
277
|
+
|
|
278
|
+
offs_d += TILE_D
|
|
279
|
+
|
|
280
|
+
c1_dot = tl.sum(c1, axis=1) / D
|
|
281
|
+
c2_dot = tl.sum(c2, axis=1) / D
|
|
282
|
+
|
|
283
|
+
offs_d -= TILE_D * num_tiles
|
|
284
|
+
|
|
285
|
+
for _ in range(num_tiles):
|
|
286
|
+
if ELEMENTWISE_AFFINE:
|
|
287
|
+
w_ptrs = w_ptr + offs_d
|
|
288
|
+
w = tl.load(w_ptrs).to(tl.float32)
|
|
289
|
+
else:
|
|
290
|
+
w = 1.0
|
|
291
|
+
|
|
292
|
+
if LAYOUT == 0: # bnd->bnd
|
|
293
|
+
x_ptrs = x_base_ptrs + offs_d[None, :]
|
|
294
|
+
grad_x_ptrs = grad_x_base_ptrs + offs_d[None, :]
|
|
295
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :]
|
|
296
|
+
elif LAYOUT == 1: # bdn->bnd
|
|
297
|
+
x_ptrs = x_base_ptrs + offs_d[None, :] * N
|
|
298
|
+
grad_x_ptrs = grad_x_base_ptrs + offs_d[None, :] * N
|
|
299
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :]
|
|
300
|
+
elif LAYOUT == 2: # bnd->bdn
|
|
301
|
+
x_ptrs = x_base_ptrs + offs_d[None, :]
|
|
302
|
+
grad_x_ptrs = grad_x_base_ptrs + offs_d[None, :]
|
|
303
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :] * N
|
|
304
|
+
elif LAYOUT == 3: # dbn->bnd
|
|
305
|
+
x_ptrs = x_base_ptrs + offs_d[None, :] * B * N
|
|
306
|
+
grad_x_ptrs = grad_x_base_ptrs + offs_d[None, :] * B * N
|
|
307
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :]
|
|
308
|
+
elif LAYOUT == 4: # bnd->dbn
|
|
309
|
+
x_ptrs = x_base_ptrs + offs_d[None, :]
|
|
310
|
+
grad_x_ptrs = grad_x_base_ptrs + offs_d[None, :]
|
|
311
|
+
grad_out_ptrs = grad_out_base_ptrs + offs_d[None, :] * B * N
|
|
312
|
+
|
|
313
|
+
x = tl.load(x_ptrs, mask=mask_n[:, None], other=0.0).to(tl.float32)
|
|
314
|
+
grad_out = tl.load(grad_out_ptrs, mask=mask_n[:, None], other=0.0).to(
|
|
315
|
+
tl.float32
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
xhat = (x - mean[:, None]) * rstd[:, None]
|
|
319
|
+
wdo = w * grad_out
|
|
320
|
+
|
|
321
|
+
dx = (wdo - (xhat * c1_dot[:, None] + c2_dot[:, None])) * rstd[:, None]
|
|
322
|
+
tl.store(grad_x_ptrs, dx, mask=mask_n[:, None])
|
|
323
|
+
|
|
324
|
+
offs_d += TILE_D
|