cudf-polars-cu13 25.10.0__py3-none-any.whl → 26.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cudf_polars/GIT_COMMIT +1 -1
- cudf_polars/VERSION +1 -1
- cudf_polars/callback.py +60 -15
- cudf_polars/containers/column.py +137 -77
- cudf_polars/containers/dataframe.py +123 -34
- cudf_polars/containers/datatype.py +134 -13
- cudf_polars/dsl/expr.py +0 -2
- cudf_polars/dsl/expressions/aggregation.py +80 -28
- cudf_polars/dsl/expressions/binaryop.py +34 -14
- cudf_polars/dsl/expressions/boolean.py +110 -37
- cudf_polars/dsl/expressions/datetime.py +59 -30
- cudf_polars/dsl/expressions/literal.py +11 -5
- cudf_polars/dsl/expressions/rolling.py +460 -119
- cudf_polars/dsl/expressions/selection.py +9 -8
- cudf_polars/dsl/expressions/slicing.py +1 -1
- cudf_polars/dsl/expressions/string.py +256 -114
- cudf_polars/dsl/expressions/struct.py +19 -7
- cudf_polars/dsl/expressions/ternary.py +33 -3
- cudf_polars/dsl/expressions/unary.py +126 -64
- cudf_polars/dsl/ir.py +1053 -350
- cudf_polars/dsl/to_ast.py +30 -13
- cudf_polars/dsl/tracing.py +194 -0
- cudf_polars/dsl/translate.py +307 -107
- cudf_polars/dsl/utils/aggregations.py +43 -30
- cudf_polars/dsl/utils/reshape.py +14 -2
- cudf_polars/dsl/utils/rolling.py +12 -8
- cudf_polars/dsl/utils/windows.py +35 -20
- cudf_polars/experimental/base.py +55 -2
- cudf_polars/experimental/benchmarks/pdsds.py +12 -126
- cudf_polars/experimental/benchmarks/pdsh.py +792 -2
- cudf_polars/experimental/benchmarks/utils.py +596 -39
- cudf_polars/experimental/dask_registers.py +47 -20
- cudf_polars/experimental/dispatch.py +9 -3
- cudf_polars/experimental/distinct.py +2 -0
- cudf_polars/experimental/explain.py +15 -2
- cudf_polars/experimental/expressions.py +30 -15
- cudf_polars/experimental/groupby.py +25 -4
- cudf_polars/experimental/io.py +156 -124
- cudf_polars/experimental/join.py +53 -23
- cudf_polars/experimental/parallel.py +68 -19
- cudf_polars/experimental/rapidsmpf/__init__.py +8 -0
- cudf_polars/experimental/rapidsmpf/collectives/__init__.py +9 -0
- cudf_polars/experimental/rapidsmpf/collectives/allgather.py +90 -0
- cudf_polars/experimental/rapidsmpf/collectives/common.py +96 -0
- cudf_polars/experimental/rapidsmpf/collectives/shuffle.py +253 -0
- cudf_polars/experimental/rapidsmpf/core.py +488 -0
- cudf_polars/experimental/rapidsmpf/dask.py +172 -0
- cudf_polars/experimental/rapidsmpf/dispatch.py +153 -0
- cudf_polars/experimental/rapidsmpf/io.py +696 -0
- cudf_polars/experimental/rapidsmpf/join.py +322 -0
- cudf_polars/experimental/rapidsmpf/lower.py +74 -0
- cudf_polars/experimental/rapidsmpf/nodes.py +735 -0
- cudf_polars/experimental/rapidsmpf/repartition.py +216 -0
- cudf_polars/experimental/rapidsmpf/union.py +115 -0
- cudf_polars/experimental/rapidsmpf/utils.py +374 -0
- cudf_polars/experimental/repartition.py +9 -2
- cudf_polars/experimental/select.py +177 -14
- cudf_polars/experimental/shuffle.py +46 -12
- cudf_polars/experimental/sort.py +100 -26
- cudf_polars/experimental/spilling.py +1 -1
- cudf_polars/experimental/statistics.py +24 -5
- cudf_polars/experimental/utils.py +25 -7
- cudf_polars/testing/asserts.py +13 -8
- cudf_polars/testing/io.py +2 -1
- cudf_polars/testing/plugin.py +93 -17
- cudf_polars/typing/__init__.py +86 -32
- cudf_polars/utils/config.py +473 -58
- cudf_polars/utils/cuda_stream.py +70 -0
- cudf_polars/utils/versions.py +5 -4
- cudf_polars_cu13-26.2.0.dist-info/METADATA +181 -0
- cudf_polars_cu13-26.2.0.dist-info/RECORD +108 -0
- {cudf_polars_cu13-25.10.0.dist-info → cudf_polars_cu13-26.2.0.dist-info}/WHEEL +1 -1
- cudf_polars_cu13-25.10.0.dist-info/METADATA +0 -136
- cudf_polars_cu13-25.10.0.dist-info/RECORD +0 -92
- {cudf_polars_cu13-25.10.0.dist-info → cudf_polars_cu13-26.2.0.dist-info}/licenses/LICENSE +0 -0
- {cudf_polars_cu13-25.10.0.dist-info → cudf_polars_cu13-26.2.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES.
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
|
|
4
|
+
"""CUDA stream utilities."""
|
|
5
|
+
|
|
6
|
+
from __future__ import annotations
|
|
7
|
+
|
|
8
|
+
from typing import TYPE_CHECKING
|
|
9
|
+
|
|
10
|
+
import pylibcudf as plc
|
|
11
|
+
from rmm.pylibrmm.stream import DEFAULT_STREAM, Stream
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from collections.abc import Callable, Sequence
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def get_dask_cuda_stream() -> Stream:
|
|
18
|
+
"""Get the default CUDA stream for Dask."""
|
|
19
|
+
return DEFAULT_STREAM
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def get_cuda_stream() -> Stream:
|
|
23
|
+
"""Get the default CUDA stream for the current thread."""
|
|
24
|
+
return DEFAULT_STREAM
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def get_new_cuda_stream() -> Stream:
|
|
28
|
+
"""Get a new CUDA stream for the current thread."""
|
|
29
|
+
return Stream()
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def join_cuda_streams(
|
|
33
|
+
*, downstreams: Sequence[Stream], upstreams: Sequence[Stream]
|
|
34
|
+
) -> None:
|
|
35
|
+
"""
|
|
36
|
+
Join multiple CUDA streams.
|
|
37
|
+
|
|
38
|
+
Parameters
|
|
39
|
+
----------
|
|
40
|
+
downstreams
|
|
41
|
+
CUDA streams to that will be ordered after ``upstreams``.
|
|
42
|
+
upstreams
|
|
43
|
+
CUDA streams that will be ordered before ``downstreams``.
|
|
44
|
+
"""
|
|
45
|
+
upstreams = list(upstreams)
|
|
46
|
+
downstreams = list(downstreams)
|
|
47
|
+
for downstream in downstreams:
|
|
48
|
+
plc.experimental.join_streams(upstreams, downstream)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def get_joined_cuda_stream(
|
|
52
|
+
get_cuda_stream: Callable[[], Stream], *, upstreams: Sequence[Stream]
|
|
53
|
+
) -> Stream:
|
|
54
|
+
"""
|
|
55
|
+
Return a CUDA stream that is joined to the given streams.
|
|
56
|
+
|
|
57
|
+
Parameters
|
|
58
|
+
----------
|
|
59
|
+
get_cuda_stream
|
|
60
|
+
A zero-argument callable that returns a CUDA stream.
|
|
61
|
+
upstreams
|
|
62
|
+
CUDA streams that will be ordered before the returned stream.
|
|
63
|
+
|
|
64
|
+
Returns
|
|
65
|
+
-------
|
|
66
|
+
CUDA stream that is joined to the given streams.
|
|
67
|
+
"""
|
|
68
|
+
downstream = get_cuda_stream()
|
|
69
|
+
join_cuda_streams(downstreams=(downstream,), upstreams=upstreams)
|
|
70
|
+
return downstream
|
cudf_polars/utils/versions.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# SPDX-FileCopyrightText: Copyright (c) 2024-
|
|
1
|
+
# SPDX-FileCopyrightText: Copyright (c) 2024-2026, NVIDIA CORPORATION & AFFILIATES.
|
|
2
2
|
# SPDX-License-Identifier: Apache-2.0
|
|
3
3
|
|
|
4
4
|
"""Version utilities so that cudf_polars supports a range of polars versions."""
|
|
@@ -11,13 +11,14 @@ from packaging.version import parse
|
|
|
11
11
|
from polars import __version__
|
|
12
12
|
|
|
13
13
|
POLARS_VERSION = parse(__version__)
|
|
14
|
-
POLARS_LOWER_BOUND = parse("1.
|
|
15
|
-
POLARS_VERSION_LT_129 = POLARS_VERSION < parse("1.29")
|
|
16
|
-
POLARS_VERSION_LT_130 = POLARS_VERSION < parse("1.30")
|
|
14
|
+
POLARS_LOWER_BOUND = parse("1.30")
|
|
17
15
|
POLARS_VERSION_LT_131 = POLARS_VERSION < parse("1.31")
|
|
18
16
|
POLARS_VERSION_LT_132 = POLARS_VERSION < parse("1.32")
|
|
19
17
|
POLARS_VERSION_LT_1321 = POLARS_VERSION < parse("1.32.1")
|
|
20
18
|
POLARS_VERSION_LT_1323 = POLARS_VERSION < parse("1.32.3")
|
|
19
|
+
POLARS_VERSION_LT_133 = POLARS_VERSION < parse("1.33.0")
|
|
20
|
+
POLARS_VERSION_LT_134 = POLARS_VERSION < parse("1.34.0")
|
|
21
|
+
POLARS_VERSION_LT_135 = POLARS_VERSION < parse("1.35.0")
|
|
21
22
|
|
|
22
23
|
|
|
23
24
|
def _ensure_polars_version() -> None:
|
|
@@ -0,0 +1,181 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: cudf-polars-cu13
|
|
3
|
+
Version: 26.2.0
|
|
4
|
+
Summary: Executor for polars using cudf
|
|
5
|
+
Author: NVIDIA Corporation
|
|
6
|
+
License-Expression: Apache-2.0
|
|
7
|
+
Project-URL: Homepage, https://github.com/rapidsai/cudf
|
|
8
|
+
Classifier: Intended Audience :: Developers
|
|
9
|
+
Classifier: Topic :: Database
|
|
10
|
+
Classifier: Topic :: Scientific/Engineering
|
|
11
|
+
Classifier: Programming Language :: Python
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
16
|
+
Requires-Python: >=3.10
|
|
17
|
+
Description-Content-Type: text/markdown
|
|
18
|
+
License-File: LICENSE
|
|
19
|
+
Requires-Dist: nvidia-ml-py>=12
|
|
20
|
+
Requires-Dist: packaging
|
|
21
|
+
Requires-Dist: polars<1.36,>=1.30
|
|
22
|
+
Requires-Dist: pylibcudf-cu13==26.2.*
|
|
23
|
+
Requires-Dist: typing-extensions; python_version < "3.11"
|
|
24
|
+
Provides-Extra: test
|
|
25
|
+
Requires-Dist: dask-cuda==26.2.*; extra == "test"
|
|
26
|
+
Requires-Dist: numpy<3.0,>=1.23; extra == "test"
|
|
27
|
+
Requires-Dist: pytest; extra == "test"
|
|
28
|
+
Requires-Dist: pytest-cov; extra == "test"
|
|
29
|
+
Requires-Dist: pytest-httpserver; extra == "test"
|
|
30
|
+
Requires-Dist: pytest-xdist; extra == "test"
|
|
31
|
+
Requires-Dist: rich; extra == "test"
|
|
32
|
+
Requires-Dist: structlog; extra == "test"
|
|
33
|
+
Provides-Extra: experimental
|
|
34
|
+
Requires-Dist: nvidia-ml-py>=12; extra == "experimental"
|
|
35
|
+
Requires-Dist: rapids-dask-dependency==26.2.*; extra == "experimental"
|
|
36
|
+
Provides-Extra: trace
|
|
37
|
+
Requires-Dist: structlog; extra == "trace"
|
|
38
|
+
Provides-Extra: rapidsmpf
|
|
39
|
+
Requires-Dist: rapidsmpf-cu13==26.2.*; extra == "rapidsmpf"
|
|
40
|
+
Dynamic: license-file
|
|
41
|
+
|
|
42
|
+
# <div align="left"><img src="img/rapids_logo.png" width="90px"/> cuDF - A GPU-accelerated DataFrame library for tabular data processing</div>
|
|
43
|
+
|
|
44
|
+
cuDF (pronounced "KOO-dee-eff") is an [Apache 2.0 licensed](LICENSE), GPU-accelerated DataFrame library
|
|
45
|
+
for tabular data processing. The cuDF library is one part of the [RAPIDS](https://rapids.ai/) GPU
|
|
46
|
+
Accelerated Data Science suite of libraries.
|
|
47
|
+
|
|
48
|
+
## About
|
|
49
|
+
|
|
50
|
+
cuDF is composed of multiple libraries including:
|
|
51
|
+
|
|
52
|
+
* [libcudf](https://docs.rapids.ai/api/cudf/stable/libcudf_docs/): A CUDA C++ library with [Apache Arrow](https://arrow.apache.org/) compliant
|
|
53
|
+
data structures and fundamental algorithms for tabular data.
|
|
54
|
+
* [pylibcudf](https://docs.rapids.ai/api/cudf/stable/pylibcudf/): A Python library providing [Cython](https://cython.org/) bindings for libcudf.
|
|
55
|
+
* [cudf](https://docs.rapids.ai/api/cudf/stable/user_guide/): A Python library providing
|
|
56
|
+
- A DataFrame library mirroring the [pandas](https://pandas.pydata.org/) API
|
|
57
|
+
- A zero-code change accelerator, [cudf.pandas](https://docs.rapids.ai/api/cudf/stable/cudf_pandas/), for existing pandas code.
|
|
58
|
+
* [cudf-polars](https://docs.rapids.ai/api/cudf/stable/cudf_polars/): A Python library providing a GPU engine for [Polars](https://pola.rs/)
|
|
59
|
+
* [dask-cudf](https://docs.rapids.ai/api/dask-cudf/stable/): A Python library providing a GPU backend for [Dask](https://www.dask.org/) DataFrames
|
|
60
|
+
|
|
61
|
+
Notable projects that use cuDF include:
|
|
62
|
+
|
|
63
|
+
* [Spark RAPIDS](https://github.com/NVIDIA/spark-rapids): A GPU accelerator plugin for [Apache Spark](https://spark.apache.org/)
|
|
64
|
+
* [Velox-cuDF](https://github.com/facebookincubator/velox/blob/main/velox/experimental/cudf/README.md): A [Velox](https://velox-lib.io/)
|
|
65
|
+
extension module to execute Velox plans on the GPU
|
|
66
|
+
* [Sirius](https://www.sirius-db.com/): A GPU-native SQL engine providing extensions for libraries like [DuckDB](https://duckdb.org/)
|
|
67
|
+
|
|
68
|
+
## Installation
|
|
69
|
+
|
|
70
|
+
### System Requirements
|
|
71
|
+
|
|
72
|
+
Operating System, GPU driver, and supported CUDA version information can be found at the [RAPIDS Installation Guide](https://docs.rapids.ai/install/#system-req)
|
|
73
|
+
|
|
74
|
+
### pip
|
|
75
|
+
|
|
76
|
+
A stable release of each cudf library is available on PyPI. You will need to match the major version number of your installed CUDA version with a `-cu##` suffix when installing from PyPI.
|
|
77
|
+
|
|
78
|
+
A development version of each library is available as a nightly release by including the `-i https://pypi.anaconda.org/rapidsai-wheels-nightly/simple` index.
|
|
79
|
+
|
|
80
|
+
```bash
|
|
81
|
+
# CUDA 13
|
|
82
|
+
pip install libcudf-cu13
|
|
83
|
+
pip install pylibcudf-cu13
|
|
84
|
+
pip install cudf-cu13
|
|
85
|
+
pip install cudf-polars-cu13
|
|
86
|
+
pip install dask-cudf-cu13
|
|
87
|
+
|
|
88
|
+
# CUDA 12
|
|
89
|
+
pip install libcudf-cu12
|
|
90
|
+
pip install pylibcudf-cu12
|
|
91
|
+
pip install cudf-cu12
|
|
92
|
+
pip install cudf-polars-cu12
|
|
93
|
+
pip install dask-cudf-cu12
|
|
94
|
+
```
|
|
95
|
+
|
|
96
|
+
### conda
|
|
97
|
+
|
|
98
|
+
A stable release of each cudf library is available to be installed with the conda package manager by specifying the `-c rapidsai` channel.
|
|
99
|
+
|
|
100
|
+
A development version of each library is available as a nightly release by specifying the `-c rapidsai-nightly` channel instead.
|
|
101
|
+
|
|
102
|
+
```bash
|
|
103
|
+
conda install -c rapidsai libcudf
|
|
104
|
+
conda install -c rapidsai pylibcudf
|
|
105
|
+
conda install -c rapidsai cudf
|
|
106
|
+
conda install -c rapidsai cudf-polars
|
|
107
|
+
conda install -c rapidsai dask-cudf
|
|
108
|
+
```
|
|
109
|
+
|
|
110
|
+
### source
|
|
111
|
+
|
|
112
|
+
To install cuDF from source, please follow [the contribution guide](CONTRIBUTING.md#setting-up-your-build-environment) detailing
|
|
113
|
+
how to setup the build environment.
|
|
114
|
+
|
|
115
|
+
## Examples
|
|
116
|
+
|
|
117
|
+
The following examples showcase reading a parquet file, dropping missing rows with a null value,
|
|
118
|
+
and performing a groupby aggregation on the data.
|
|
119
|
+
|
|
120
|
+
### cudf
|
|
121
|
+
|
|
122
|
+
`import cudf` and the APIs are largely similar to pandas.
|
|
123
|
+
|
|
124
|
+
```python
|
|
125
|
+
import cudf
|
|
126
|
+
|
|
127
|
+
df = cudf.read_parquet("data.parquet")
|
|
128
|
+
df.dropna().groupby(["A", "B"]).mean()
|
|
129
|
+
```
|
|
130
|
+
|
|
131
|
+
### cudf.pandas
|
|
132
|
+
|
|
133
|
+
With a Python file containing pandas code:
|
|
134
|
+
|
|
135
|
+
```python
|
|
136
|
+
import pandas as pd
|
|
137
|
+
|
|
138
|
+
df = cudf.read_parquet("data.parquet")
|
|
139
|
+
df.dropna().groupby(["A", "B"]).mean()
|
|
140
|
+
```
|
|
141
|
+
|
|
142
|
+
Use cudf.pandas by invoking `python` with `-m cudf.pandas`
|
|
143
|
+
|
|
144
|
+
```bash
|
|
145
|
+
$ python -m cudf.pandas script.py
|
|
146
|
+
```
|
|
147
|
+
|
|
148
|
+
If running the pandas code in an interactive Jupyter environment, call `%load_ext cudf.pandas` before
|
|
149
|
+
importing pandas.
|
|
150
|
+
|
|
151
|
+
```python
|
|
152
|
+
In [1]: %load_ext cudf.pandas
|
|
153
|
+
|
|
154
|
+
In [2]: import pandas as pd
|
|
155
|
+
|
|
156
|
+
In [3]: df = cudf.read_parquet("data.parquet")
|
|
157
|
+
|
|
158
|
+
In [4]: df.dropna().groupby(["A", "B"]).mean()
|
|
159
|
+
```
|
|
160
|
+
|
|
161
|
+
### cudf-polars
|
|
162
|
+
|
|
163
|
+
Using Polars' [lazy API](https://docs.pola.rs/user-guide/lazy/), call `collect` with `engine="gpu"` to run
|
|
164
|
+
the operation on the GPU
|
|
165
|
+
|
|
166
|
+
```python
|
|
167
|
+
import polars as pl
|
|
168
|
+
|
|
169
|
+
lf = pl.scan_parquet("data.parquet")
|
|
170
|
+
lf.drop_nulls().group_by(["A", "B"]).mean().collect(engine="gpu")
|
|
171
|
+
```
|
|
172
|
+
|
|
173
|
+
## Questions and Discussion
|
|
174
|
+
|
|
175
|
+
For bug reports or feature requests, please [file an issue](https://github.com/rapidsai/cudf/issues/new/choose) on the GitHub issue tracker.
|
|
176
|
+
|
|
177
|
+
For questions or discussion about cuDF and GPU data processing, feel free to post in the [RAPIDS Slack](https://rapids.ai/slack-invite) workspace.
|
|
178
|
+
|
|
179
|
+
## Contributing
|
|
180
|
+
|
|
181
|
+
cuDF is open to contributions from the community! Please see our [guide for contributing to cuDF](CONTRIBUTING.md) for more information.
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
cudf_polars/GIT_COMMIT,sha256=MxmQ_0zyU_MmTFE3sRdzXEdlNmw7bVkRmODcB3umgYw,41
|
|
2
|
+
cudf_polars/VERSION,sha256=b7npT_ALAM2FnuWaCswzvHtyf4qdm14S3swNXLSxPcs,9
|
|
3
|
+
cudf_polars/__init__.py,sha256=fSTx5nmqajdwp7qvP4PnYL6wZN9-k1fKB43NkcZlHwk,740
|
|
4
|
+
cudf_polars/_version.py,sha256=kj5Ir4dxZRR-k2k8mWUDJHiGpE8_ZcTNzt_kMZxcFRA,528
|
|
5
|
+
cudf_polars/callback.py,sha256=4MitKua-OGWqCkGTJ9sh1YYyBwlSWjn98l4eTNf_tQs,11780
|
|
6
|
+
cudf_polars/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
|
+
cudf_polars/containers/__init__.py,sha256=EIiTQKXBTwCmbsUNotYImSi3wq31pX55hYFwojygcyI,518
|
|
8
|
+
cudf_polars/containers/column.py,sha256=8L6uWupN3nC9Mcnz_I2pRTUhJn_YLMnf-4ohW7egPmg,17654
|
|
9
|
+
cudf_polars/containers/dataframe.py,sha256=TVNuoJ-hnEfnApLuva1SkuMHhqBuLg7QrJoeYcsRL4U,14306
|
|
10
|
+
cudf_polars/containers/datatype.py,sha256=1ELPhgNoPxQGdXhcjqvYyMQaQ6kFYMYy5xSXkrzRniA,9310
|
|
11
|
+
cudf_polars/dsl/__init__.py,sha256=bYwYnqmqINMgwnkJ22EnXMlHviLolPaMgQ8QqoZL3YE,244
|
|
12
|
+
cudf_polars/dsl/expr.py,sha256=g64rrg-frc1ndqMweyczuFJzWJ71rk2v8umyEg3DQ1U,1904
|
|
13
|
+
cudf_polars/dsl/ir.py,sha256=Qbnx5F4XDpYlABQOkd8XjWX5r9OsfV8ALrE0D4EPXrE,117611
|
|
14
|
+
cudf_polars/dsl/nodebase.py,sha256=QbZHK9aUbdiE-Mp_NkkiuNvCnD8E3xzd9-GYKR8UqcM,4777
|
|
15
|
+
cudf_polars/dsl/to_ast.py,sha256=30ms4laf8aQVhgaR9A_krpTABlXt7LLrA3Bv5rqO3I4,14061
|
|
16
|
+
cudf_polars/dsl/tracing.py,sha256=bJz1-45-sD2_Dvk3wwaJEvS-c4_zROaXbQT6SmOqGLk,6470
|
|
17
|
+
cudf_polars/dsl/translate.py,sha256=ou_KOlEMlAjTrkgkVEcLt_gUUldyZx4FgH9XDMvSc5k,38003
|
|
18
|
+
cudf_polars/dsl/traversal.py,sha256=dzOHVaRj0wTYQd5h-JnjQrj4DffEfq1gdENYcDk5Eis,5729
|
|
19
|
+
cudf_polars/dsl/expressions/__init__.py,sha256=uj1a4BzrDVAjOgP6FKKtnvR5elF4ksUj1RhkLTZoS1k,224
|
|
20
|
+
cudf_polars/dsl/expressions/aggregation.py,sha256=Fx7n5i2yYZZqrU_x01_8O7IPBL5fbXJTdvHmjXUnZW4,10124
|
|
21
|
+
cudf_polars/dsl/expressions/base.py,sha256=Fq_MCz2LOMm6eekLJQ1jwEsAvYuouFXzrhIpxIRs4ak,7976
|
|
22
|
+
cudf_polars/dsl/expressions/binaryop.py,sha256=xFzNNYAuiP4ZnA57W_DEhIvILvVXJD-f__lXFrQVsww,5766
|
|
23
|
+
cudf_polars/dsl/expressions/boolean.py,sha256=NzprlF2hSIoVMxQ9WATzdEXuptULxikLU1k1VHwR8I8,14796
|
|
24
|
+
cudf_polars/dsl/expressions/datetime.py,sha256=3-O9iIgt_7oa9b-S8_K6SV4v7sppK8AfHpjDOWcI--8,11293
|
|
25
|
+
cudf_polars/dsl/expressions/literal.py,sha256=DsVEDgM0Qgszx2r0Cx-dLhv_u8Mid29AonFRKR6ozts,3351
|
|
26
|
+
cudf_polars/dsl/expressions/rolling.py,sha256=YYibEkrsvwYOQRp1MF4q7bKiIm62w-eQ8eAUIU1_518,35044
|
|
27
|
+
cudf_polars/dsl/expressions/selection.py,sha256=RhmebC0MUT2fLji21zXR2eM8u61fDF1xwzXnuLSgcuY,2674
|
|
28
|
+
cudf_polars/dsl/expressions/slicing.py,sha256=nLLv3TP_aZTK6l6T8L8jyz6DU9VKMUM241jcQUyoY74,1203
|
|
29
|
+
cudf_polars/dsl/expressions/sorting.py,sha256=6XO0JktGGUJujADXrZoSBeJGDk80vSOCzboB7jOlL5Q,2789
|
|
30
|
+
cudf_polars/dsl/expressions/string.py,sha256=RG1vgITaHmKzp4UxgZ4b6UC4FbVfZknUBsgytU9PFbU,43647
|
|
31
|
+
cudf_polars/dsl/expressions/struct.py,sha256=6gUsV-5wnGRg4aYtO_9MAteU9iNcqsg7Xrc7FeYF3oE,5058
|
|
32
|
+
cudf_polars/dsl/expressions/ternary.py,sha256=0saTAwYsYZKdnjPfrDBUyoPKbAYs-HcBkHUVqeVYyOA,2380
|
|
33
|
+
cudf_polars/dsl/expressions/unary.py,sha256=WOFWAPfNx7SsprqJaKaFUSYIMCGjD6Ud7U06kTfjScU,22542
|
|
34
|
+
cudf_polars/dsl/utils/__init__.py,sha256=JL26nlMAbcdL8ZE4iXRrMOEVSTEZU1P5y9WvxTEDdnY,199
|
|
35
|
+
cudf_polars/dsl/utils/aggregations.py,sha256=qD9AlJLlAXhGmDjoPlxH4Va7DZ2A5VRPnHSvrefyf0E,18214
|
|
36
|
+
cudf_polars/dsl/utils/groupby.py,sha256=PhkzM62N8b9qjJs8910IewnTbn_Qx2OiMPXgqMo1yDI,2621
|
|
37
|
+
cudf_polars/dsl/utils/naming.py,sha256=ydp_BYYAt3mG7JHfi9Snp3dDNzdQZD6F2sAMEmT4OYA,737
|
|
38
|
+
cudf_polars/dsl/utils/replace.py,sha256=8ns_TpbG1Hh8ZJejRyGA6KCu5t-TvUaM009AO8J98vc,1612
|
|
39
|
+
cudf_polars/dsl/utils/reshape.py,sha256=lU0ndZHEeq6UX__VlJ4jEDHh41n45M6KMAFljidZs3Y,2687
|
|
40
|
+
cudf_polars/dsl/utils/rolling.py,sha256=R6RG-aPEr9deTJQwi8HYgOnCPeWkA6uT33ZjQTfhyPM,3734
|
|
41
|
+
cudf_polars/dsl/utils/windows.py,sha256=d6gXPEul8EI-yMhqcrEnhaMhwV7Bc5g4kiP49qfOpSE,5855
|
|
42
|
+
cudf_polars/experimental/__init__.py,sha256=S2oI2K__woyPQAAlFMOo6RTMtdfIZxmzzAO92VtJgP4,256
|
|
43
|
+
cudf_polars/experimental/base.py,sha256=oqYDrIXPHAi9RxTR8-UnZv9M1rf8cEK3S0MtbZfQFNg,13368
|
|
44
|
+
cudf_polars/experimental/dask_registers.py,sha256=M_LPneaKjVM4tHLrMAmvHVSF4DHMPzwx6ICvHFFPW_w,8514
|
|
45
|
+
cudf_polars/experimental/dispatch.py,sha256=guwWQQJHY2Iy04DS7MK4JghBZq9n4suZ1Aj-SOUWNG4,4068
|
|
46
|
+
cudf_polars/experimental/distinct.py,sha256=PRIC89PNT3yIjBh5Sm5SEasqB1Gx8FPxFP8f-lUMgic,7108
|
|
47
|
+
cudf_polars/experimental/explain.py,sha256=iRNRDPTPpVnJIIoQ6ol7piamap6HWYn2FpAR4LvvX7Q,5246
|
|
48
|
+
cudf_polars/experimental/expressions.py,sha256=AeXl6e8vuA1-c4kNMRe43Aku6MjYM48lbya3EsOnX-8,19169
|
|
49
|
+
cudf_polars/experimental/groupby.py,sha256=ji9Ow42jqIoRUP517Dbiv1DfDfdeu-wfbziN5faUyUY,11861
|
|
50
|
+
cudf_polars/experimental/io.py,sha256=KK9pzrDNW46yjULvrOl1AZ_bwGRJ3RgABDML6m12bfU,33219
|
|
51
|
+
cudf_polars/experimental/join.py,sha256=JEi1_aRTzAAw3fAwX3KSDB2oGBsw9w6NF35RyM12IPo,14141
|
|
52
|
+
cudf_polars/experimental/parallel.py,sha256=Kt0OG0mEJPYlufgqwIeg61-c_xuRQyMhmoy0Wj4g5tE,14254
|
|
53
|
+
cudf_polars/experimental/repartition.py,sha256=Fq2XG60c0jBvrttnpMQJWoF9VOPxE7gPgbivCJt_wX0,2307
|
|
54
|
+
cudf_polars/experimental/scheduler.py,sha256=ieL7bdxTqlmd8MO37JCaCoqhyDRZNTLnPFUme3hv6SQ,4203
|
|
55
|
+
cudf_polars/experimental/select.py,sha256=qq1fOfZ06L-ovO8r7r8XYDkUxR3q1PsZt8z3SdbjamI,12346
|
|
56
|
+
cudf_polars/experimental/shuffle.py,sha256=l4SDBZCQ_O5LY76IZmfqRQ5USZ2cK55Xp1YMzZ3LzBA,12611
|
|
57
|
+
cudf_polars/experimental/sort.py,sha256=5sRdZOXpGfI8As-9ZoX2j97xAy4gPkB-rc3CDlHAS8M,23163
|
|
58
|
+
cudf_polars/experimental/spilling.py,sha256=mWD6guiav1fBfoIQoqZjIAdpYiXnx3-NkYUugMEY2qc,4255
|
|
59
|
+
cudf_polars/experimental/statistics.py,sha256=frazwJucOGt-mxyjkbXoIE64d7lt8qODJ9TEe7UmLJE,29365
|
|
60
|
+
cudf_polars/experimental/utils.py,sha256=Dir5oQkPxJUPBVnOBkDGaBg26fEEQEwnADeWZ5lDy6o,6550
|
|
61
|
+
cudf_polars/experimental/benchmarks/__init__.py,sha256=XiT8hL6V9Ns_SSXDXkzoSWlXIo6aFLDXUHLLWch23Ok,149
|
|
62
|
+
cudf_polars/experimental/benchmarks/pdsds.py,sha256=zVB6MBR5Gni5U1O3PNkqktu0Rwe_x_reLcuVjYs5axY,2880
|
|
63
|
+
cudf_polars/experimental/benchmarks/pdsh.py,sha256=5nWp1mxA2hz4LcgWcBb-gB6JrOBI87uR8igaNuNMm44,56209
|
|
64
|
+
cudf_polars/experimental/benchmarks/utils.py,sha256=-QafsXJiYFChGSbRvJTN-klenJvJEmpX260DLTx-moU,46586
|
|
65
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/__init__.py,sha256=pkjkRg2qJCMbhBpD9cIxcjsgMOZXXliWJPZIgZpcUQA,151
|
|
66
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q1.py,sha256=NTvgxMJUB9xH2llo6_SWO7JQNwxEoK9nQ-mnRCsYf9Y,3100
|
|
67
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q10.py,sha256=SBDDIf-BfoPTqHCi4jIpgLJXkA99UcZ-NhAPhE1D2hA,7797
|
|
68
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q2.py,sha256=hns2Hz1Eu8YBl4YDweINv__BME3HTt5A_TDppjXP0aw,9088
|
|
69
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q3.py,sha256=GhdN9WbYVv97aIc29i3w_tl1T7rtotwY5SZBhZK6gf4,2150
|
|
70
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q4.py,sha256=6E8lOk5lS_R4VeN81Dof1ijzKbMsQ3zuqinU0nQZVWg,13475
|
|
71
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q5.py,sha256=neKCu04M9SRDQHa6Nc51NbJ3gFY3yJkM05qE1YHUevU,19800
|
|
72
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q6.py,sha256=7zdkXHpnY3xwa8oj2c3dtPgW_pAmr4kfhATdFQiq9vk,3226
|
|
73
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q7.py,sha256=gWAuGaDQbdCn6CofbqPAah3X4uVBVYdsfIIqRpZppFc,2789
|
|
74
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q8.py,sha256=62qZn1RFhS3T-GL9bBY2cIR3kbVxgoYdY9n4en309EU,9546
|
|
75
|
+
cudf_polars/experimental/benchmarks/pdsds_queries/q9.py,sha256=_MyLgknIVUK1U1x12bsM9Lrhs-ZMKuSOwMc9yu0ddYY,4723
|
|
76
|
+
cudf_polars/experimental/rapidsmpf/__init__.py,sha256=2RRG6vmbR1XNZ8-EEEfm1CmgN8eOic6Z-nNWYyYCNvE,220
|
|
77
|
+
cudf_polars/experimental/rapidsmpf/core.py,sha256=gGJsGJCPJCaNFQpaj5SAypVbYjZ2PNHYjpD7eJ7Vt2Q,16756
|
|
78
|
+
cudf_polars/experimental/rapidsmpf/dask.py,sha256=AqoIA6owG_OHOeCeAyyiz6tv6v0KAvvqT8pGZau8uXc,5132
|
|
79
|
+
cudf_polars/experimental/rapidsmpf/dispatch.py,sha256=FprIqvhpxgQTGffXVkdpDhoZAcz78OVWNeD8kddp7M0,4021
|
|
80
|
+
cudf_polars/experimental/rapidsmpf/io.py,sha256=ou9_lunDl9uQAsEAZYv1B-dBLjxIj8TKMChcSpU50sE,23705
|
|
81
|
+
cudf_polars/experimental/rapidsmpf/join.py,sha256=jGVvgMMQseb7w6lxwWYEaGOUBA927_aLd3gSHgnfxHA,11573
|
|
82
|
+
cudf_polars/experimental/rapidsmpf/lower.py,sha256=_CASAuvnVCdPAj2XP919A9v-18vvfME5Jtq-dscnhkQ,2694
|
|
83
|
+
cudf_polars/experimental/rapidsmpf/nodes.py,sha256=Z08BnidQWva48BLxn3A2Qby7PQb_IGyLkOeHvssqBPc,26759
|
|
84
|
+
cudf_polars/experimental/rapidsmpf/repartition.py,sha256=66gNOtLKx864S63wUkXiiyz1vVfqCVS_aiTLMVLo0uM,7733
|
|
85
|
+
cudf_polars/experimental/rapidsmpf/union.py,sha256=iw_82sA-FDkd_mDXqCJS2V4Chgcb-aLet50xG8uykKE,3366
|
|
86
|
+
cudf_polars/experimental/rapidsmpf/utils.py,sha256=fFN8I_gXn-7fnIa5Ri6JEQ177Clyj110dQbDWP52i94,11050
|
|
87
|
+
cudf_polars/experimental/rapidsmpf/collectives/__init__.py,sha256=BIz1p2ejG1D1B3pxs5kkFzHwDABGG9gG0ya27LXhvoY,325
|
|
88
|
+
cudf_polars/experimental/rapidsmpf/collectives/allgather.py,sha256=X7iDRVB3kAmNe_Vbc2yh2S_4GyW__BLoQ3eKuOtSIHo,2557
|
|
89
|
+
cudf_polars/experimental/rapidsmpf/collectives/common.py,sha256=NVJponygUrIKn-VE3cjaKlw680sn-j8V-p0g1-tde6M,2913
|
|
90
|
+
cudf_polars/experimental/rapidsmpf/collectives/shuffle.py,sha256=tIU26Ym701pJLT3hR_OIzJOkrt3mGVXGHSqi_-Gy-ng,7814
|
|
91
|
+
cudf_polars/testing/__init__.py,sha256=0MnlTjkTEqkSpL5GdMhQf4uXOaQwNrzgEJCZKa5FnL4,219
|
|
92
|
+
cudf_polars/testing/asserts.py,sha256=rI8fNQTp2GMiOY2oEn1qz50rUArlFCX5D-kb5uWKdjA,15566
|
|
93
|
+
cudf_polars/testing/io.py,sha256=-jxBzK-jURja5_f2Oha24yHRJpV7oIUScCQyvranH0Q,3902
|
|
94
|
+
cudf_polars/testing/plugin.py,sha256=sJkl9M0I7oIDv0KtJKugIX2Eo8wAVnbMrAoE_n3yNm8,28992
|
|
95
|
+
cudf_polars/typing/__init__.py,sha256=-M2I4vZ13VL3vB7ONgGt9D9Bu4DBlCgDBKIzTeFkZo4,6345
|
|
96
|
+
cudf_polars/utils/__init__.py,sha256=urdV5MUIneU8Dn6pt1db5GkDG0oY4NsFD0Uhl3j98l8,195
|
|
97
|
+
cudf_polars/utils/config.py,sha256=7iLWgkaVeF8f5CirlsCkwmCxNrFUPNYrPA9Z5VT-Wx4,44661
|
|
98
|
+
cudf_polars/utils/conversion.py,sha256=k_apLbSR-MiYYlQBGrzYOInuvcbfSi-il-o9nkovdXQ,1042
|
|
99
|
+
cudf_polars/utils/cuda_stream.py,sha256=Nky4ogx0HpBPdR83XT_s-CK7J0xJ4AXuXBzCyZ076nE,1821
|
|
100
|
+
cudf_polars/utils/dtypes.py,sha256=yktzqBLfbv-zve1-iS_XsGZD1R6GXgXV_grZ8m7KidM,3358
|
|
101
|
+
cudf_polars/utils/sorting.py,sha256=Mqb_KLsYnKU8p1dDan2mtlIQl65RqwM78OlUi-_Jj0k,1725
|
|
102
|
+
cudf_polars/utils/timer.py,sha256=KqcXqOcbovsj6KDCwaxl70baQXjuod43rABrpQkE78M,1005
|
|
103
|
+
cudf_polars/utils/versions.py,sha256=4XcfNTfYY3GzC7zrhx7gpunyWQCRbunzwL6rEXjqy4o,1020
|
|
104
|
+
cudf_polars_cu13-26.2.0.dist-info/licenses/LICENSE,sha256=4YCpjWCbYMkMQFW47JXsorZLOaP957HwmP6oHW2_ngM,11348
|
|
105
|
+
cudf_polars_cu13-26.2.0.dist-info/METADATA,sha256=1vETP8_HE42i1nQU3Jee9GB3as6EhOpjAH06Z6GlF3k,6624
|
|
106
|
+
cudf_polars_cu13-26.2.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
107
|
+
cudf_polars_cu13-26.2.0.dist-info/top_level.txt,sha256=w2bOa7MpuyapYgZh480Znh4UzX7rSWlFcYR1Yo6QIPs,12
|
|
108
|
+
cudf_polars_cu13-26.2.0.dist-info/RECORD,,
|
|
@@ -1,136 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: cudf-polars-cu13
|
|
3
|
-
Version: 25.10.0
|
|
4
|
-
Summary: Executor for polars using cudf
|
|
5
|
-
Author: NVIDIA Corporation
|
|
6
|
-
License: Apache-2.0
|
|
7
|
-
Project-URL: Homepage, https://github.com/rapidsai/cudf
|
|
8
|
-
Classifier: Intended Audience :: Developers
|
|
9
|
-
Classifier: Topic :: Database
|
|
10
|
-
Classifier: Topic :: Scientific/Engineering
|
|
11
|
-
Classifier: License :: OSI Approved :: Apache Software License
|
|
12
|
-
Classifier: Programming Language :: Python
|
|
13
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
14
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
15
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
16
|
-
Classifier: Programming Language :: Python :: 3.13
|
|
17
|
-
Requires-Python: >=3.10
|
|
18
|
-
Description-Content-Type: text/markdown
|
|
19
|
-
License-File: LICENSE
|
|
20
|
-
Requires-Dist: nvidia-ml-py>=12
|
|
21
|
-
Requires-Dist: packaging
|
|
22
|
-
Requires-Dist: polars<1.33,>=1.28
|
|
23
|
-
Requires-Dist: pylibcudf-cu13==25.10.*
|
|
24
|
-
Requires-Dist: typing-extensions; python_version < "3.11"
|
|
25
|
-
Provides-Extra: test
|
|
26
|
-
Requires-Dist: dask-cuda==25.10.*; extra == "test"
|
|
27
|
-
Requires-Dist: numpy<3.0a0,>=1.23; extra == "test"
|
|
28
|
-
Requires-Dist: pytest; extra == "test"
|
|
29
|
-
Requires-Dist: pytest-cov; extra == "test"
|
|
30
|
-
Requires-Dist: pytest-httpserver; extra == "test"
|
|
31
|
-
Requires-Dist: pytest-xdist; extra == "test"
|
|
32
|
-
Requires-Dist: rich; extra == "test"
|
|
33
|
-
Provides-Extra: experimental
|
|
34
|
-
Requires-Dist: nvidia-ml-py>=12; extra == "experimental"
|
|
35
|
-
Requires-Dist: rapids-dask-dependency==25.10.*; extra == "experimental"
|
|
36
|
-
Dynamic: license-file
|
|
37
|
-
|
|
38
|
-
# <div align="left"><img src="img/rapids_logo.png" width="90px"/> cuDF - GPU DataFrames</div>
|
|
39
|
-
|
|
40
|
-
## 📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!
|
|
41
|
-
|
|
42
|
-
cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library
|
|
43
|
-
for loading, joining, aggregating, filtering, and otherwise
|
|
44
|
-
manipulating data. cuDF leverages
|
|
45
|
-
[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a
|
|
46
|
-
blazing-fast C++/CUDA dataframe library and the [Apache
|
|
47
|
-
Arrow](https://arrow.apache.org/) columnar format to provide a
|
|
48
|
-
GPU-accelerated pandas API.
|
|
49
|
-
|
|
50
|
-
You can import `cudf` directly and use it like `pandas`:
|
|
51
|
-
|
|
52
|
-
```python
|
|
53
|
-
import cudf
|
|
54
|
-
|
|
55
|
-
tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
|
|
56
|
-
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
|
|
57
|
-
|
|
58
|
-
# display average tip by dining party size
|
|
59
|
-
print(tips_df.groupby("size").tip_percentage.mean())
|
|
60
|
-
```
|
|
61
|
-
|
|
62
|
-
Or, you can use cuDF as a no-code-change accelerator for pandas, using
|
|
63
|
-
[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).
|
|
64
|
-
`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for
|
|
65
|
-
supported operations and falling back to pandas when needed:
|
|
66
|
-
|
|
67
|
-
```python
|
|
68
|
-
%load_ext cudf.pandas # pandas operations now use the GPU!
|
|
69
|
-
|
|
70
|
-
import pandas as pd
|
|
71
|
-
|
|
72
|
-
tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
|
|
73
|
-
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
|
|
74
|
-
|
|
75
|
-
# display average tip by dining party size
|
|
76
|
-
print(tips_df.groupby("size").tip_percentage.mean())
|
|
77
|
-
```
|
|
78
|
-
|
|
79
|
-
## Resources
|
|
80
|
-
|
|
81
|
-
- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!
|
|
82
|
-
- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.
|
|
83
|
-
- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)
|
|
84
|
-
- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)
|
|
85
|
-
- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.
|
|
86
|
-
|
|
87
|
-
See the [RAPIDS install page](https://docs.rapids.ai/install) for
|
|
88
|
-
the most up-to-date information and commands for installing cuDF
|
|
89
|
-
and other RAPIDS packages.
|
|
90
|
-
|
|
91
|
-
## Installation
|
|
92
|
-
|
|
93
|
-
### CUDA/GPU requirements
|
|
94
|
-
|
|
95
|
-
* CUDA 12.0+ with a compatible NVIDIA driver
|
|
96
|
-
* Volta architecture or better (Compute Capability >=7.0)
|
|
97
|
-
|
|
98
|
-
### Pip
|
|
99
|
-
|
|
100
|
-
cuDF can be installed via `pip` from the NVIDIA Python Package Index.
|
|
101
|
-
Be sure to select the appropriate cuDF package depending
|
|
102
|
-
on the major version of CUDA available in your environment:
|
|
103
|
-
|
|
104
|
-
```bash
|
|
105
|
-
# CUDA 13
|
|
106
|
-
pip install cudf-cu13
|
|
107
|
-
|
|
108
|
-
# CUDA 12
|
|
109
|
-
pip install cudf-cu12
|
|
110
|
-
```
|
|
111
|
-
|
|
112
|
-
### Conda
|
|
113
|
-
|
|
114
|
-
cuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:
|
|
115
|
-
|
|
116
|
-
```bash
|
|
117
|
-
# CUDA 13
|
|
118
|
-
conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=13.0
|
|
119
|
-
|
|
120
|
-
# CUDA 12
|
|
121
|
-
conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=12.9
|
|
122
|
-
```
|
|
123
|
-
|
|
124
|
-
We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD
|
|
125
|
-
of our latest development branch.
|
|
126
|
-
|
|
127
|
-
Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.
|
|
128
|
-
|
|
129
|
-
See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.
|
|
130
|
-
|
|
131
|
-
## Build/Install from Source
|
|
132
|
-
See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).
|
|
133
|
-
|
|
134
|
-
## Contributing
|
|
135
|
-
|
|
136
|
-
Please see our [guide for contributing to cuDF](CONTRIBUTING.md).
|
|
@@ -1,92 +0,0 @@
|
|
|
1
|
-
cudf_polars/GIT_COMMIT,sha256=dSIC7QF9D2u7uNLtZDtGWJYqrCMXIqV9uYhOHjtkmLU,41
|
|
2
|
-
cudf_polars/VERSION,sha256=qFUmAhDerTzlTeG7G1N8kkXh-gyZzDU9R0ARLQtoP_Y,8
|
|
3
|
-
cudf_polars/__init__.py,sha256=fSTx5nmqajdwp7qvP4PnYL6wZN9-k1fKB43NkcZlHwk,740
|
|
4
|
-
cudf_polars/_version.py,sha256=kj5Ir4dxZRR-k2k8mWUDJHiGpE8_ZcTNzt_kMZxcFRA,528
|
|
5
|
-
cudf_polars/callback.py,sha256=r8hf3BbpXaKtBjQkxIt_XMP9IVj6UjtdSIvJXR3r_NA,9994
|
|
6
|
-
cudf_polars/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
|
-
cudf_polars/containers/__init__.py,sha256=EIiTQKXBTwCmbsUNotYImSi3wq31pX55hYFwojygcyI,518
|
|
8
|
-
cudf_polars/containers/column.py,sha256=jklTNU2gMazs84wybZIlojY0XXVdRZYNT4X4rPL31nM,15233
|
|
9
|
-
cudf_polars/containers/dataframe.py,sha256=geASmznODV_7pFcxqcQqEzdDpN5dLDR1_vmdXHFI1og,11665
|
|
10
|
-
cudf_polars/containers/datatype.py,sha256=uNsVCieVWR7fgpiSmXu25Z5mfECSIxBGrweZf9EQu7E,4680
|
|
11
|
-
cudf_polars/dsl/__init__.py,sha256=bYwYnqmqINMgwnkJ22EnXMlHviLolPaMgQ8QqoZL3YE,244
|
|
12
|
-
cudf_polars/dsl/expr.py,sha256=fLimKmIxdEkVwie90QR3ajjxA7le5zI-iu1VZW1ZN8c,1952
|
|
13
|
-
cudf_polars/dsl/ir.py,sha256=vfPHOOPYaz7KTJfkshN-5mVMkrVqYKFGle5IfQhxFLw,93272
|
|
14
|
-
cudf_polars/dsl/nodebase.py,sha256=QbZHK9aUbdiE-Mp_NkkiuNvCnD8E3xzd9-GYKR8UqcM,4777
|
|
15
|
-
cudf_polars/dsl/to_ast.py,sha256=We0idh-0ckSz9nIZrGkeMg75XbnijRW2_DHVXZ9-a34,13595
|
|
16
|
-
cudf_polars/dsl/tracing.py,sha256=xPTyXNQ64PSuV4_t5z6_GGJ1V_m4sFxxHiYEDp64Ofk,383
|
|
17
|
-
cudf_polars/dsl/translate.py,sha256=t_bHoIS6Ny3gQcMqWAgBUT0AmWTM0LSCQnhYG36Km2s,31687
|
|
18
|
-
cudf_polars/dsl/traversal.py,sha256=dzOHVaRj0wTYQd5h-JnjQrj4DffEfq1gdENYcDk5Eis,5729
|
|
19
|
-
cudf_polars/dsl/expressions/__init__.py,sha256=uj1a4BzrDVAjOgP6FKKtnvR5elF4ksUj1RhkLTZoS1k,224
|
|
20
|
-
cudf_polars/dsl/expressions/aggregation.py,sha256=XxC1d4cbQIvL6o6REQ2FlyxcdUbVyMl-gN4RDFHnLSQ,7950
|
|
21
|
-
cudf_polars/dsl/expressions/base.py,sha256=Fq_MCz2LOMm6eekLJQ1jwEsAvYuouFXzrhIpxIRs4ak,7976
|
|
22
|
-
cudf_polars/dsl/expressions/binaryop.py,sha256=7Psj8BKnotNGopQw5W9hM6cP8fbng-OllxrkgYrvLzs,5070
|
|
23
|
-
cudf_polars/dsl/expressions/boolean.py,sha256=Gpx0cn2L1Wr4q5OqGT2s7lYsN_VlG_IYPtKD-BE6Cc8,12550
|
|
24
|
-
cudf_polars/dsl/expressions/datetime.py,sha256=MEGtYOYl2ftbNzVd9NBv9DMJ2dUxZwGg5z69xzjZP18,10102
|
|
25
|
-
cudf_polars/dsl/expressions/literal.py,sha256=CpfWj5XFqBNKqu3jaWgP13_HfSg6maXiKDjmY6pdoUE,3192
|
|
26
|
-
cudf_polars/dsl/expressions/rolling.py,sha256=NiR8FfUwQMdmqFIrMM-hBcZ_JEKn9a1X9UZF4DPKM0E,23037
|
|
27
|
-
cudf_polars/dsl/expressions/selection.py,sha256=RfGj0RbKairCNibfQCUtwbFiS4xv9fRoznycEKxE3ww,2520
|
|
28
|
-
cudf_polars/dsl/expressions/slicing.py,sha256=xaI-XzZvPzyLDwG0yZcIPII56OMEJDxem2piV4LBGI0,1185
|
|
29
|
-
cudf_polars/dsl/expressions/sorting.py,sha256=6XO0JktGGUJujADXrZoSBeJGDk80vSOCzboB7jOlL5Q,2789
|
|
30
|
-
cudf_polars/dsl/expressions/string.py,sha256=LXUd0IYiblmlNHQ9zTpV5i0m770TY0k9vBcLyPI9c0k,38164
|
|
31
|
-
cudf_polars/dsl/expressions/struct.py,sha256=DC426pMVQrebvAEi9NCzKhzFxPFhUglvUlvOb866TLQ,4658
|
|
32
|
-
cudf_polars/dsl/expressions/ternary.py,sha256=J_85frSq5Hh2ERSXOIZlwiwFTEp9WASh2hPiCkbkbqM,1415
|
|
33
|
-
cudf_polars/dsl/expressions/unary.py,sha256=sW4t9pSbRMMUlD6wJ9Vq4khi4qhBelVfqmtj_gl1Oj8,20283
|
|
34
|
-
cudf_polars/dsl/utils/__init__.py,sha256=JL26nlMAbcdL8ZE4iXRrMOEVSTEZU1P5y9WvxTEDdnY,199
|
|
35
|
-
cudf_polars/dsl/utils/aggregations.py,sha256=Vozij-WaR8UwOq28WSEMNmigokduydXSknL0krKj-6Y,17522
|
|
36
|
-
cudf_polars/dsl/utils/groupby.py,sha256=PhkzM62N8b9qjJs8910IewnTbn_Qx2OiMPXgqMo1yDI,2621
|
|
37
|
-
cudf_polars/dsl/utils/naming.py,sha256=ydp_BYYAt3mG7JHfi9Snp3dDNzdQZD6F2sAMEmT4OYA,737
|
|
38
|
-
cudf_polars/dsl/utils/replace.py,sha256=8ns_TpbG1Hh8ZJejRyGA6KCu5t-TvUaM009AO8J98vc,1612
|
|
39
|
-
cudf_polars/dsl/utils/reshape.py,sha256=Q13_0tIjgtMocGRFciPa1GcMxc2ClqqZf1mujl7w1kw,2397
|
|
40
|
-
cudf_polars/dsl/utils/rolling.py,sha256=ioqNHIzEip9vd7XHHZvUmHL3RYPwOD6qYsPHUDmlhM8,3618
|
|
41
|
-
cudf_polars/dsl/utils/windows.py,sha256=ysRZfl9wm2z-QXTRO09tT5gy1vwvoV_8_8iBsE9FZeA,5388
|
|
42
|
-
cudf_polars/experimental/__init__.py,sha256=S2oI2K__woyPQAAlFMOo6RTMtdfIZxmzzAO92VtJgP4,256
|
|
43
|
-
cudf_polars/experimental/base.py,sha256=9_bEWrbizmR9n4I55oqlORrGxBwc4kaGtn4EXSo_uu0,11582
|
|
44
|
-
cudf_polars/experimental/dask_registers.py,sha256=bGU6nEh-rQd6lMPaEhJUdkVrkCFSjknb8IwB0EeMnrs,7780
|
|
45
|
-
cudf_polars/experimental/dispatch.py,sha256=i1Q0J5M9rLMi1lp_MxjGmvAfjKEGda0B3c5kvTtz3uM,3942
|
|
46
|
-
cudf_polars/experimental/distinct.py,sha256=ZyQ2SEVftdRAbtVOdJ89TvbK8uDPpam1FG6VKj86kAY,6978
|
|
47
|
-
cudf_polars/experimental/explain.py,sha256=-NPFj7jplbobu7jGTOnv8e9VDOs9BHuPxjilvZ19ryI,4803
|
|
48
|
-
cudf_polars/experimental/expressions.py,sha256=3NXUUepYLdqzrhaFuhu_Ya5nc89Dxhsmv0liIxAyQlQ,18412
|
|
49
|
-
cudf_polars/experimental/groupby.py,sha256=uoN759pB3yrvNRFwc_jq4bNtsTmDrtPjifMABhfutwY,11222
|
|
50
|
-
cudf_polars/experimental/io.py,sha256=RMH5dDrO3TsPK9QXkq5ibcHT_pRh64_m9RmIxiYtawE,31667
|
|
51
|
-
cudf_polars/experimental/join.py,sha256=bfxbAl34Ql-FcMYCbn8oYAW9bROhFpf3d8yIjEVtcIY,12790
|
|
52
|
-
cudf_polars/experimental/parallel.py,sha256=NsI_X-LKUNgpjoD9EFjWHXRiDvIy_onUJvzDCZAtr5U,12803
|
|
53
|
-
cudf_polars/experimental/repartition.py,sha256=o1qtstaB_dBaYjkmsmfnveZ6T66A9XGwzFEBUucfyrk,2124
|
|
54
|
-
cudf_polars/experimental/scheduler.py,sha256=ieL7bdxTqlmd8MO37JCaCoqhyDRZNTLnPFUme3hv6SQ,4203
|
|
55
|
-
cudf_polars/experimental/select.py,sha256=5r4zAa2iupN_VJDLQ-PKWLyfzcgeJkTpVI5HXlTtULs,6106
|
|
56
|
-
cudf_polars/experimental/shuffle.py,sha256=pfMxjVufnYf_1GXApBRSng-_O1Gl33NP0KQAZhKpu1E,11077
|
|
57
|
-
cudf_polars/experimental/sort.py,sha256=6EGk1rAzw58Jtd5CZ9pHvesK-yA1h-SmDnE8ZFUlGcw,20830
|
|
58
|
-
cudf_polars/experimental/spilling.py,sha256=OVpH9PHYNJcYL-PAB0CvoAil_nJW0VepLvcIrrAUdlc,4255
|
|
59
|
-
cudf_polars/experimental/statistics.py,sha256=GMurzuADNEyWaKh43BHTzb30inTKkdALJrNx3GfMa3o,29147
|
|
60
|
-
cudf_polars/experimental/utils.py,sha256=e17n8NojqVQ33UhKXkXS1MgFopyINgCFDjRSIMBV9Mw,5632
|
|
61
|
-
cudf_polars/experimental/benchmarks/__init__.py,sha256=XiT8hL6V9Ns_SSXDXkzoSWlXIo6aFLDXUHLLWch23Ok,149
|
|
62
|
-
cudf_polars/experimental/benchmarks/pdsds.py,sha256=e565fV2a6tzhKfQ4pCqTMoxJboDx3O8hV2_NHjkRaow,6889
|
|
63
|
-
cudf_polars/experimental/benchmarks/pdsh.py,sha256=2KTQvP4ordyo0qy1WDgagpHoYYRrQz1PkDHnhNpo-_s,31151
|
|
64
|
-
cudf_polars/experimental/benchmarks/utils.py,sha256=eC8mcqUEh1fu07SCIvr9ZVbiHkzt6aqBZBKWL8y7Wc4,28196
|
|
65
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/__init__.py,sha256=pkjkRg2qJCMbhBpD9cIxcjsgMOZXXliWJPZIgZpcUQA,151
|
|
66
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q1.py,sha256=NTvgxMJUB9xH2llo6_SWO7JQNwxEoK9nQ-mnRCsYf9Y,3100
|
|
67
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q10.py,sha256=SBDDIf-BfoPTqHCi4jIpgLJXkA99UcZ-NhAPhE1D2hA,7797
|
|
68
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q2.py,sha256=hns2Hz1Eu8YBl4YDweINv__BME3HTt5A_TDppjXP0aw,9088
|
|
69
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q3.py,sha256=GhdN9WbYVv97aIc29i3w_tl1T7rtotwY5SZBhZK6gf4,2150
|
|
70
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q4.py,sha256=6E8lOk5lS_R4VeN81Dof1ijzKbMsQ3zuqinU0nQZVWg,13475
|
|
71
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q5.py,sha256=neKCu04M9SRDQHa6Nc51NbJ3gFY3yJkM05qE1YHUevU,19800
|
|
72
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q6.py,sha256=7zdkXHpnY3xwa8oj2c3dtPgW_pAmr4kfhATdFQiq9vk,3226
|
|
73
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q7.py,sha256=gWAuGaDQbdCn6CofbqPAah3X4uVBVYdsfIIqRpZppFc,2789
|
|
74
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q8.py,sha256=62qZn1RFhS3T-GL9bBY2cIR3kbVxgoYdY9n4en309EU,9546
|
|
75
|
-
cudf_polars/experimental/benchmarks/pdsds_queries/q9.py,sha256=_MyLgknIVUK1U1x12bsM9Lrhs-ZMKuSOwMc9yu0ddYY,4723
|
|
76
|
-
cudf_polars/testing/__init__.py,sha256=0MnlTjkTEqkSpL5GdMhQf4uXOaQwNrzgEJCZKa5FnL4,219
|
|
77
|
-
cudf_polars/testing/asserts.py,sha256=he6BcpNuPyHOBVNiXAAcr-7HdjKl7n0PQfCjdyPxWoA,15250
|
|
78
|
-
cudf_polars/testing/io.py,sha256=mNHsddu-c0Gs0SVVmBOYpXIDFjMiuVrmArllqIEu-2w,3832
|
|
79
|
-
cudf_polars/testing/plugin.py,sha256=aAut5jHckE2JhxBfVmtEBfGsfxcNtFMBph12pYSfpw0,23343
|
|
80
|
-
cudf_polars/typing/__init__.py,sha256=Q1iVabv-7etFo01UxT6cz-zgZa_9_WYA8D8QHnjZuTg,5022
|
|
81
|
-
cudf_polars/utils/__init__.py,sha256=urdV5MUIneU8Dn6pt1db5GkDG0oY4NsFD0Uhl3j98l8,195
|
|
82
|
-
cudf_polars/utils/config.py,sha256=LTS-gc90wWVFuDFOYqhZZ6mK68W8z6L0G4YVOZRGCIs,28814
|
|
83
|
-
cudf_polars/utils/conversion.py,sha256=k_apLbSR-MiYYlQBGrzYOInuvcbfSi-il-o9nkovdXQ,1042
|
|
84
|
-
cudf_polars/utils/dtypes.py,sha256=yktzqBLfbv-zve1-iS_XsGZD1R6GXgXV_grZ8m7KidM,3358
|
|
85
|
-
cudf_polars/utils/sorting.py,sha256=Mqb_KLsYnKU8p1dDan2mtlIQl65RqwM78OlUi-_Jj0k,1725
|
|
86
|
-
cudf_polars/utils/timer.py,sha256=KqcXqOcbovsj6KDCwaxl70baQXjuod43rABrpQkE78M,1005
|
|
87
|
-
cudf_polars/utils/versions.py,sha256=UxJc6S0Sss8hIUs2ZqviKH-2FXwEBmoRKQW3BZlpydY,959
|
|
88
|
-
cudf_polars_cu13-25.10.0.dist-info/licenses/LICENSE,sha256=4YCpjWCbYMkMQFW47JXsorZLOaP957HwmP6oHW2_ngM,11348
|
|
89
|
-
cudf_polars_cu13-25.10.0.dist-info/METADATA,sha256=CHrSC8yWGA3bG70IlulJshqH90qpQW6-OzlRW_sH83g,4889
|
|
90
|
-
cudf_polars_cu13-25.10.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
91
|
-
cudf_polars_cu13-25.10.0.dist-info/top_level.txt,sha256=w2bOa7MpuyapYgZh480Znh4UzX7rSWlFcYR1Yo6QIPs,12
|
|
92
|
-
cudf_polars_cu13-25.10.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|