cudf-polars-cu13 25.10.0__py3-none-any.whl → 26.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. cudf_polars/GIT_COMMIT +1 -1
  2. cudf_polars/VERSION +1 -1
  3. cudf_polars/callback.py +60 -15
  4. cudf_polars/containers/column.py +137 -77
  5. cudf_polars/containers/dataframe.py +123 -34
  6. cudf_polars/containers/datatype.py +134 -13
  7. cudf_polars/dsl/expr.py +0 -2
  8. cudf_polars/dsl/expressions/aggregation.py +80 -28
  9. cudf_polars/dsl/expressions/binaryop.py +34 -14
  10. cudf_polars/dsl/expressions/boolean.py +110 -37
  11. cudf_polars/dsl/expressions/datetime.py +59 -30
  12. cudf_polars/dsl/expressions/literal.py +11 -5
  13. cudf_polars/dsl/expressions/rolling.py +460 -119
  14. cudf_polars/dsl/expressions/selection.py +9 -8
  15. cudf_polars/dsl/expressions/slicing.py +1 -1
  16. cudf_polars/dsl/expressions/string.py +256 -114
  17. cudf_polars/dsl/expressions/struct.py +19 -7
  18. cudf_polars/dsl/expressions/ternary.py +33 -3
  19. cudf_polars/dsl/expressions/unary.py +126 -64
  20. cudf_polars/dsl/ir.py +1053 -350
  21. cudf_polars/dsl/to_ast.py +30 -13
  22. cudf_polars/dsl/tracing.py +194 -0
  23. cudf_polars/dsl/translate.py +307 -107
  24. cudf_polars/dsl/utils/aggregations.py +43 -30
  25. cudf_polars/dsl/utils/reshape.py +14 -2
  26. cudf_polars/dsl/utils/rolling.py +12 -8
  27. cudf_polars/dsl/utils/windows.py +35 -20
  28. cudf_polars/experimental/base.py +55 -2
  29. cudf_polars/experimental/benchmarks/pdsds.py +12 -126
  30. cudf_polars/experimental/benchmarks/pdsh.py +792 -2
  31. cudf_polars/experimental/benchmarks/utils.py +596 -39
  32. cudf_polars/experimental/dask_registers.py +47 -20
  33. cudf_polars/experimental/dispatch.py +9 -3
  34. cudf_polars/experimental/distinct.py +2 -0
  35. cudf_polars/experimental/explain.py +15 -2
  36. cudf_polars/experimental/expressions.py +30 -15
  37. cudf_polars/experimental/groupby.py +25 -4
  38. cudf_polars/experimental/io.py +156 -124
  39. cudf_polars/experimental/join.py +53 -23
  40. cudf_polars/experimental/parallel.py +68 -19
  41. cudf_polars/experimental/rapidsmpf/__init__.py +8 -0
  42. cudf_polars/experimental/rapidsmpf/collectives/__init__.py +9 -0
  43. cudf_polars/experimental/rapidsmpf/collectives/allgather.py +90 -0
  44. cudf_polars/experimental/rapidsmpf/collectives/common.py +96 -0
  45. cudf_polars/experimental/rapidsmpf/collectives/shuffle.py +253 -0
  46. cudf_polars/experimental/rapidsmpf/core.py +488 -0
  47. cudf_polars/experimental/rapidsmpf/dask.py +172 -0
  48. cudf_polars/experimental/rapidsmpf/dispatch.py +153 -0
  49. cudf_polars/experimental/rapidsmpf/io.py +696 -0
  50. cudf_polars/experimental/rapidsmpf/join.py +322 -0
  51. cudf_polars/experimental/rapidsmpf/lower.py +74 -0
  52. cudf_polars/experimental/rapidsmpf/nodes.py +735 -0
  53. cudf_polars/experimental/rapidsmpf/repartition.py +216 -0
  54. cudf_polars/experimental/rapidsmpf/union.py +115 -0
  55. cudf_polars/experimental/rapidsmpf/utils.py +374 -0
  56. cudf_polars/experimental/repartition.py +9 -2
  57. cudf_polars/experimental/select.py +177 -14
  58. cudf_polars/experimental/shuffle.py +46 -12
  59. cudf_polars/experimental/sort.py +100 -26
  60. cudf_polars/experimental/spilling.py +1 -1
  61. cudf_polars/experimental/statistics.py +24 -5
  62. cudf_polars/experimental/utils.py +25 -7
  63. cudf_polars/testing/asserts.py +13 -8
  64. cudf_polars/testing/io.py +2 -1
  65. cudf_polars/testing/plugin.py +93 -17
  66. cudf_polars/typing/__init__.py +86 -32
  67. cudf_polars/utils/config.py +473 -58
  68. cudf_polars/utils/cuda_stream.py +70 -0
  69. cudf_polars/utils/versions.py +5 -4
  70. cudf_polars_cu13-26.2.0.dist-info/METADATA +181 -0
  71. cudf_polars_cu13-26.2.0.dist-info/RECORD +108 -0
  72. {cudf_polars_cu13-25.10.0.dist-info → cudf_polars_cu13-26.2.0.dist-info}/WHEEL +1 -1
  73. cudf_polars_cu13-25.10.0.dist-info/METADATA +0 -136
  74. cudf_polars_cu13-25.10.0.dist-info/RECORD +0 -92
  75. {cudf_polars_cu13-25.10.0.dist-info → cudf_polars_cu13-26.2.0.dist-info}/licenses/LICENSE +0 -0
  76. {cudf_polars_cu13-25.10.0.dist-info → cudf_polars_cu13-26.2.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,70 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ """CUDA stream utilities."""
5
+
6
+ from __future__ import annotations
7
+
8
+ from typing import TYPE_CHECKING
9
+
10
+ import pylibcudf as plc
11
+ from rmm.pylibrmm.stream import DEFAULT_STREAM, Stream
12
+
13
+ if TYPE_CHECKING:
14
+ from collections.abc import Callable, Sequence
15
+
16
+
17
+ def get_dask_cuda_stream() -> Stream:
18
+ """Get the default CUDA stream for Dask."""
19
+ return DEFAULT_STREAM
20
+
21
+
22
+ def get_cuda_stream() -> Stream:
23
+ """Get the default CUDA stream for the current thread."""
24
+ return DEFAULT_STREAM
25
+
26
+
27
+ def get_new_cuda_stream() -> Stream:
28
+ """Get a new CUDA stream for the current thread."""
29
+ return Stream()
30
+
31
+
32
+ def join_cuda_streams(
33
+ *, downstreams: Sequence[Stream], upstreams: Sequence[Stream]
34
+ ) -> None:
35
+ """
36
+ Join multiple CUDA streams.
37
+
38
+ Parameters
39
+ ----------
40
+ downstreams
41
+ CUDA streams to that will be ordered after ``upstreams``.
42
+ upstreams
43
+ CUDA streams that will be ordered before ``downstreams``.
44
+ """
45
+ upstreams = list(upstreams)
46
+ downstreams = list(downstreams)
47
+ for downstream in downstreams:
48
+ plc.experimental.join_streams(upstreams, downstream)
49
+
50
+
51
+ def get_joined_cuda_stream(
52
+ get_cuda_stream: Callable[[], Stream], *, upstreams: Sequence[Stream]
53
+ ) -> Stream:
54
+ """
55
+ Return a CUDA stream that is joined to the given streams.
56
+
57
+ Parameters
58
+ ----------
59
+ get_cuda_stream
60
+ A zero-argument callable that returns a CUDA stream.
61
+ upstreams
62
+ CUDA streams that will be ordered before the returned stream.
63
+
64
+ Returns
65
+ -------
66
+ CUDA stream that is joined to the given streams.
67
+ """
68
+ downstream = get_cuda_stream()
69
+ join_cuda_streams(downstreams=(downstream,), upstreams=upstreams)
70
+ return downstream
@@ -1,4 +1,4 @@
1
- # SPDX-FileCopyrightText: Copyright (c) 2024-2025, NVIDIA CORPORATION & AFFILIATES.
1
+ # SPDX-FileCopyrightText: Copyright (c) 2024-2026, NVIDIA CORPORATION & AFFILIATES.
2
2
  # SPDX-License-Identifier: Apache-2.0
3
3
 
4
4
  """Version utilities so that cudf_polars supports a range of polars versions."""
@@ -11,13 +11,14 @@ from packaging.version import parse
11
11
  from polars import __version__
12
12
 
13
13
  POLARS_VERSION = parse(__version__)
14
- POLARS_LOWER_BOUND = parse("1.28")
15
- POLARS_VERSION_LT_129 = POLARS_VERSION < parse("1.29")
16
- POLARS_VERSION_LT_130 = POLARS_VERSION < parse("1.30")
14
+ POLARS_LOWER_BOUND = parse("1.30")
17
15
  POLARS_VERSION_LT_131 = POLARS_VERSION < parse("1.31")
18
16
  POLARS_VERSION_LT_132 = POLARS_VERSION < parse("1.32")
19
17
  POLARS_VERSION_LT_1321 = POLARS_VERSION < parse("1.32.1")
20
18
  POLARS_VERSION_LT_1323 = POLARS_VERSION < parse("1.32.3")
19
+ POLARS_VERSION_LT_133 = POLARS_VERSION < parse("1.33.0")
20
+ POLARS_VERSION_LT_134 = POLARS_VERSION < parse("1.34.0")
21
+ POLARS_VERSION_LT_135 = POLARS_VERSION < parse("1.35.0")
21
22
 
22
23
 
23
24
  def _ensure_polars_version() -> None:
@@ -0,0 +1,181 @@
1
+ Metadata-Version: 2.4
2
+ Name: cudf-polars-cu13
3
+ Version: 26.2.0
4
+ Summary: Executor for polars using cudf
5
+ Author: NVIDIA Corporation
6
+ License-Expression: Apache-2.0
7
+ Project-URL: Homepage, https://github.com/rapidsai/cudf
8
+ Classifier: Intended Audience :: Developers
9
+ Classifier: Topic :: Database
10
+ Classifier: Topic :: Scientific/Engineering
11
+ Classifier: Programming Language :: Python
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3.12
15
+ Classifier: Programming Language :: Python :: 3.13
16
+ Requires-Python: >=3.10
17
+ Description-Content-Type: text/markdown
18
+ License-File: LICENSE
19
+ Requires-Dist: nvidia-ml-py>=12
20
+ Requires-Dist: packaging
21
+ Requires-Dist: polars<1.36,>=1.30
22
+ Requires-Dist: pylibcudf-cu13==26.2.*
23
+ Requires-Dist: typing-extensions; python_version < "3.11"
24
+ Provides-Extra: test
25
+ Requires-Dist: dask-cuda==26.2.*; extra == "test"
26
+ Requires-Dist: numpy<3.0,>=1.23; extra == "test"
27
+ Requires-Dist: pytest; extra == "test"
28
+ Requires-Dist: pytest-cov; extra == "test"
29
+ Requires-Dist: pytest-httpserver; extra == "test"
30
+ Requires-Dist: pytest-xdist; extra == "test"
31
+ Requires-Dist: rich; extra == "test"
32
+ Requires-Dist: structlog; extra == "test"
33
+ Provides-Extra: experimental
34
+ Requires-Dist: nvidia-ml-py>=12; extra == "experimental"
35
+ Requires-Dist: rapids-dask-dependency==26.2.*; extra == "experimental"
36
+ Provides-Extra: trace
37
+ Requires-Dist: structlog; extra == "trace"
38
+ Provides-Extra: rapidsmpf
39
+ Requires-Dist: rapidsmpf-cu13==26.2.*; extra == "rapidsmpf"
40
+ Dynamic: license-file
41
+
42
+ # <div align="left"><img src="img/rapids_logo.png" width="90px"/>&nbsp;cuDF - A GPU-accelerated DataFrame library for tabular data processing</div>
43
+
44
+ cuDF (pronounced "KOO-dee-eff") is an [Apache 2.0 licensed](LICENSE), GPU-accelerated DataFrame library
45
+ for tabular data processing. The cuDF library is one part of the [RAPIDS](https://rapids.ai/) GPU
46
+ Accelerated Data Science suite of libraries.
47
+
48
+ ## About
49
+
50
+ cuDF is composed of multiple libraries including:
51
+
52
+ * [libcudf](https://docs.rapids.ai/api/cudf/stable/libcudf_docs/): A CUDA C++ library with [Apache Arrow](https://arrow.apache.org/) compliant
53
+ data structures and fundamental algorithms for tabular data.
54
+ * [pylibcudf](https://docs.rapids.ai/api/cudf/stable/pylibcudf/): A Python library providing [Cython](https://cython.org/) bindings for libcudf.
55
+ * [cudf](https://docs.rapids.ai/api/cudf/stable/user_guide/): A Python library providing
56
+ - A DataFrame library mirroring the [pandas](https://pandas.pydata.org/) API
57
+ - A zero-code change accelerator, [cudf.pandas](https://docs.rapids.ai/api/cudf/stable/cudf_pandas/), for existing pandas code.
58
+ * [cudf-polars](https://docs.rapids.ai/api/cudf/stable/cudf_polars/): A Python library providing a GPU engine for [Polars](https://pola.rs/)
59
+ * [dask-cudf](https://docs.rapids.ai/api/dask-cudf/stable/): A Python library providing a GPU backend for [Dask](https://www.dask.org/) DataFrames
60
+
61
+ Notable projects that use cuDF include:
62
+
63
+ * [Spark RAPIDS](https://github.com/NVIDIA/spark-rapids): A GPU accelerator plugin for [Apache Spark](https://spark.apache.org/)
64
+ * [Velox-cuDF](https://github.com/facebookincubator/velox/blob/main/velox/experimental/cudf/README.md): A [Velox](https://velox-lib.io/)
65
+ extension module to execute Velox plans on the GPU
66
+ * [Sirius](https://www.sirius-db.com/): A GPU-native SQL engine providing extensions for libraries like [DuckDB](https://duckdb.org/)
67
+
68
+ ## Installation
69
+
70
+ ### System Requirements
71
+
72
+ Operating System, GPU driver, and supported CUDA version information can be found at the [RAPIDS Installation Guide](https://docs.rapids.ai/install/#system-req)
73
+
74
+ ### pip
75
+
76
+ A stable release of each cudf library is available on PyPI. You will need to match the major version number of your installed CUDA version with a `-cu##` suffix when installing from PyPI.
77
+
78
+ A development version of each library is available as a nightly release by including the `-i https://pypi.anaconda.org/rapidsai-wheels-nightly/simple` index.
79
+
80
+ ```bash
81
+ # CUDA 13
82
+ pip install libcudf-cu13
83
+ pip install pylibcudf-cu13
84
+ pip install cudf-cu13
85
+ pip install cudf-polars-cu13
86
+ pip install dask-cudf-cu13
87
+
88
+ # CUDA 12
89
+ pip install libcudf-cu12
90
+ pip install pylibcudf-cu12
91
+ pip install cudf-cu12
92
+ pip install cudf-polars-cu12
93
+ pip install dask-cudf-cu12
94
+ ```
95
+
96
+ ### conda
97
+
98
+ A stable release of each cudf library is available to be installed with the conda package manager by specifying the `-c rapidsai` channel.
99
+
100
+ A development version of each library is available as a nightly release by specifying the `-c rapidsai-nightly` channel instead.
101
+
102
+ ```bash
103
+ conda install -c rapidsai libcudf
104
+ conda install -c rapidsai pylibcudf
105
+ conda install -c rapidsai cudf
106
+ conda install -c rapidsai cudf-polars
107
+ conda install -c rapidsai dask-cudf
108
+ ```
109
+
110
+ ### source
111
+
112
+ To install cuDF from source, please follow [the contribution guide](CONTRIBUTING.md#setting-up-your-build-environment) detailing
113
+ how to setup the build environment.
114
+
115
+ ## Examples
116
+
117
+ The following examples showcase reading a parquet file, dropping missing rows with a null value,
118
+ and performing a groupby aggregation on the data.
119
+
120
+ ### cudf
121
+
122
+ `import cudf` and the APIs are largely similar to pandas.
123
+
124
+ ```python
125
+ import cudf
126
+
127
+ df = cudf.read_parquet("data.parquet")
128
+ df.dropna().groupby(["A", "B"]).mean()
129
+ ```
130
+
131
+ ### cudf.pandas
132
+
133
+ With a Python file containing pandas code:
134
+
135
+ ```python
136
+ import pandas as pd
137
+
138
+ df = cudf.read_parquet("data.parquet")
139
+ df.dropna().groupby(["A", "B"]).mean()
140
+ ```
141
+
142
+ Use cudf.pandas by invoking `python` with `-m cudf.pandas`
143
+
144
+ ```bash
145
+ $ python -m cudf.pandas script.py
146
+ ```
147
+
148
+ If running the pandas code in an interactive Jupyter environment, call `%load_ext cudf.pandas` before
149
+ importing pandas.
150
+
151
+ ```python
152
+ In [1]: %load_ext cudf.pandas
153
+
154
+ In [2]: import pandas as pd
155
+
156
+ In [3]: df = cudf.read_parquet("data.parquet")
157
+
158
+ In [4]: df.dropna().groupby(["A", "B"]).mean()
159
+ ```
160
+
161
+ ### cudf-polars
162
+
163
+ Using Polars' [lazy API](https://docs.pola.rs/user-guide/lazy/), call `collect` with `engine="gpu"` to run
164
+ the operation on the GPU
165
+
166
+ ```python
167
+ import polars as pl
168
+
169
+ lf = pl.scan_parquet("data.parquet")
170
+ lf.drop_nulls().group_by(["A", "B"]).mean().collect(engine="gpu")
171
+ ```
172
+
173
+ ## Questions and Discussion
174
+
175
+ For bug reports or feature requests, please [file an issue](https://github.com/rapidsai/cudf/issues/new/choose) on the GitHub issue tracker.
176
+
177
+ For questions or discussion about cuDF and GPU data processing, feel free to post in the [RAPIDS Slack](https://rapids.ai/slack-invite) workspace.
178
+
179
+ ## Contributing
180
+
181
+ cuDF is open to contributions from the community! Please see our [guide for contributing to cuDF](CONTRIBUTING.md) for more information.
@@ -0,0 +1,108 @@
1
+ cudf_polars/GIT_COMMIT,sha256=MxmQ_0zyU_MmTFE3sRdzXEdlNmw7bVkRmODcB3umgYw,41
2
+ cudf_polars/VERSION,sha256=b7npT_ALAM2FnuWaCswzvHtyf4qdm14S3swNXLSxPcs,9
3
+ cudf_polars/__init__.py,sha256=fSTx5nmqajdwp7qvP4PnYL6wZN9-k1fKB43NkcZlHwk,740
4
+ cudf_polars/_version.py,sha256=kj5Ir4dxZRR-k2k8mWUDJHiGpE8_ZcTNzt_kMZxcFRA,528
5
+ cudf_polars/callback.py,sha256=4MitKua-OGWqCkGTJ9sh1YYyBwlSWjn98l4eTNf_tQs,11780
6
+ cudf_polars/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
+ cudf_polars/containers/__init__.py,sha256=EIiTQKXBTwCmbsUNotYImSi3wq31pX55hYFwojygcyI,518
8
+ cudf_polars/containers/column.py,sha256=8L6uWupN3nC9Mcnz_I2pRTUhJn_YLMnf-4ohW7egPmg,17654
9
+ cudf_polars/containers/dataframe.py,sha256=TVNuoJ-hnEfnApLuva1SkuMHhqBuLg7QrJoeYcsRL4U,14306
10
+ cudf_polars/containers/datatype.py,sha256=1ELPhgNoPxQGdXhcjqvYyMQaQ6kFYMYy5xSXkrzRniA,9310
11
+ cudf_polars/dsl/__init__.py,sha256=bYwYnqmqINMgwnkJ22EnXMlHviLolPaMgQ8QqoZL3YE,244
12
+ cudf_polars/dsl/expr.py,sha256=g64rrg-frc1ndqMweyczuFJzWJ71rk2v8umyEg3DQ1U,1904
13
+ cudf_polars/dsl/ir.py,sha256=Qbnx5F4XDpYlABQOkd8XjWX5r9OsfV8ALrE0D4EPXrE,117611
14
+ cudf_polars/dsl/nodebase.py,sha256=QbZHK9aUbdiE-Mp_NkkiuNvCnD8E3xzd9-GYKR8UqcM,4777
15
+ cudf_polars/dsl/to_ast.py,sha256=30ms4laf8aQVhgaR9A_krpTABlXt7LLrA3Bv5rqO3I4,14061
16
+ cudf_polars/dsl/tracing.py,sha256=bJz1-45-sD2_Dvk3wwaJEvS-c4_zROaXbQT6SmOqGLk,6470
17
+ cudf_polars/dsl/translate.py,sha256=ou_KOlEMlAjTrkgkVEcLt_gUUldyZx4FgH9XDMvSc5k,38003
18
+ cudf_polars/dsl/traversal.py,sha256=dzOHVaRj0wTYQd5h-JnjQrj4DffEfq1gdENYcDk5Eis,5729
19
+ cudf_polars/dsl/expressions/__init__.py,sha256=uj1a4BzrDVAjOgP6FKKtnvR5elF4ksUj1RhkLTZoS1k,224
20
+ cudf_polars/dsl/expressions/aggregation.py,sha256=Fx7n5i2yYZZqrU_x01_8O7IPBL5fbXJTdvHmjXUnZW4,10124
21
+ cudf_polars/dsl/expressions/base.py,sha256=Fq_MCz2LOMm6eekLJQ1jwEsAvYuouFXzrhIpxIRs4ak,7976
22
+ cudf_polars/dsl/expressions/binaryop.py,sha256=xFzNNYAuiP4ZnA57W_DEhIvILvVXJD-f__lXFrQVsww,5766
23
+ cudf_polars/dsl/expressions/boolean.py,sha256=NzprlF2hSIoVMxQ9WATzdEXuptULxikLU1k1VHwR8I8,14796
24
+ cudf_polars/dsl/expressions/datetime.py,sha256=3-O9iIgt_7oa9b-S8_K6SV4v7sppK8AfHpjDOWcI--8,11293
25
+ cudf_polars/dsl/expressions/literal.py,sha256=DsVEDgM0Qgszx2r0Cx-dLhv_u8Mid29AonFRKR6ozts,3351
26
+ cudf_polars/dsl/expressions/rolling.py,sha256=YYibEkrsvwYOQRp1MF4q7bKiIm62w-eQ8eAUIU1_518,35044
27
+ cudf_polars/dsl/expressions/selection.py,sha256=RhmebC0MUT2fLji21zXR2eM8u61fDF1xwzXnuLSgcuY,2674
28
+ cudf_polars/dsl/expressions/slicing.py,sha256=nLLv3TP_aZTK6l6T8L8jyz6DU9VKMUM241jcQUyoY74,1203
29
+ cudf_polars/dsl/expressions/sorting.py,sha256=6XO0JktGGUJujADXrZoSBeJGDk80vSOCzboB7jOlL5Q,2789
30
+ cudf_polars/dsl/expressions/string.py,sha256=RG1vgITaHmKzp4UxgZ4b6UC4FbVfZknUBsgytU9PFbU,43647
31
+ cudf_polars/dsl/expressions/struct.py,sha256=6gUsV-5wnGRg4aYtO_9MAteU9iNcqsg7Xrc7FeYF3oE,5058
32
+ cudf_polars/dsl/expressions/ternary.py,sha256=0saTAwYsYZKdnjPfrDBUyoPKbAYs-HcBkHUVqeVYyOA,2380
33
+ cudf_polars/dsl/expressions/unary.py,sha256=WOFWAPfNx7SsprqJaKaFUSYIMCGjD6Ud7U06kTfjScU,22542
34
+ cudf_polars/dsl/utils/__init__.py,sha256=JL26nlMAbcdL8ZE4iXRrMOEVSTEZU1P5y9WvxTEDdnY,199
35
+ cudf_polars/dsl/utils/aggregations.py,sha256=qD9AlJLlAXhGmDjoPlxH4Va7DZ2A5VRPnHSvrefyf0E,18214
36
+ cudf_polars/dsl/utils/groupby.py,sha256=PhkzM62N8b9qjJs8910IewnTbn_Qx2OiMPXgqMo1yDI,2621
37
+ cudf_polars/dsl/utils/naming.py,sha256=ydp_BYYAt3mG7JHfi9Snp3dDNzdQZD6F2sAMEmT4OYA,737
38
+ cudf_polars/dsl/utils/replace.py,sha256=8ns_TpbG1Hh8ZJejRyGA6KCu5t-TvUaM009AO8J98vc,1612
39
+ cudf_polars/dsl/utils/reshape.py,sha256=lU0ndZHEeq6UX__VlJ4jEDHh41n45M6KMAFljidZs3Y,2687
40
+ cudf_polars/dsl/utils/rolling.py,sha256=R6RG-aPEr9deTJQwi8HYgOnCPeWkA6uT33ZjQTfhyPM,3734
41
+ cudf_polars/dsl/utils/windows.py,sha256=d6gXPEul8EI-yMhqcrEnhaMhwV7Bc5g4kiP49qfOpSE,5855
42
+ cudf_polars/experimental/__init__.py,sha256=S2oI2K__woyPQAAlFMOo6RTMtdfIZxmzzAO92VtJgP4,256
43
+ cudf_polars/experimental/base.py,sha256=oqYDrIXPHAi9RxTR8-UnZv9M1rf8cEK3S0MtbZfQFNg,13368
44
+ cudf_polars/experimental/dask_registers.py,sha256=M_LPneaKjVM4tHLrMAmvHVSF4DHMPzwx6ICvHFFPW_w,8514
45
+ cudf_polars/experimental/dispatch.py,sha256=guwWQQJHY2Iy04DS7MK4JghBZq9n4suZ1Aj-SOUWNG4,4068
46
+ cudf_polars/experimental/distinct.py,sha256=PRIC89PNT3yIjBh5Sm5SEasqB1Gx8FPxFP8f-lUMgic,7108
47
+ cudf_polars/experimental/explain.py,sha256=iRNRDPTPpVnJIIoQ6ol7piamap6HWYn2FpAR4LvvX7Q,5246
48
+ cudf_polars/experimental/expressions.py,sha256=AeXl6e8vuA1-c4kNMRe43Aku6MjYM48lbya3EsOnX-8,19169
49
+ cudf_polars/experimental/groupby.py,sha256=ji9Ow42jqIoRUP517Dbiv1DfDfdeu-wfbziN5faUyUY,11861
50
+ cudf_polars/experimental/io.py,sha256=KK9pzrDNW46yjULvrOl1AZ_bwGRJ3RgABDML6m12bfU,33219
51
+ cudf_polars/experimental/join.py,sha256=JEi1_aRTzAAw3fAwX3KSDB2oGBsw9w6NF35RyM12IPo,14141
52
+ cudf_polars/experimental/parallel.py,sha256=Kt0OG0mEJPYlufgqwIeg61-c_xuRQyMhmoy0Wj4g5tE,14254
53
+ cudf_polars/experimental/repartition.py,sha256=Fq2XG60c0jBvrttnpMQJWoF9VOPxE7gPgbivCJt_wX0,2307
54
+ cudf_polars/experimental/scheduler.py,sha256=ieL7bdxTqlmd8MO37JCaCoqhyDRZNTLnPFUme3hv6SQ,4203
55
+ cudf_polars/experimental/select.py,sha256=qq1fOfZ06L-ovO8r7r8XYDkUxR3q1PsZt8z3SdbjamI,12346
56
+ cudf_polars/experimental/shuffle.py,sha256=l4SDBZCQ_O5LY76IZmfqRQ5USZ2cK55Xp1YMzZ3LzBA,12611
57
+ cudf_polars/experimental/sort.py,sha256=5sRdZOXpGfI8As-9ZoX2j97xAy4gPkB-rc3CDlHAS8M,23163
58
+ cudf_polars/experimental/spilling.py,sha256=mWD6guiav1fBfoIQoqZjIAdpYiXnx3-NkYUugMEY2qc,4255
59
+ cudf_polars/experimental/statistics.py,sha256=frazwJucOGt-mxyjkbXoIE64d7lt8qODJ9TEe7UmLJE,29365
60
+ cudf_polars/experimental/utils.py,sha256=Dir5oQkPxJUPBVnOBkDGaBg26fEEQEwnADeWZ5lDy6o,6550
61
+ cudf_polars/experimental/benchmarks/__init__.py,sha256=XiT8hL6V9Ns_SSXDXkzoSWlXIo6aFLDXUHLLWch23Ok,149
62
+ cudf_polars/experimental/benchmarks/pdsds.py,sha256=zVB6MBR5Gni5U1O3PNkqktu0Rwe_x_reLcuVjYs5axY,2880
63
+ cudf_polars/experimental/benchmarks/pdsh.py,sha256=5nWp1mxA2hz4LcgWcBb-gB6JrOBI87uR8igaNuNMm44,56209
64
+ cudf_polars/experimental/benchmarks/utils.py,sha256=-QafsXJiYFChGSbRvJTN-klenJvJEmpX260DLTx-moU,46586
65
+ cudf_polars/experimental/benchmarks/pdsds_queries/__init__.py,sha256=pkjkRg2qJCMbhBpD9cIxcjsgMOZXXliWJPZIgZpcUQA,151
66
+ cudf_polars/experimental/benchmarks/pdsds_queries/q1.py,sha256=NTvgxMJUB9xH2llo6_SWO7JQNwxEoK9nQ-mnRCsYf9Y,3100
67
+ cudf_polars/experimental/benchmarks/pdsds_queries/q10.py,sha256=SBDDIf-BfoPTqHCi4jIpgLJXkA99UcZ-NhAPhE1D2hA,7797
68
+ cudf_polars/experimental/benchmarks/pdsds_queries/q2.py,sha256=hns2Hz1Eu8YBl4YDweINv__BME3HTt5A_TDppjXP0aw,9088
69
+ cudf_polars/experimental/benchmarks/pdsds_queries/q3.py,sha256=GhdN9WbYVv97aIc29i3w_tl1T7rtotwY5SZBhZK6gf4,2150
70
+ cudf_polars/experimental/benchmarks/pdsds_queries/q4.py,sha256=6E8lOk5lS_R4VeN81Dof1ijzKbMsQ3zuqinU0nQZVWg,13475
71
+ cudf_polars/experimental/benchmarks/pdsds_queries/q5.py,sha256=neKCu04M9SRDQHa6Nc51NbJ3gFY3yJkM05qE1YHUevU,19800
72
+ cudf_polars/experimental/benchmarks/pdsds_queries/q6.py,sha256=7zdkXHpnY3xwa8oj2c3dtPgW_pAmr4kfhATdFQiq9vk,3226
73
+ cudf_polars/experimental/benchmarks/pdsds_queries/q7.py,sha256=gWAuGaDQbdCn6CofbqPAah3X4uVBVYdsfIIqRpZppFc,2789
74
+ cudf_polars/experimental/benchmarks/pdsds_queries/q8.py,sha256=62qZn1RFhS3T-GL9bBY2cIR3kbVxgoYdY9n4en309EU,9546
75
+ cudf_polars/experimental/benchmarks/pdsds_queries/q9.py,sha256=_MyLgknIVUK1U1x12bsM9Lrhs-ZMKuSOwMc9yu0ddYY,4723
76
+ cudf_polars/experimental/rapidsmpf/__init__.py,sha256=2RRG6vmbR1XNZ8-EEEfm1CmgN8eOic6Z-nNWYyYCNvE,220
77
+ cudf_polars/experimental/rapidsmpf/core.py,sha256=gGJsGJCPJCaNFQpaj5SAypVbYjZ2PNHYjpD7eJ7Vt2Q,16756
78
+ cudf_polars/experimental/rapidsmpf/dask.py,sha256=AqoIA6owG_OHOeCeAyyiz6tv6v0KAvvqT8pGZau8uXc,5132
79
+ cudf_polars/experimental/rapidsmpf/dispatch.py,sha256=FprIqvhpxgQTGffXVkdpDhoZAcz78OVWNeD8kddp7M0,4021
80
+ cudf_polars/experimental/rapidsmpf/io.py,sha256=ou9_lunDl9uQAsEAZYv1B-dBLjxIj8TKMChcSpU50sE,23705
81
+ cudf_polars/experimental/rapidsmpf/join.py,sha256=jGVvgMMQseb7w6lxwWYEaGOUBA927_aLd3gSHgnfxHA,11573
82
+ cudf_polars/experimental/rapidsmpf/lower.py,sha256=_CASAuvnVCdPAj2XP919A9v-18vvfME5Jtq-dscnhkQ,2694
83
+ cudf_polars/experimental/rapidsmpf/nodes.py,sha256=Z08BnidQWva48BLxn3A2Qby7PQb_IGyLkOeHvssqBPc,26759
84
+ cudf_polars/experimental/rapidsmpf/repartition.py,sha256=66gNOtLKx864S63wUkXiiyz1vVfqCVS_aiTLMVLo0uM,7733
85
+ cudf_polars/experimental/rapidsmpf/union.py,sha256=iw_82sA-FDkd_mDXqCJS2V4Chgcb-aLet50xG8uykKE,3366
86
+ cudf_polars/experimental/rapidsmpf/utils.py,sha256=fFN8I_gXn-7fnIa5Ri6JEQ177Clyj110dQbDWP52i94,11050
87
+ cudf_polars/experimental/rapidsmpf/collectives/__init__.py,sha256=BIz1p2ejG1D1B3pxs5kkFzHwDABGG9gG0ya27LXhvoY,325
88
+ cudf_polars/experimental/rapidsmpf/collectives/allgather.py,sha256=X7iDRVB3kAmNe_Vbc2yh2S_4GyW__BLoQ3eKuOtSIHo,2557
89
+ cudf_polars/experimental/rapidsmpf/collectives/common.py,sha256=NVJponygUrIKn-VE3cjaKlw680sn-j8V-p0g1-tde6M,2913
90
+ cudf_polars/experimental/rapidsmpf/collectives/shuffle.py,sha256=tIU26Ym701pJLT3hR_OIzJOkrt3mGVXGHSqi_-Gy-ng,7814
91
+ cudf_polars/testing/__init__.py,sha256=0MnlTjkTEqkSpL5GdMhQf4uXOaQwNrzgEJCZKa5FnL4,219
92
+ cudf_polars/testing/asserts.py,sha256=rI8fNQTp2GMiOY2oEn1qz50rUArlFCX5D-kb5uWKdjA,15566
93
+ cudf_polars/testing/io.py,sha256=-jxBzK-jURja5_f2Oha24yHRJpV7oIUScCQyvranH0Q,3902
94
+ cudf_polars/testing/plugin.py,sha256=sJkl9M0I7oIDv0KtJKugIX2Eo8wAVnbMrAoE_n3yNm8,28992
95
+ cudf_polars/typing/__init__.py,sha256=-M2I4vZ13VL3vB7ONgGt9D9Bu4DBlCgDBKIzTeFkZo4,6345
96
+ cudf_polars/utils/__init__.py,sha256=urdV5MUIneU8Dn6pt1db5GkDG0oY4NsFD0Uhl3j98l8,195
97
+ cudf_polars/utils/config.py,sha256=7iLWgkaVeF8f5CirlsCkwmCxNrFUPNYrPA9Z5VT-Wx4,44661
98
+ cudf_polars/utils/conversion.py,sha256=k_apLbSR-MiYYlQBGrzYOInuvcbfSi-il-o9nkovdXQ,1042
99
+ cudf_polars/utils/cuda_stream.py,sha256=Nky4ogx0HpBPdR83XT_s-CK7J0xJ4AXuXBzCyZ076nE,1821
100
+ cudf_polars/utils/dtypes.py,sha256=yktzqBLfbv-zve1-iS_XsGZD1R6GXgXV_grZ8m7KidM,3358
101
+ cudf_polars/utils/sorting.py,sha256=Mqb_KLsYnKU8p1dDan2mtlIQl65RqwM78OlUi-_Jj0k,1725
102
+ cudf_polars/utils/timer.py,sha256=KqcXqOcbovsj6KDCwaxl70baQXjuod43rABrpQkE78M,1005
103
+ cudf_polars/utils/versions.py,sha256=4XcfNTfYY3GzC7zrhx7gpunyWQCRbunzwL6rEXjqy4o,1020
104
+ cudf_polars_cu13-26.2.0.dist-info/licenses/LICENSE,sha256=4YCpjWCbYMkMQFW47JXsorZLOaP957HwmP6oHW2_ngM,11348
105
+ cudf_polars_cu13-26.2.0.dist-info/METADATA,sha256=1vETP8_HE42i1nQU3Jee9GB3as6EhOpjAH06Z6GlF3k,6624
106
+ cudf_polars_cu13-26.2.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
107
+ cudf_polars_cu13-26.2.0.dist-info/top_level.txt,sha256=w2bOa7MpuyapYgZh480Znh4UzX7rSWlFcYR1Yo6QIPs,12
108
+ cudf_polars_cu13-26.2.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,136 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: cudf-polars-cu13
3
- Version: 25.10.0
4
- Summary: Executor for polars using cudf
5
- Author: NVIDIA Corporation
6
- License: Apache-2.0
7
- Project-URL: Homepage, https://github.com/rapidsai/cudf
8
- Classifier: Intended Audience :: Developers
9
- Classifier: Topic :: Database
10
- Classifier: Topic :: Scientific/Engineering
11
- Classifier: License :: OSI Approved :: Apache Software License
12
- Classifier: Programming Language :: Python
13
- Classifier: Programming Language :: Python :: 3.10
14
- Classifier: Programming Language :: Python :: 3.11
15
- Classifier: Programming Language :: Python :: 3.12
16
- Classifier: Programming Language :: Python :: 3.13
17
- Requires-Python: >=3.10
18
- Description-Content-Type: text/markdown
19
- License-File: LICENSE
20
- Requires-Dist: nvidia-ml-py>=12
21
- Requires-Dist: packaging
22
- Requires-Dist: polars<1.33,>=1.28
23
- Requires-Dist: pylibcudf-cu13==25.10.*
24
- Requires-Dist: typing-extensions; python_version < "3.11"
25
- Provides-Extra: test
26
- Requires-Dist: dask-cuda==25.10.*; extra == "test"
27
- Requires-Dist: numpy<3.0a0,>=1.23; extra == "test"
28
- Requires-Dist: pytest; extra == "test"
29
- Requires-Dist: pytest-cov; extra == "test"
30
- Requires-Dist: pytest-httpserver; extra == "test"
31
- Requires-Dist: pytest-xdist; extra == "test"
32
- Requires-Dist: rich; extra == "test"
33
- Provides-Extra: experimental
34
- Requires-Dist: nvidia-ml-py>=12; extra == "experimental"
35
- Requires-Dist: rapids-dask-dependency==25.10.*; extra == "experimental"
36
- Dynamic: license-file
37
-
38
- # <div align="left"><img src="img/rapids_logo.png" width="90px"/>&nbsp;cuDF - GPU DataFrames</div>
39
-
40
- ## 📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!
41
-
42
- cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library
43
- for loading, joining, aggregating, filtering, and otherwise
44
- manipulating data. cuDF leverages
45
- [libcudf](https://docs.rapids.ai/api/libcudf/stable/), a
46
- blazing-fast C++/CUDA dataframe library and the [Apache
47
- Arrow](https://arrow.apache.org/) columnar format to provide a
48
- GPU-accelerated pandas API.
49
-
50
- You can import `cudf` directly and use it like `pandas`:
51
-
52
- ```python
53
- import cudf
54
-
55
- tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
56
- tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
57
-
58
- # display average tip by dining party size
59
- print(tips_df.groupby("size").tip_percentage.mean())
60
- ```
61
-
62
- Or, you can use cuDF as a no-code-change accelerator for pandas, using
63
- [`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).
64
- `cudf.pandas` supports 100% of the pandas API, utilizing cuDF for
65
- supported operations and falling back to pandas when needed:
66
-
67
- ```python
68
- %load_ext cudf.pandas # pandas operations now use the GPU!
69
-
70
- import pandas as pd
71
-
72
- tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
73
- tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
74
-
75
- # display average tip by dining party size
76
- print(tips_df.groupby("size").tip_percentage.mean())
77
- ```
78
-
79
- ## Resources
80
-
81
- - [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!
82
- - [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.
83
- - [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)
84
- - [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)
85
- - [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.
86
-
87
- See the [RAPIDS install page](https://docs.rapids.ai/install) for
88
- the most up-to-date information and commands for installing cuDF
89
- and other RAPIDS packages.
90
-
91
- ## Installation
92
-
93
- ### CUDA/GPU requirements
94
-
95
- * CUDA 12.0+ with a compatible NVIDIA driver
96
- * Volta architecture or better (Compute Capability >=7.0)
97
-
98
- ### Pip
99
-
100
- cuDF can be installed via `pip` from the NVIDIA Python Package Index.
101
- Be sure to select the appropriate cuDF package depending
102
- on the major version of CUDA available in your environment:
103
-
104
- ```bash
105
- # CUDA 13
106
- pip install cudf-cu13
107
-
108
- # CUDA 12
109
- pip install cudf-cu12
110
- ```
111
-
112
- ### Conda
113
-
114
- cuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:
115
-
116
- ```bash
117
- # CUDA 13
118
- conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=13.0
119
-
120
- # CUDA 12
121
- conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=12.9
122
- ```
123
-
124
- We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD
125
- of our latest development branch.
126
-
127
- Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.
128
-
129
- See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.
130
-
131
- ## Build/Install from Source
132
- See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).
133
-
134
- ## Contributing
135
-
136
- Please see our [guide for contributing to cuDF](CONTRIBUTING.md).
@@ -1,92 +0,0 @@
1
- cudf_polars/GIT_COMMIT,sha256=dSIC7QF9D2u7uNLtZDtGWJYqrCMXIqV9uYhOHjtkmLU,41
2
- cudf_polars/VERSION,sha256=qFUmAhDerTzlTeG7G1N8kkXh-gyZzDU9R0ARLQtoP_Y,8
3
- cudf_polars/__init__.py,sha256=fSTx5nmqajdwp7qvP4PnYL6wZN9-k1fKB43NkcZlHwk,740
4
- cudf_polars/_version.py,sha256=kj5Ir4dxZRR-k2k8mWUDJHiGpE8_ZcTNzt_kMZxcFRA,528
5
- cudf_polars/callback.py,sha256=r8hf3BbpXaKtBjQkxIt_XMP9IVj6UjtdSIvJXR3r_NA,9994
6
- cudf_polars/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
- cudf_polars/containers/__init__.py,sha256=EIiTQKXBTwCmbsUNotYImSi3wq31pX55hYFwojygcyI,518
8
- cudf_polars/containers/column.py,sha256=jklTNU2gMazs84wybZIlojY0XXVdRZYNT4X4rPL31nM,15233
9
- cudf_polars/containers/dataframe.py,sha256=geASmznODV_7pFcxqcQqEzdDpN5dLDR1_vmdXHFI1og,11665
10
- cudf_polars/containers/datatype.py,sha256=uNsVCieVWR7fgpiSmXu25Z5mfECSIxBGrweZf9EQu7E,4680
11
- cudf_polars/dsl/__init__.py,sha256=bYwYnqmqINMgwnkJ22EnXMlHviLolPaMgQ8QqoZL3YE,244
12
- cudf_polars/dsl/expr.py,sha256=fLimKmIxdEkVwie90QR3ajjxA7le5zI-iu1VZW1ZN8c,1952
13
- cudf_polars/dsl/ir.py,sha256=vfPHOOPYaz7KTJfkshN-5mVMkrVqYKFGle5IfQhxFLw,93272
14
- cudf_polars/dsl/nodebase.py,sha256=QbZHK9aUbdiE-Mp_NkkiuNvCnD8E3xzd9-GYKR8UqcM,4777
15
- cudf_polars/dsl/to_ast.py,sha256=We0idh-0ckSz9nIZrGkeMg75XbnijRW2_DHVXZ9-a34,13595
16
- cudf_polars/dsl/tracing.py,sha256=xPTyXNQ64PSuV4_t5z6_GGJ1V_m4sFxxHiYEDp64Ofk,383
17
- cudf_polars/dsl/translate.py,sha256=t_bHoIS6Ny3gQcMqWAgBUT0AmWTM0LSCQnhYG36Km2s,31687
18
- cudf_polars/dsl/traversal.py,sha256=dzOHVaRj0wTYQd5h-JnjQrj4DffEfq1gdENYcDk5Eis,5729
19
- cudf_polars/dsl/expressions/__init__.py,sha256=uj1a4BzrDVAjOgP6FKKtnvR5elF4ksUj1RhkLTZoS1k,224
20
- cudf_polars/dsl/expressions/aggregation.py,sha256=XxC1d4cbQIvL6o6REQ2FlyxcdUbVyMl-gN4RDFHnLSQ,7950
21
- cudf_polars/dsl/expressions/base.py,sha256=Fq_MCz2LOMm6eekLJQ1jwEsAvYuouFXzrhIpxIRs4ak,7976
22
- cudf_polars/dsl/expressions/binaryop.py,sha256=7Psj8BKnotNGopQw5W9hM6cP8fbng-OllxrkgYrvLzs,5070
23
- cudf_polars/dsl/expressions/boolean.py,sha256=Gpx0cn2L1Wr4q5OqGT2s7lYsN_VlG_IYPtKD-BE6Cc8,12550
24
- cudf_polars/dsl/expressions/datetime.py,sha256=MEGtYOYl2ftbNzVd9NBv9DMJ2dUxZwGg5z69xzjZP18,10102
25
- cudf_polars/dsl/expressions/literal.py,sha256=CpfWj5XFqBNKqu3jaWgP13_HfSg6maXiKDjmY6pdoUE,3192
26
- cudf_polars/dsl/expressions/rolling.py,sha256=NiR8FfUwQMdmqFIrMM-hBcZ_JEKn9a1X9UZF4DPKM0E,23037
27
- cudf_polars/dsl/expressions/selection.py,sha256=RfGj0RbKairCNibfQCUtwbFiS4xv9fRoznycEKxE3ww,2520
28
- cudf_polars/dsl/expressions/slicing.py,sha256=xaI-XzZvPzyLDwG0yZcIPII56OMEJDxem2piV4LBGI0,1185
29
- cudf_polars/dsl/expressions/sorting.py,sha256=6XO0JktGGUJujADXrZoSBeJGDk80vSOCzboB7jOlL5Q,2789
30
- cudf_polars/dsl/expressions/string.py,sha256=LXUd0IYiblmlNHQ9zTpV5i0m770TY0k9vBcLyPI9c0k,38164
31
- cudf_polars/dsl/expressions/struct.py,sha256=DC426pMVQrebvAEi9NCzKhzFxPFhUglvUlvOb866TLQ,4658
32
- cudf_polars/dsl/expressions/ternary.py,sha256=J_85frSq5Hh2ERSXOIZlwiwFTEp9WASh2hPiCkbkbqM,1415
33
- cudf_polars/dsl/expressions/unary.py,sha256=sW4t9pSbRMMUlD6wJ9Vq4khi4qhBelVfqmtj_gl1Oj8,20283
34
- cudf_polars/dsl/utils/__init__.py,sha256=JL26nlMAbcdL8ZE4iXRrMOEVSTEZU1P5y9WvxTEDdnY,199
35
- cudf_polars/dsl/utils/aggregations.py,sha256=Vozij-WaR8UwOq28WSEMNmigokduydXSknL0krKj-6Y,17522
36
- cudf_polars/dsl/utils/groupby.py,sha256=PhkzM62N8b9qjJs8910IewnTbn_Qx2OiMPXgqMo1yDI,2621
37
- cudf_polars/dsl/utils/naming.py,sha256=ydp_BYYAt3mG7JHfi9Snp3dDNzdQZD6F2sAMEmT4OYA,737
38
- cudf_polars/dsl/utils/replace.py,sha256=8ns_TpbG1Hh8ZJejRyGA6KCu5t-TvUaM009AO8J98vc,1612
39
- cudf_polars/dsl/utils/reshape.py,sha256=Q13_0tIjgtMocGRFciPa1GcMxc2ClqqZf1mujl7w1kw,2397
40
- cudf_polars/dsl/utils/rolling.py,sha256=ioqNHIzEip9vd7XHHZvUmHL3RYPwOD6qYsPHUDmlhM8,3618
41
- cudf_polars/dsl/utils/windows.py,sha256=ysRZfl9wm2z-QXTRO09tT5gy1vwvoV_8_8iBsE9FZeA,5388
42
- cudf_polars/experimental/__init__.py,sha256=S2oI2K__woyPQAAlFMOo6RTMtdfIZxmzzAO92VtJgP4,256
43
- cudf_polars/experimental/base.py,sha256=9_bEWrbizmR9n4I55oqlORrGxBwc4kaGtn4EXSo_uu0,11582
44
- cudf_polars/experimental/dask_registers.py,sha256=bGU6nEh-rQd6lMPaEhJUdkVrkCFSjknb8IwB0EeMnrs,7780
45
- cudf_polars/experimental/dispatch.py,sha256=i1Q0J5M9rLMi1lp_MxjGmvAfjKEGda0B3c5kvTtz3uM,3942
46
- cudf_polars/experimental/distinct.py,sha256=ZyQ2SEVftdRAbtVOdJ89TvbK8uDPpam1FG6VKj86kAY,6978
47
- cudf_polars/experimental/explain.py,sha256=-NPFj7jplbobu7jGTOnv8e9VDOs9BHuPxjilvZ19ryI,4803
48
- cudf_polars/experimental/expressions.py,sha256=3NXUUepYLdqzrhaFuhu_Ya5nc89Dxhsmv0liIxAyQlQ,18412
49
- cudf_polars/experimental/groupby.py,sha256=uoN759pB3yrvNRFwc_jq4bNtsTmDrtPjifMABhfutwY,11222
50
- cudf_polars/experimental/io.py,sha256=RMH5dDrO3TsPK9QXkq5ibcHT_pRh64_m9RmIxiYtawE,31667
51
- cudf_polars/experimental/join.py,sha256=bfxbAl34Ql-FcMYCbn8oYAW9bROhFpf3d8yIjEVtcIY,12790
52
- cudf_polars/experimental/parallel.py,sha256=NsI_X-LKUNgpjoD9EFjWHXRiDvIy_onUJvzDCZAtr5U,12803
53
- cudf_polars/experimental/repartition.py,sha256=o1qtstaB_dBaYjkmsmfnveZ6T66A9XGwzFEBUucfyrk,2124
54
- cudf_polars/experimental/scheduler.py,sha256=ieL7bdxTqlmd8MO37JCaCoqhyDRZNTLnPFUme3hv6SQ,4203
55
- cudf_polars/experimental/select.py,sha256=5r4zAa2iupN_VJDLQ-PKWLyfzcgeJkTpVI5HXlTtULs,6106
56
- cudf_polars/experimental/shuffle.py,sha256=pfMxjVufnYf_1GXApBRSng-_O1Gl33NP0KQAZhKpu1E,11077
57
- cudf_polars/experimental/sort.py,sha256=6EGk1rAzw58Jtd5CZ9pHvesK-yA1h-SmDnE8ZFUlGcw,20830
58
- cudf_polars/experimental/spilling.py,sha256=OVpH9PHYNJcYL-PAB0CvoAil_nJW0VepLvcIrrAUdlc,4255
59
- cudf_polars/experimental/statistics.py,sha256=GMurzuADNEyWaKh43BHTzb30inTKkdALJrNx3GfMa3o,29147
60
- cudf_polars/experimental/utils.py,sha256=e17n8NojqVQ33UhKXkXS1MgFopyINgCFDjRSIMBV9Mw,5632
61
- cudf_polars/experimental/benchmarks/__init__.py,sha256=XiT8hL6V9Ns_SSXDXkzoSWlXIo6aFLDXUHLLWch23Ok,149
62
- cudf_polars/experimental/benchmarks/pdsds.py,sha256=e565fV2a6tzhKfQ4pCqTMoxJboDx3O8hV2_NHjkRaow,6889
63
- cudf_polars/experimental/benchmarks/pdsh.py,sha256=2KTQvP4ordyo0qy1WDgagpHoYYRrQz1PkDHnhNpo-_s,31151
64
- cudf_polars/experimental/benchmarks/utils.py,sha256=eC8mcqUEh1fu07SCIvr9ZVbiHkzt6aqBZBKWL8y7Wc4,28196
65
- cudf_polars/experimental/benchmarks/pdsds_queries/__init__.py,sha256=pkjkRg2qJCMbhBpD9cIxcjsgMOZXXliWJPZIgZpcUQA,151
66
- cudf_polars/experimental/benchmarks/pdsds_queries/q1.py,sha256=NTvgxMJUB9xH2llo6_SWO7JQNwxEoK9nQ-mnRCsYf9Y,3100
67
- cudf_polars/experimental/benchmarks/pdsds_queries/q10.py,sha256=SBDDIf-BfoPTqHCi4jIpgLJXkA99UcZ-NhAPhE1D2hA,7797
68
- cudf_polars/experimental/benchmarks/pdsds_queries/q2.py,sha256=hns2Hz1Eu8YBl4YDweINv__BME3HTt5A_TDppjXP0aw,9088
69
- cudf_polars/experimental/benchmarks/pdsds_queries/q3.py,sha256=GhdN9WbYVv97aIc29i3w_tl1T7rtotwY5SZBhZK6gf4,2150
70
- cudf_polars/experimental/benchmarks/pdsds_queries/q4.py,sha256=6E8lOk5lS_R4VeN81Dof1ijzKbMsQ3zuqinU0nQZVWg,13475
71
- cudf_polars/experimental/benchmarks/pdsds_queries/q5.py,sha256=neKCu04M9SRDQHa6Nc51NbJ3gFY3yJkM05qE1YHUevU,19800
72
- cudf_polars/experimental/benchmarks/pdsds_queries/q6.py,sha256=7zdkXHpnY3xwa8oj2c3dtPgW_pAmr4kfhATdFQiq9vk,3226
73
- cudf_polars/experimental/benchmarks/pdsds_queries/q7.py,sha256=gWAuGaDQbdCn6CofbqPAah3X4uVBVYdsfIIqRpZppFc,2789
74
- cudf_polars/experimental/benchmarks/pdsds_queries/q8.py,sha256=62qZn1RFhS3T-GL9bBY2cIR3kbVxgoYdY9n4en309EU,9546
75
- cudf_polars/experimental/benchmarks/pdsds_queries/q9.py,sha256=_MyLgknIVUK1U1x12bsM9Lrhs-ZMKuSOwMc9yu0ddYY,4723
76
- cudf_polars/testing/__init__.py,sha256=0MnlTjkTEqkSpL5GdMhQf4uXOaQwNrzgEJCZKa5FnL4,219
77
- cudf_polars/testing/asserts.py,sha256=he6BcpNuPyHOBVNiXAAcr-7HdjKl7n0PQfCjdyPxWoA,15250
78
- cudf_polars/testing/io.py,sha256=mNHsddu-c0Gs0SVVmBOYpXIDFjMiuVrmArllqIEu-2w,3832
79
- cudf_polars/testing/plugin.py,sha256=aAut5jHckE2JhxBfVmtEBfGsfxcNtFMBph12pYSfpw0,23343
80
- cudf_polars/typing/__init__.py,sha256=Q1iVabv-7etFo01UxT6cz-zgZa_9_WYA8D8QHnjZuTg,5022
81
- cudf_polars/utils/__init__.py,sha256=urdV5MUIneU8Dn6pt1db5GkDG0oY4NsFD0Uhl3j98l8,195
82
- cudf_polars/utils/config.py,sha256=LTS-gc90wWVFuDFOYqhZZ6mK68W8z6L0G4YVOZRGCIs,28814
83
- cudf_polars/utils/conversion.py,sha256=k_apLbSR-MiYYlQBGrzYOInuvcbfSi-il-o9nkovdXQ,1042
84
- cudf_polars/utils/dtypes.py,sha256=yktzqBLfbv-zve1-iS_XsGZD1R6GXgXV_grZ8m7KidM,3358
85
- cudf_polars/utils/sorting.py,sha256=Mqb_KLsYnKU8p1dDan2mtlIQl65RqwM78OlUi-_Jj0k,1725
86
- cudf_polars/utils/timer.py,sha256=KqcXqOcbovsj6KDCwaxl70baQXjuod43rABrpQkE78M,1005
87
- cudf_polars/utils/versions.py,sha256=UxJc6S0Sss8hIUs2ZqviKH-2FXwEBmoRKQW3BZlpydY,959
88
- cudf_polars_cu13-25.10.0.dist-info/licenses/LICENSE,sha256=4YCpjWCbYMkMQFW47JXsorZLOaP957HwmP6oHW2_ngM,11348
89
- cudf_polars_cu13-25.10.0.dist-info/METADATA,sha256=CHrSC8yWGA3bG70IlulJshqH90qpQW6-OzlRW_sH83g,4889
90
- cudf_polars_cu13-25.10.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
91
- cudf_polars_cu13-25.10.0.dist-info/top_level.txt,sha256=w2bOa7MpuyapYgZh480Znh4UzX7rSWlFcYR1Yo6QIPs,12
92
- cudf_polars_cu13-25.10.0.dist-info/RECORD,,