cubevis 0.5.2__py3-none-any.whl → 0.5.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cubevis might be problematic. Click here for more details.

@@ -52,9 +52,9 @@ from bokeh.io import reset_output as reset_bokeh_output, output_notebook
52
52
  from bokeh.models.dom import HTML
53
53
 
54
54
  from bokeh.models.ui.tooltips import Tooltip
55
- from ..bokeh.models import TipButton, Tip, EvTextInput
56
- from ..utils import resource_manager, reset_resource_manager, is_notebook, find_pkg, load_pkg
57
- from ..utils import ContextMgrChain as CMC
55
+ from cubevis.bokeh.models import TipButton, Tip, EvTextInput
56
+ from cubevis.utils import resource_manager, reset_resource_manager, is_notebook, find_pkg, load_pkg
57
+ from cubevis.utils import ContextMgrChain as CMC
58
58
 
59
59
  # pylint: disable=no-name-in-module
60
60
  from casatasks.private.imagerhelpers.imager_return_dict import ImagingDict
@@ -66,7 +66,7 @@ from cubevis.utils import find_ws_address, convert_masks
66
66
  from cubevis.toolbox import CubeMask, AppContext
67
67
  from cubevis.bokeh.utils import svg_icon
68
68
  from cubevis.bokeh.sources import DataPipe
69
- from ..utils import DocEnum
69
+ from cubevis.utils import DocEnum
70
70
 
71
71
  from ._interactiveclean_wrappers import SharedWidgets
72
72
 
@@ -1,5 +1,5 @@
1
1
  from bokeh.models import TextInput, Checkbox
2
- from ..utils import static_vars
2
+ from cubevis.utils import static_vars
3
3
 
4
4
  ###
5
5
  ### These wrappers allow the creation of a SINGLE GUI element that is shared across multiple
@@ -35,7 +35,7 @@ from casatools.coercetype import coerce as _coerce
35
35
  from casatools.errors import create_error_string
36
36
  from casatasks.private.task_logging import start_log as _start_log
37
37
  from casatasks.private.task_logging import end_log as _end_log
38
- from cubevis.apps import InteractiveClean
38
+ from cubevis.private.apps import InteractiveClean
39
39
  from collections import OrderedDict
40
40
  import numpy
41
41
  import sys
@@ -35,7 +35,7 @@ from casatools.coercetype import coerce as _coerce
35
35
  from casatools.errors import create_error_string
36
36
  from casatasks.private.task_logging import start_log as _start_log
37
37
  from casatasks.private.task_logging import end_log as _end_log
38
- from cubevis.apps import InteractiveClean
38
+ from cubevis.private.apps import InteractiveClean
39
39
  from collections import OrderedDict
40
40
  import numpy
41
41
  import sys
@@ -36,7 +36,7 @@ from casatools.errors import create_error_string
36
36
  from casatasks.private.task_logging import start_log as _start_log
37
37
  from casatasks.private.task_logging import end_log as _end_log
38
38
  from casatasks.private.task_logging import except_log as _except_log
39
- from cubevis.apps import CreateMask
39
+ from cubevis.private.apps import CreateMask
40
40
 
41
41
  def _createmask_t( *args, **kwargs ):
42
42
  cm = CreateMask( *args, **kwargs )
@@ -36,7 +36,7 @@ from casatools.errors import create_error_string
36
36
  from casatasks.private.task_logging import start_log as _start_log
37
37
  from casatasks.private.task_logging import end_log as _end_log
38
38
  from casatasks.private.task_logging import except_log as _except_log
39
- from cubevis.apps import CreateRegion
39
+ from cubevis.private.apps import CreateRegion
40
40
 
41
41
  def _createregion_t( *args, **kwargs ):
42
42
  cm = CreateRegion( *args, **kwargs )
@@ -36,7 +36,7 @@ from casatools.errors import create_error_string
36
36
  from casatasks.private.task_logging import start_log as _start_log
37
37
  from casatasks.private.task_logging import end_log as _end_log
38
38
  from casatasks.private.task_logging import except_log as _except_log
39
- from cubevis.apps import InteractiveClean
39
+ from cubevis.private.apps import InteractiveClean
40
40
 
41
41
  def _iclean_t( *args, **kwargs ):
42
42
  ic = InteractiveClean( *args, **kwargs )
@@ -9,7 +9,7 @@ def ImportProtectedModule( name, file_mapping ):
9
9
  """Import objects, functions and classes for export while avoiding requiring user to
10
10
  provide the sub-package name for the file contining the imported object, for example
11
11
  allowing:
12
- from cubevis.apps import iclean
12
+ from cubevis import iclean
13
13
 
14
14
  instead of:
15
15
  from cubevis.app._interactive_clean import iclean
@@ -0,0 +1,51 @@
1
+ Metadata-Version: 2.1
2
+ Name: cubevis
3
+ Version: 0.5.7
4
+ Summary: visualization toolkit and apps for casa
5
+ License: LGPL
6
+ Author-email: Darrell Schiebel <darrell@schiebel.us>,Pam Harris <pharris@nrao.edu>
7
+ Requires-Python: >=3.10
8
+ Requires-Dist: astropy>=5.1
9
+ Requires-Dist: bokeh==3.6.1
10
+ Requires-Dist: certifi
11
+ Requires-Dist: matplotlib
12
+ Requires-Dist: regions>=0.6
13
+ Requires-Dist: websockets>=10.3
14
+ Description-Content-Type: text/x-rst
15
+
16
+ cubevis - visualization tools for CASA images
17
+ =============================================
18
+
19
+ This is a **beta-release** quality package. This package relies on the
20
+ `CASA <https://casadocs.readthedocs.io/en/stable/index.html>`_ data processing system
21
+ for radio telescopes as the processing backend while providing control and visualization
22
+ using `Bokeh <https://bokeh.org/>`_.
23
+
24
+ Introduction
25
+ ------------
26
+
27
+ These tools are primarily based on `Bokeh <https://bokeh.org/>`_. The GUIs use Python
28
+ and CASA to provide image access while a generated JavaScript interface provides a control
29
+ front-end.
30
+
31
+ Interactive Clean
32
+ -----------------
33
+
34
+ Interactive clean is the primary application provided by this package. It allows for
35
+ visualizally observing and controlling the image reconstruction performed by
36
+ `CASA <https://casadocs.readthedocs.io/en/stable/index.html>`_. The primary CASA
37
+ `tasks <https://casadocs.readthedocs.io/en/stable/api/casatasks.html>`_ used to
38
+ perform the image reconstruction are
39
+ `tclean <https://casadocs.readthedocs.io/en/stable/api/tt/casatasks.imaging.tclean.html>`_ and
40
+ `deconvolve <https://casadocs.readthedocs.io/en/stable/api/tt/casatasks.imaging.deconvolve.html>`_.
41
+
42
+ Usage
43
+ ^^^^^
44
+
45
+ This example provide a summary of how to use interactive clean from Python
46
+
47
+
48
+ For this sample, the test measurement set is
49
+ `available <https://casa.nrao.edu/download/devel/casavis/data/refim_twopoints_twochan-ms.tar.gz>`_,
50
+ while the `outlierfile` would look something like
51
+
@@ -24,20 +24,12 @@ cubevis/__icons__/sub-cube.png,sha256=mtv21frhc_GuXsfDlUa-0xQzym3Ii4TZiQGm4MFYjr
24
24
  cubevis/__icons__/sub-cube.svg,sha256=tDCFZ2Es6b8HTiBpgLPG0cOOnlS8dI7LbE2KQxEWFw4,6391
25
25
  cubevis/__icons__/zoom-to-fit.png,sha256=aozGbrkoBX1q9kV0p272bg0YKGje1gIfVBkFZRlLAXs,9592
26
26
  cubevis/__icons__/zoom-to-fit.svg,sha256=NtYorWvH4s68iAMriqCPGuTBX5SsgVN310UXGKDM7i8,1802
27
- cubevis/__init__.py,sha256=-j-68b97SOoKc_xToz5ESMr7RHOfy6b5vSHlQGJQ96k,2597
27
+ cubevis/__init__.py,sha256=uLahNBl4y3LitACJmbSWsn_aI9bpXk085MIcbIFZ2pk,2632
28
28
  cubevis/__js__/bokeh-3.6.1.min.js,sha256=SPRs94Q-H-aj8MCsXNu4ok1ouQQLTgXxZnk0-BBAOl4,1092280
29
29
  cubevis/__js__/bokeh-tables-3.6.1.min.js,sha256=wINufoBiINmP_PERwhN_1GkidJOsJQ_3vFKUDui7rl8,301216
30
30
  cubevis/__js__/bokeh-widgets-3.6.1.min.js,sha256=NE3tFbbxoaMjnJ0XednWJxbAGl-vSR0fxE_kX8keuDQ,311821
31
31
  cubevis/__js__/casalib.min.js,sha256=JLZ_3i5JlbNJw2nsx7pewysxzoD3sVpSiWdgJCLbhi0,91107
32
32
  cubevis/__js__/cubevisjs.min.js,sha256=fU2O_iQAIKl79r8rfADaTq5R-tMy33YqimE3U-UHXGE,27545
33
- cubevis/apps/__init__.py,sha256=1kwOspD7uL8SXSxnT-MBaA-wDxW5T8mJwxOmyrkTcww,2522
34
- cubevis/apps/_createmask.py,sha256=bKFpME5MYhLh7HxlJZINBTwG25t0_T_d1nYrWYAWYPA,23527
35
- cubevis/apps/_createregion.py,sha256=ujLQeXl-afooRU0YLcJ43FMMDMU37SoHtuPJnwNHcEw,26667
36
- cubevis/apps/_interactiveclean.py,sha256=l_3xPNfCFL7bNmNL4C4x584hG7lj1BwB1vZrxy1cSD4,241438
37
- cubevis/apps/_interactiveclean_wrappers.py,sha256=ALbIQBOyxKqKJy_MUIqIUVwcyVzNFDOjtI1ysx4Stkk,5065
38
- cubevis/apps/_ms_raster.py,sha256=fAE3-qaqD4N2o6TyR_eD1r8IXDJL_tu03WpR2e4gMSM,36511
39
- cubevis/apps/_plotants.py,sha256=top6VWVd_sE48IVPH_sIg3_sQeDl5tadi5DL7r5tUEI,10823
40
- cubevis/apps/_plotbandpass.py,sha256=NwOgKSRnpLw9Pt3KIdBpoV78q1OnjCvj6lWFqeyICt8,185
41
33
  cubevis/bokeh/__init__.py,sha256=XvuKcU9-bAv1CPb_O81VJTNLlHQC-zBg_Ig9_q4RkM4,1371
42
34
  cubevis/bokeh/annotations/__init__.py,sha256=tjDIPKbg-rh7Iu3coFWvmX-j2yNj9KuKmRp1aTo71ww,50
43
35
  cubevis/bokeh/annotations/_ev_poly_annotation.py,sha256=0ayX21gxNnm5-4s5VRKiaJ23DCSvbvpsU6oym9q2bk0,173
@@ -98,12 +90,21 @@ cubevis/plot/ms_plot/_raster_plot_inputs.py,sha256=yUFob7t4JMXTwHjzNWZMEMLCvQdJ5
98
90
  cubevis/plot/ms_plot/_xds_plot_axes.py,sha256=EeWvAbiKV33nEWdI8V3M0uwLTnycq4bFYBOyVWkxCu0,4429
99
91
  cubevis/private/__java__/xml-casa-assembly-1.86.jar,sha256=dBT_OxPtczAfWKRaOrHWwNZbDfEjtKkuQGuFOaKOczA,8041045
100
92
  cubevis/private/_gclean.py,sha256=ExdR6cRxSa6Xne2veGNKhbTtx-tXUIWr2htzEmEZ9Z4,41107
101
- cubevis/private/casashell/createmask.py,sha256=97KEGpSXtTs1ODrFuox_0Q6us6oP3OKIiD7nk6o717I,14449
102
- cubevis/private/casashell/iclean.py,sha256=j5xB7Z89AQcWL_tFYrxK1pbqkMwjTgRD5jBJnBJfNHM,294779
93
+ cubevis/private/apps/__init__.py,sha256=-9U6o-SClwJolGDnFhlH1au4tz-w4HgRcyT4_OQ_Z7E,2510
94
+ cubevis/private/apps/_createmask.py,sha256=bKFpME5MYhLh7HxlJZINBTwG25t0_T_d1nYrWYAWYPA,23527
95
+ cubevis/private/apps/_createregion.py,sha256=ujLQeXl-afooRU0YLcJ43FMMDMU37SoHtuPJnwNHcEw,26667
96
+ cubevis/private/apps/_interactiveclean.mustache,sha256=vjTBSI8BlB8CIopu4oydrgeleOAwCjqWCh3Rwr_AALA,103811
97
+ cubevis/private/apps/_interactiveclean.py,sha256=pGywKaty1rjW5uGblY3Nj5G22lGaOBvDuOM_z560Yps,241462
98
+ cubevis/private/apps/_interactiveclean_wrappers.py,sha256=XqyCGz33CMDhszTxnwZ_3-64GszUK1XYnGKUOxl9sas,5071
99
+ cubevis/private/apps/_ms_raster.py,sha256=fAE3-qaqD4N2o6TyR_eD1r8IXDJL_tu03WpR2e4gMSM,36511
100
+ cubevis/private/apps/_plotants.py,sha256=top6VWVd_sE48IVPH_sIg3_sQeDl5tadi5DL7r5tUEI,10823
101
+ cubevis/private/apps/_plotbandpass.py,sha256=NwOgKSRnpLw9Pt3KIdBpoV78q1OnjCvj6lWFqeyICt8,185
102
+ cubevis/private/casashell/createmask.py,sha256=C1eSUUsttSGghjZ5aDUVhRxnjir5MlYXVyxzEYLcI3k,14457
103
+ cubevis/private/casashell/iclean.py,sha256=FUrCMrfXuTjUHFBA0PVEctDXlHsZrMZBePwZ_otDwxI,294787
103
104
  cubevis/private/casatasks/__init__.py,sha256=yLL13GDxSxIkqjjap_sJO_aGVaBUW9gXMwlAlPli97g,6963
104
- cubevis/private/casatasks/createmask.py,sha256=1p1DJzXFeXgG-zC_2CUJulRAv61tXO3Na2lNg6hsYOc,3762
105
- cubevis/private/casatasks/createregion.py,sha256=knukE94x5x6j8ym_Mx-0bVXDOUeErp0QctfZo0H-mRE,3347
106
- cubevis/private/casatasks/iclean.py,sha256=xH5npnMj1QVTFVsxex8iQFJ44A0BVbuPGQxNZdjP668,152989
105
+ cubevis/private/casatasks/createmask.py,sha256=qtp8IvFCB1BG2pqRbyP8CmTr-RRqLMBSjMIO86mZ7WA,3770
106
+ cubevis/private/casatasks/createregion.py,sha256=f2KIrkbbdczZk3EHd3x9ZTUaewdjSxlRge-Es8BivNk,3355
107
+ cubevis/private/casatasks/iclean.py,sha256=YO9RRtWVD3MxizqxTB-7yPD8NkX-mvbsB2yTyRcrvT0,152997
107
108
  cubevis/readme.rst,sha256=XSMU01Dfx1NULFjEZya-8QKHhQA_MRWsUjsNJFKsaZ4,595
108
109
  cubevis/remote/__init__.py,sha256=0LgSfWUw8cYnVrOYGq3o15tWJPkgcvTyYIrvRSAW6N8,1233
109
110
  cubevis/remote/_gclean.py,sha256=TpmCmCUtMjqOFnA2wtYdp4EJo-59DyI00aaTWQbMQU4,1930
@@ -119,14 +120,14 @@ cubevis/utils/_contextmgrchain.py,sha256=r5SrCBdgQIVH7zXKOmq5oWhDUSeHaZpgsIfWFHv
119
120
  cubevis/utils/_conversion.py,sha256=SziCU8sOGtG7djlY766-MeOvnQgvT9C737FEfJ4aYsE,3262
120
121
  cubevis/utils/_copydoc.py,sha256=SI9DOUoTNg9M-Y4J1oci2Ba1jebGHsx_pFX24RSNg3o,1915
121
122
  cubevis/utils/_docenum.py,sha256=D79BvxwW18DPUlIhBx5DnpZh76pDURC1Hqt1DfS7kG0,877
122
- cubevis/utils/_import_protected_module.py,sha256=ubDVygLLU-PVsEYrP_vd_327eVOE0YhUe5klns29YGE,1487
123
+ cubevis/utils/_import_protected_module.py,sha256=AIISHPdiSzwgVzLXqHSWSHT-L7lcMWbYrsMlGlTFafE,1482
123
124
  cubevis/utils/_logging.py,sha256=HqyoTib7QSuAUbzicPVMdhFtxWKo-Dv4GgD0AYDDXIY,2348
124
125
  cubevis/utils/_pkgs.py,sha256=mu2CCzndmJZYP81UkFhxveW_CisWLUvagJVolHOEVgM,2294
125
126
  cubevis/utils/_regions.py,sha256=TdAg4ZUUyhg3nFmX9_KLboqmc0LkyOdEW8M1WDR5Udk,1669
126
127
  cubevis/utils/_static.py,sha256=rN-sqXNqQ5R2M3wmPHU1GPP5OTyyWQlUPRuimCrht-g,2347
127
128
  cubevis/utils/_tiles.py,sha256=A9W1X61VOhBMTOKXVajzOIoiV2FBdO5N2SFB9SUpDOo,7336
128
- cubevis/__version__.py,sha256=LADBavpB8x-lrtqob-7SCQZXFPfLZCu34A0lBsgTGGI,21
129
- cubevis-0.5.2.dist-info/WHEEL,sha256=B19PGBCYhWaz2p_UjAoRVh767nYQfk14Sn4TpIZ-nfU,87
130
- cubevis-0.5.2.dist-info/METADATA,sha256=H5lMwxwGdjOXdQEGYcQ_VmkRnANeXmyyMwlOTg_Azu4,6871
131
- cubevis-0.5.2.dist-info/licenses/LICENSE,sha256=IMF9i4xIpgCADf0U-V1cuf9HBmqWQd3qtI3FSuyW4zE,26526
132
- cubevis-0.5.2.dist-info/RECORD,,
129
+ cubevis/__version__.py,sha256=jR3u8xyb9ug4uh2IHlgd9VqSEn4enmk3_KpGlQQjNtM,21
130
+ cubevis-0.5.7.dist-info/WHEEL,sha256=B19PGBCYhWaz2p_UjAoRVh767nYQfk14Sn4TpIZ-nfU,87
131
+ cubevis-0.5.7.dist-info/METADATA,sha256=HkC8-O19DulrfDARIluuxyEg53cP7E3-JcLUtmIgETI,1896
132
+ cubevis-0.5.7.dist-info/licenses/LICENSE,sha256=IMF9i4xIpgCADf0U-V1cuf9HBmqWQd3qtI3FSuyW4zE,26526
133
+ cubevis-0.5.7.dist-info/RECORD,,
@@ -1,151 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: cubevis
3
- Version: 0.5.2
4
- Summary: visualization toolkit and apps for casa
5
- License: LGPL
6
- Author-email: Darrell Schiebel <darrell@schiebel.us>,Pam Harris <pharris@nrao.edu>
7
- Requires-Python: >=3.10
8
- Requires-Dist: astropy>=5.1
9
- Requires-Dist: bokeh==3.6.1
10
- Requires-Dist: certifi
11
- Requires-Dist: matplotlib
12
- Requires-Dist: regions>=0.6
13
- Requires-Dist: websockets>=10.3
14
- Description-Content-Type: text/x-rst
15
-
16
- casagui - visualization tools and applications for CASA
17
- =======================================================
18
-
19
- This is a **pre-alpha**, **prototype** package. It is *not* useful for external users, and all
20
- applications being built with it are currently in various phases of *prototyping*.
21
-
22
- Introduction
23
- ------------
24
-
25
- For some time, the GUIs provided by `CASA <https://casadocs.readthedocs.io/en/latest/>`_ have
26
- been based upon `Qt <https://www.qt.io/>`_. While Qt works well, the compiled nature of C++
27
- code made building and distributing the GUIs for each architecture a hurdle. This in turn
28
- caused the GUIs we developed to tend toward large, monolithic applications which were
29
- difficult to integrate and control from Python. We first used
30
- `DBus <https://www.freedesktop.org/wiki/Software/dbus/>`_ to control our Qt application.
31
- Qt provides a nice interface to DBus, but it became clear that DBus development had slowed
32
- and that DBus was unlikely to make major inroads outside of the Linux Desktop. At that
33
- point, we switched to `gRPC <https://grpc.io/>`_. gRPC supports a variety of platforms
34
- and languages. It also has significant support behind it. However despite the improved
35
- technology, it was still difficult to incorporate a scripting interface which allowed a
36
- stand-alone C++/Qt process to be controlled by a separate Python process at a low enough
37
- level to be practically useful for control at the level of granularity we desire.
38
-
39
- Similar to the CASA visualization development experience, the CASA framework as a whole
40
- has experienced the ups and downs of the large C++ development experience. Experience
41
- with a Python parallelization trade study which CASA conducted indicated that the loss
42
- of CPU throughput in a switch from C++ to pure Python can be made up for in gains made
43
- in the selection of parallelization framework like `Dask <https://www.dask.org/>`_ along
44
- with just in time compilation with something like `Numba <http://numba.pydata.org/>`_.
45
- In addition to the focus of the trade study, additional gains are possible by mixing
46
- in GPU resources.
47
-
48
- These experiences have led CASA to begin a multi-year transition from being a large
49
- C++ framework attached to Python to being a pure-Python framework for processing
50
- radio astronomy data. This package is visualization portion of that transition.
51
-
52
- After an abbreviated trade study where we considered a few pure-Python visualization
53
- frameworks, we selected `Bokeh <https://docs.bokeh.org/en/latest/>`_ as the basis
54
- for creating new visualization infrastructure for CASA. The choice of Bokeh was made
55
- based upon its extensibility, its community support (including
56
- `NumFocus <https://numfocus.org/project/bokeh>`_), and its limited external dependencies
57
- (just JavaScript and a modern web browser). A stand-alone application can be created
58
- by using the
59
- `Bokeh server <https://docs.bokeh.org/en/latest/docs/reference/command/subcommands/serve.html>`_.
60
- These options allow for GUIs to be created and used interactively from a Python
61
- command line session, as a stand-alone mini web server, integrated into a desktop
62
- application (using `Electron <https://www.electronjs.org/>`_) or as part of a
63
- `Jupyter Notebook <https://jupyter.org/>`_.
64
-
65
- Beyond this architectural flexibility, our intention is to create a toolbox of
66
- Bokeh based components which can be combined to create a collection of visualization
67
- tools which can be used in each of these settings (Python command line, Notebook
68
- and desktop application) so that we maintain smaller, reusable tools instead of very
69
- large monolithic applications. *Interactive clean* is our path-finder application of
70
- this approach and is currently the only example available.
71
-
72
- Installation
73
- ------------
74
-
75
- casagui is available `from PyPI <https://pypi.org/project/casagui/>`_.
76
-
77
- Interactive Clean
78
- -----------------
79
-
80
- Requirements
81
- ````````````
82
-
83
- - Python 3.8 or greater
84
-
85
- - casatools and casatasks built from `CAS-13743 <https://open-jira.nrao.edu/browse/CAS-13743>`_
86
-
87
- Install
88
- ```````
89
-
90
- - :code:`bash$ casa-CAS-13743-2-py3.8/bin/pip3 install casagui`
91
-
92
- Caveats
93
- ```````
94
-
95
- - Remote access is slow, later a desktop application will be developed (using the same Bokeh
96
- toolbox) to improve this situation, but for now if running remotely, it is best to pre-start
97
- your preferred browser on the host where you will be running interactive clean. For example
98
-
99
- * :code:`bash$ export BROWSER=/opt/local/bin/firefox`
100
-
101
- * :code:`bash$ $BROWSER > /dev/null 2>&1 &`
102
-
103
- - `Konqueror <https://apps.kde.org/konqueror/>`_ does **not** work. We only test with
104
- `Chrome <https://www.google.com/chrome/>`_ and
105
- `Firefox <https://www.mozilla.org/en-US/firefox/new/>`_.
106
-
107
- - :code:`node.js` version 14.0.0 or higher is required
108
-
109
- Simple Usage Example
110
- ````````````````````
111
-
112
- A simple example of the use of interactive clean is::
113
-
114
- CASA <1>: from casagui.apps import InteractiveClean
115
- CASA <2>: InteractiveClean( vis=ms_path, imagename=img, imsize=512, cell='12.0arcsec',
116
- specmode='cube', interpolation='nearest', nchan=5, start='1.0GHz',
117
- width='0.2GHz', pblimit=-1e-05, deconvolver='hogbom', threshold='0.001Jy',
118
- niter=50, cycleniter=10, cyclefactor=3, scales=[0,3,10] )( )
119
-
120
-
121
- In general, the :code:`InteractiveClean` constructor takes a subset of parameters accepted
122
- by `tclean <https://casadocs.readthedocs.io/en/latest/api/tt/casatasks.imaging.tclean.html>`_.
123
- All of the masks used in running interactive clean are available from the
124
- :code:`InteractiveClean` object. To get access to the list of masks, you would create
125
- the object as a separate statement::
126
-
127
- CASA <2>: ic = InteractiveClean( vis=ms_path, imagename=img, imsize=512, cell='12.0arcsec',
128
- specmode='cube', interpolation='nearest', nchan=5, start='1.0GHz',
129
- width='0.2GHz', pblimit=-1e-05, deconvolver='hogbom', threshold='0.001Jy',
130
- niter=50, cycleniter=10, cyclefactor=3, scales=[0,3,10] )( )
131
- CASA <2>: ic( )
132
- CASA <3>: print(ic.masks( ))
133
-
134
- Visibility Plotting: MsRaster
135
- -----------------------------
136
-
137
- Install
138
- ```````
139
-
140
- See https://casagui.readthedocs.io/en/latest/applications/ms_raster.html#installation
141
-
142
- Simple Usage Example
143
- ````````````````````
144
-
145
- A simple example of the use of MsRaster to create visibility raster plots::
146
-
147
- >>> from casagui.apps import MsRaster
148
- >>> msr = MsRaster(ms=myms)
149
- >>> msr.plot() # default time vs. baseline plot
150
- >>> msr.show() # open plot in browser tab
151
-
File without changes
File without changes
File without changes
File without changes
File without changes