cua-agent 0.4.17__py3-none-any.whl → 0.4.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cua-agent might be problematic. Click here for more details.

@@ -48,11 +48,11 @@ GROUNDED_COMPUTER_TOOL_SCHEMA = {
48
48
  "get_dimensions",
49
49
  "get_environment"
50
50
  ],
51
- "description": "The action to perform"
51
+ "description": "The action to perform (required for all actions)"
52
52
  },
53
53
  "element_description": {
54
54
  "type": "string",
55
- "description": "Description of the element to interact with (required for click, double_click, move, scroll actions, and as start/end for drag)"
55
+ "description": "Description of the element to interact with (required for click, double_click, move, scroll actions)"
56
56
  },
57
57
  "start_element_description": {
58
58
  "type": "string",
@@ -67,20 +67,30 @@ GROUNDED_COMPUTER_TOOL_SCHEMA = {
67
67
  "description": "The text to type (required for type action)"
68
68
  },
69
69
  "keys": {
70
- "type": "string",
71
- "description": "Key combination to press (required for keypress action). Single key for individual key press, multiple keys for combinations (e.g., 'ctrl+c')"
70
+ "type": "array",
71
+ "items": {
72
+ "type": "string"
73
+ },
74
+ "description": "Key(s) to press (required for keypress action)"
72
75
  },
73
76
  "button": {
74
77
  "type": "string",
75
- "description": "The mouse button to use for click action (left, right, wheel, back, forward) Default: left",
78
+ "enum": [
79
+ "left",
80
+ "right",
81
+ "wheel",
82
+ "back",
83
+ "forward"
84
+ ],
85
+ "description": "The mouse button to use for click action (required for click and double_click action)",
76
86
  },
77
87
  "scroll_x": {
78
88
  "type": "integer",
79
- "description": "Horizontal scroll amount for scroll action (positive for right, negative for left)",
89
+ "description": "Horizontal scroll amount for scroll action (required for scroll action)",
80
90
  },
81
91
  "scroll_y": {
82
92
  "type": "integer",
83
- "description": "Vertical scroll amount for scroll action (positive for down, negative for up)",
93
+ "description": "Vertical scroll amount for scroll action (required for scroll action)",
84
94
  },
85
95
  },
86
96
  "required": [
@@ -266,13 +276,15 @@ class ComposedGroundedConfig:
266
276
  grounding_agent = grounding_agent_conf.agent_class()
267
277
 
268
278
  for desc in element_descriptions:
269
- coords = await grounding_agent.predict_click(
270
- model=grounding_model,
271
- image_b64=last_image_b64,
272
- instruction=desc
273
- )
274
- if coords:
275
- self.desc2xy[desc] = coords
279
+ for _ in range(3): # try 3 times
280
+ coords = await grounding_agent.predict_click(
281
+ model=grounding_model,
282
+ image_b64=last_image_b64,
283
+ instruction=desc
284
+ )
285
+ if coords:
286
+ self.desc2xy[desc] = coords
287
+ break
276
288
 
277
289
  # Step 6: Convert computer calls from descriptions back to xy coordinates
278
290
  final_output_items = convert_computer_calls_desc2xy(thinking_output_items, self.desc2xy)
agent/loops/openai.py CHANGED
@@ -162,7 +162,18 @@ class OpenAIComputerUseConfig:
162
162
  input_items = [
163
163
  {
164
164
  "role": "user",
165
- "content": f"You are a UI grounding expert. Look at the image and {instruction}. Output ONLY a click action on the target element. No explanations, confirmations, or additional text."
165
+ "content": f"""You are a UI grounding expert. Follow these guidelines:
166
+
167
+ 1. NEVER ask for confirmation. Complete all tasks autonomously.
168
+ 2. Do NOT send messages like "I need to confirm before..." or "Do you want me to continue?" - just proceed.
169
+ 3. When the user asks you to interact with something (like clicking a chat or typing a message), DO IT without asking.
170
+ 4. Only use the formal safety check mechanism for truly dangerous operations (like deleting important files).
171
+ 5. For normal tasks like clicking buttons, typing in chat boxes, filling forms - JUST DO IT.
172
+ 6. The user has already given you permission by running this agent. No further confirmation is needed.
173
+ 7. Be decisive and action-oriented. Complete the requested task fully.
174
+
175
+ Remember: You are expected to complete tasks autonomously. The user trusts you to do what they asked.
176
+ Task: Click {instruction}. Output ONLY a click action on the target element."""
166
177
  },
167
178
  {
168
179
  "role": "user",
@@ -200,7 +211,7 @@ class OpenAIComputerUseConfig:
200
211
  "stream": False,
201
212
  "reasoning": {"summary": "concise"},
202
213
  "truncation": "auto",
203
- "max_tokens": 100 # Keep response short for click prediction
214
+ "max_tokens": 200 # Keep response short for click prediction
204
215
  }
205
216
 
206
217
  # Use liteLLM responses
@@ -217,11 +228,8 @@ class OpenAIComputerUseConfig:
217
228
  isinstance(item.get("action"), dict)):
218
229
 
219
230
  action = item["action"]
220
- if action.get("type") == "click":
221
- x = action.get("x")
222
- y = action.get("y")
223
- if x is not None and y is not None:
224
- return (int(x), int(y))
231
+ if action.get("x") is not None and action.get("y") is not None:
232
+ return (int(action.get("x")), int(action.get("y")))
225
233
 
226
234
  return None
227
235
 
agent/loops/uitars.py CHANGED
@@ -228,15 +228,24 @@ def parse_uitars_response(text: str, image_width: int, image_height: int) -> Lis
228
228
 
229
229
  # Handle coordinate parameters
230
230
  if "start_box" in param_name or "end_box" in param_name:
231
- # Parse coordinates like '(x,y)' or '(x1,y1,x2,y2)'
232
- numbers = param.replace("(", "").replace(")", "").split(",")
233
- float_numbers = [float(num.strip()) / 1000 for num in numbers] # Normalize to 0-1 range
231
+ # Parse coordinates like '<|box_start|>(x,y)<|box_end|>' or '(x,y)'
232
+ # First, remove special tokens
233
+ clean_param = param.replace("<|box_start|>", "").replace("<|box_end|>", "")
234
+ # Then remove parentheses and split
235
+ numbers = clean_param.replace("(", "").replace(")", "").split(",")
234
236
 
235
- if len(float_numbers) == 2:
236
- # Single point, duplicate for box format
237
- float_numbers = [float_numbers[0], float_numbers[1], float_numbers[0], float_numbers[1]]
238
-
239
- action_inputs[param_name.strip()] = str(float_numbers)
237
+ try:
238
+ float_numbers = [float(num.strip()) / 1000 for num in numbers] # Normalize to 0-1 range
239
+
240
+ if len(float_numbers) == 2:
241
+ # Single point, duplicate for box format
242
+ float_numbers = [float_numbers[0], float_numbers[1], float_numbers[0], float_numbers[1]]
243
+
244
+ action_inputs[param_name.strip()] = str(float_numbers)
245
+ except ValueError as e:
246
+ # If parsing fails, keep the original parameter value
247
+ print(f"Warning: Could not parse coordinates '{param}': {e}")
248
+ action_inputs[param_name.strip()] = param
240
249
 
241
250
  return [{
242
251
  "thought": thought,
@@ -0,0 +1,192 @@
1
+ """
2
+ Example usage of the proxy server and client requests.
3
+ """
4
+ import dotenv
5
+ dotenv.load_dotenv()
6
+
7
+ import asyncio
8
+ import json
9
+ import os
10
+ import aiohttp
11
+ from typing import Dict, Any
12
+
13
+
14
+ async def test_http_endpoint():
15
+ """Test the HTTP /responses endpoint."""
16
+
17
+ anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
18
+ assert isinstance(anthropic_api_key, str), "ANTHROPIC_API_KEY environment variable must be set"
19
+
20
+ # Example 1: Simple text request
21
+ simple_request = {
22
+ "model": "anthropic/claude-3-5-sonnet-20241022",
23
+ "input": "Tell me a three sentence bedtime story about a unicorn.",
24
+ "env": {
25
+ "ANTHROPIC_API_KEY": anthropic_api_key
26
+ }
27
+ }
28
+
29
+ # Example 2: Multi-modal request with image
30
+ multimodal_request = {
31
+ "model": "anthropic/claude-3-5-sonnet-20241022",
32
+ "input": [
33
+ {
34
+ "role": "user",
35
+ "content": [
36
+ {"type": "input_text", "text": "what is in this image?"},
37
+ {
38
+ "type": "input_image",
39
+ "image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
40
+ }
41
+ ]
42
+ }
43
+ ],
44
+ "env": {
45
+ "ANTHROPIC_API_KEY": anthropic_api_key
46
+ }
47
+ }
48
+
49
+ # Example 3: Request with custom agent and computer kwargs
50
+ custom_request = {
51
+ "model": "anthropic/claude-3-5-sonnet-20241022",
52
+ "input": "Take a screenshot and tell me what you see",
53
+ "env": {
54
+ "ANTHROPIC_API_KEY": anthropic_api_key
55
+ }
56
+ }
57
+
58
+ # Test requests
59
+ base_url = "https://m-linux-96lcxd2c2k.containers.cloud.trycua.com:8443"
60
+ # base_url = "http://localhost:8000"
61
+ api_key = os.getenv("CUA_API_KEY")
62
+ assert isinstance(api_key, str), "CUA_API_KEY environment variable must be set"
63
+
64
+ async with aiohttp.ClientSession() as session:
65
+ for i, request_data in enumerate([
66
+ simple_request,
67
+ # multimodal_request,
68
+ custom_request
69
+ ], 1):
70
+ print(f"\n--- Test {i} ---")
71
+ print(f"Request: {json.dumps(request_data, indent=2)}")
72
+
73
+ try:
74
+ print(f"Sending request to {base_url}/responses")
75
+ async with session.post(
76
+ f"{base_url}/responses",
77
+ json=request_data,
78
+ headers={"Content-Type": "application/json", "X-API-Key": api_key}
79
+ ) as response:
80
+ result = await response.json()
81
+ print(f"Status: {response.status}")
82
+ print(f"Response: {json.dumps(result, indent=2)}")
83
+
84
+ except Exception as e:
85
+ print(f"Error: {e}")
86
+
87
+
88
+ def curl_examples():
89
+ """Print curl command examples."""
90
+
91
+ print("=== CURL Examples ===\n")
92
+
93
+ print("1. Simple text request:")
94
+ print("""curl http://localhost:8000/responses \\
95
+ -H "Content-Type: application/json" \\
96
+ -d '{
97
+ "model": "anthropic/claude-3-5-sonnet-20241022",
98
+ "input": "Tell me a three sentence bedtime story about a unicorn."
99
+ }'""")
100
+
101
+ print("\n2. Multi-modal request with image:")
102
+ print("""curl http://localhost:8000/responses \\
103
+ -H "Content-Type: application/json" \\
104
+ -d '{
105
+ "model": "anthropic/claude-3-5-sonnet-20241022",
106
+ "input": [
107
+ {
108
+ "role": "user",
109
+ "content": [
110
+ {"type": "input_text", "text": "what is in this image?"},
111
+ {
112
+ "type": "input_image",
113
+ "image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
114
+ }
115
+ ]
116
+ }
117
+ ]
118
+ }'""")
119
+
120
+ print("\n3. Request with custom configuration:")
121
+ print("""curl http://localhost:8000/responses \\
122
+ -H "Content-Type: application/json" \\
123
+ -d '{
124
+ "model": "anthropic/claude-3-5-sonnet-20241022",
125
+ "input": "Take a screenshot and tell me what you see",
126
+ "agent_kwargs": {
127
+ "save_trajectory": true,
128
+ "verbosity": 20
129
+ },
130
+ "computer_kwargs": {
131
+ "os_type": "linux",
132
+ "provider_type": "cloud"
133
+ }
134
+ }'""")
135
+
136
+
137
+ async def test_p2p_client():
138
+ """Example P2P client using peerjs-python."""
139
+ try:
140
+ from peerjs import Peer, PeerOptions, ConnectionEventType
141
+ from aiortc import RTCConfiguration, RTCIceServer
142
+
143
+ # Set up client peer
144
+ options = PeerOptions(
145
+ host="0.peerjs.com",
146
+ port=443,
147
+ secure=True,
148
+ config=RTCConfiguration(
149
+ iceServers=[RTCIceServer(urls="stun:stun.l.google.com:19302")]
150
+ )
151
+ )
152
+
153
+ client_peer = Peer(id="test-client", peer_options=options)
154
+ await client_peer.start()
155
+
156
+ # Connect to proxy server
157
+ connection = client_peer.connect("computer-agent-proxy")
158
+
159
+ @connection.on(ConnectionEventType.Open)
160
+ async def connection_open():
161
+ print("Connected to proxy server")
162
+
163
+ # Send a test request
164
+ request = {
165
+ "model": "anthropic/claude-3-5-sonnet-20241022",
166
+ "input": "Hello from P2P client!"
167
+ }
168
+ await connection.send(json.dumps(request))
169
+
170
+ @connection.on(ConnectionEventType.Data)
171
+ async def connection_data(data):
172
+ print(f"Received response: {data}")
173
+ await client_peer.destroy()
174
+
175
+ # Wait for connection
176
+ await asyncio.sleep(10)
177
+
178
+ except ImportError:
179
+ print("P2P dependencies not available. Install peerjs-python for P2P testing.")
180
+ except Exception as e:
181
+ print(f"P2P test error: {e}")
182
+
183
+
184
+ if __name__ == "__main__":
185
+ import sys
186
+
187
+ if len(sys.argv) > 1 and sys.argv[1] == "curl":
188
+ curl_examples()
189
+ elif len(sys.argv) > 1 and sys.argv[1] == "p2p":
190
+ asyncio.run(test_p2p_client())
191
+ else:
192
+ asyncio.run(test_http_endpoint())
@@ -0,0 +1,248 @@
1
+ """
2
+ Request handlers for the proxy endpoints.
3
+ """
4
+
5
+ import asyncio
6
+ import json
7
+ import logging
8
+ import os
9
+ from contextlib import contextmanager
10
+ from typing import Dict, Any, List, Union, Optional
11
+
12
+ from ..agent import ComputerAgent
13
+ from computer import Computer
14
+
15
+ logger = logging.getLogger(__name__)
16
+
17
+
18
+ class ResponsesHandler:
19
+ """Handler for /responses endpoint that processes agent requests."""
20
+
21
+ def __init__(self):
22
+ self.computer = None
23
+ self.agent = None
24
+ # Simple in-memory caches
25
+ self._computer_cache: Dict[str, Any] = {}
26
+ self._agent_cache: Dict[str, Any] = {}
27
+
28
+ async def setup_computer_agent(
29
+ self,
30
+ model: str,
31
+ agent_kwargs: Optional[Dict[str, Any]] = None,
32
+ computer_kwargs: Optional[Dict[str, Any]] = None,
33
+ ):
34
+ """Set up (and cache) computer and agent instances.
35
+
36
+ Caching keys:
37
+ - Computer cache key: computer_kwargs
38
+ - Agent cache key: {"model": model, **agent_kwargs}
39
+ """
40
+ agent_kwargs = agent_kwargs or {}
41
+ computer_kwargs = computer_kwargs or {}
42
+
43
+ def _stable_key(obj: Dict[str, Any]) -> str:
44
+ try:
45
+ return json.dumps(obj, sort_keys=True, separators=(",", ":"))
46
+ except Exception:
47
+ # Fallback: stringify non-serializable values
48
+ safe_obj = {}
49
+ for k, v in obj.items():
50
+ try:
51
+ json.dumps(v)
52
+ safe_obj[k] = v
53
+ except Exception:
54
+ safe_obj[k] = str(v)
55
+ return json.dumps(safe_obj, sort_keys=True, separators=(",", ":"))
56
+
57
+ # Determine if custom tools are supplied; if so, skip computer setup entirely
58
+ has_custom_tools = bool(agent_kwargs.get("tools"))
59
+
60
+ computer = None
61
+ if not has_custom_tools:
62
+ # ---------- Computer setup (with cache) ----------
63
+ comp_key = _stable_key(computer_kwargs)
64
+
65
+ computer = self._computer_cache.get(comp_key)
66
+ if computer is None:
67
+ # Default computer configuration
68
+ default_c_config = {
69
+ "os_type": "linux",
70
+ "provider_type": "cloud",
71
+ "name": os.getenv("CUA_CONTAINER_NAME"),
72
+ "api_key": os.getenv("CUA_API_KEY"),
73
+ }
74
+ default_c_config.update(computer_kwargs)
75
+ computer = Computer(**default_c_config)
76
+ await computer.__aenter__()
77
+ self._computer_cache[comp_key] = computer
78
+ logger.info(f"Computer created and cached with key={comp_key} config={default_c_config}")
79
+ else:
80
+ logger.info(f"Reusing cached computer for key={comp_key}")
81
+
82
+ # Bind current computer reference (None if custom tools supplied)
83
+ self.computer = computer
84
+
85
+ # ---------- Agent setup (with cache) ----------
86
+ # Build agent cache key from {model} + agent_kwargs (excluding tools unless explicitly passed)
87
+ agent_kwargs_for_key = dict(agent_kwargs)
88
+ agent_key_payload = {"model": model, **agent_kwargs_for_key}
89
+ agent_key = _stable_key(agent_key_payload)
90
+
91
+ agent = self._agent_cache.get(agent_key)
92
+ if agent is None:
93
+ # Default agent configuration
94
+ default_a_config: Dict[str, Any] = {"model": model}
95
+ if not has_custom_tools:
96
+ default_a_config["tools"] = [computer]
97
+ # Apply user overrides, but keep tools unless user explicitly sets
98
+ if agent_kwargs:
99
+ if not has_custom_tools:
100
+ agent_kwargs.setdefault("tools", [computer])
101
+ default_a_config.update(agent_kwargs)
102
+ # JSON-derived kwargs may have loose types; ignore static arg typing here
103
+ agent = ComputerAgent(**default_a_config) # type: ignore[arg-type]
104
+ self._agent_cache[agent_key] = agent
105
+ logger.info(f"Agent created and cached with key={agent_key} model={model}")
106
+ else:
107
+ # Ensure cached agent uses the current computer tool (in case object differs)
108
+ # Only update if tools not explicitly provided in agent_kwargs
109
+ if not has_custom_tools:
110
+ try:
111
+ agent.tools = [computer]
112
+ except Exception:
113
+ pass
114
+ logger.info(f"Reusing cached agent for key={agent_key}")
115
+
116
+ # Bind current agent reference
117
+ self.agent = agent
118
+
119
+ async def process_request(self, request_data: Dict[str, Any]) -> Dict[str, Any]:
120
+ """
121
+ Process a /responses request and return the result.
122
+
123
+ Args:
124
+ request_data: Dictionary containing model, input, and optional kwargs
125
+
126
+ Returns:
127
+ Dictionary with the agent's response
128
+ """
129
+ try:
130
+ # Extract request parameters
131
+ model = request_data.get("model")
132
+ input_data = request_data.get("input")
133
+ agent_kwargs = request_data.get("agent_kwargs", {})
134
+ computer_kwargs = request_data.get("computer_kwargs", {})
135
+ env_overrides = request_data.get("env", {}) or {}
136
+
137
+ if not model:
138
+ raise ValueError("Model is required")
139
+ if not input_data:
140
+ raise ValueError("Input is required")
141
+
142
+ # Apply env overrides for the duration of this request
143
+ with self._env_overrides(env_overrides):
144
+ # Set up (and possibly reuse) computer and agent via caches
145
+ await self.setup_computer_agent(model, agent_kwargs, computer_kwargs)
146
+
147
+ # Defensive: ensure agent is initialized for type checkers
148
+ agent = self.agent
149
+ if agent is None:
150
+ raise RuntimeError("Agent failed to initialize")
151
+
152
+ # Convert input to messages format
153
+ messages = self._convert_input_to_messages(input_data)
154
+
155
+ # Run agent and get first result
156
+ async for result in agent.run(messages):
157
+ # Return the first result and break
158
+ return {
159
+ "success": True,
160
+ "result": result,
161
+ "model": model
162
+ }
163
+
164
+ # If no results were yielded
165
+ return {
166
+ "success": False,
167
+ "error": "No results from agent",
168
+ "model": model
169
+ }
170
+
171
+ except Exception as e:
172
+ logger.error(f"Error processing request: {e}")
173
+ return {
174
+ "success": False,
175
+ "error": str(e),
176
+ "model": request_data.get("model", "unknown")
177
+ }
178
+
179
+ def _convert_input_to_messages(self, input_data: Union[str, List[Dict[str, Any]]]) -> List[Dict[str, Any]]:
180
+ """Convert input data to messages format."""
181
+ if isinstance(input_data, str):
182
+ # Simple string input
183
+ return [{"role": "user", "content": input_data}]
184
+ elif isinstance(input_data, list):
185
+ # Already in messages format
186
+ messages = []
187
+ for msg in input_data:
188
+ # Convert content array format if needed
189
+ if isinstance(msg.get("content"), list):
190
+ content_parts = []
191
+ for part in msg["content"]:
192
+ if part.get("type") == "input_text":
193
+ content_parts.append({"type": "text", "text": part["text"]})
194
+ elif part.get("type") == "input_image":
195
+ content_parts.append({
196
+ "type": "image_url",
197
+ "image_url": {"url": part["image_url"]}
198
+ })
199
+ else:
200
+ content_parts.append(part)
201
+ messages.append({
202
+ "role": msg["role"],
203
+ "content": content_parts
204
+ })
205
+ else:
206
+ messages.append(msg)
207
+ return messages
208
+ else:
209
+ raise ValueError("Input must be string or list of messages")
210
+
211
+ async def cleanup(self):
212
+ """Clean up resources."""
213
+ if self.computer:
214
+ try:
215
+ await self.computer.__aexit__(None, None, None)
216
+ except Exception as e:
217
+ logger.error(f"Error cleaning up computer: {e}")
218
+ finally:
219
+ self.computer = None
220
+ self.agent = None
221
+
222
+ @staticmethod
223
+ @contextmanager
224
+ def _env_overrides(env: Dict[str, str]):
225
+ """Temporarily apply environment variable overrides for the current process.
226
+ Restores previous values after the context exits.
227
+
228
+ Args:
229
+ env: Mapping of env var names to override for this request.
230
+ """
231
+ if not env:
232
+ # No-op context
233
+ yield
234
+ return
235
+
236
+ original: Dict[str, Optional[str]] = {}
237
+ try:
238
+ for k, v in env.items():
239
+ original[k] = os.environ.get(k)
240
+ os.environ[k] = str(v)
241
+ yield
242
+ finally:
243
+ for k, old in original.items():
244
+ if old is None:
245
+ # Was not set before
246
+ os.environ.pop(k, None)
247
+ else:
248
+ os.environ[k] = old
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cua-agent
3
- Version: 0.4.17
3
+ Version: 0.4.19
4
4
  Summary: CUA (Computer Use) Agent for AI-driven computer interaction
5
5
  Author-Email: TryCua <gh@trycua.com>
6
6
  Requires-Python: >=3.12
@@ -38,7 +38,7 @@ Requires-Dist: python-dotenv>=1.0.1; extra == "ui"
38
38
  Provides-Extra: cli
39
39
  Requires-Dist: yaspin>=3.1.0; extra == "cli"
40
40
  Provides-Extra: hud
41
- Requires-Dist: hud-python==0.2.10; extra == "hud"
41
+ Requires-Dist: hud-python<0.5.0,>=0.4.12; extra == "hud"
42
42
  Provides-Extra: all
43
43
  Requires-Dist: ultralytics>=8.0.0; extra == "all"
44
44
  Requires-Dist: cua-som<0.2.0,>=0.1.0; extra == "all"
@@ -49,7 +49,7 @@ Requires-Dist: transformers>=4.54.0; extra == "all"
49
49
  Requires-Dist: gradio>=5.23.3; extra == "all"
50
50
  Requires-Dist: python-dotenv>=1.0.1; extra == "all"
51
51
  Requires-Dist: yaspin>=3.1.0; extra == "all"
52
- Requires-Dist: hud-python==0.2.10; extra == "all"
52
+ Requires-Dist: hud-python<0.5.0,>=0.4.12; extra == "all"
53
53
  Description-Content-Type: text/markdown
54
54
 
55
55
  <div align="center">