ctranslate2 4.7.0__cp314-cp314-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,767 @@
1
+ """Specifications declare the expected variables layout of CTranslate2 models
2
+ that do not load a computation graph. The model converter should make sure that
3
+ each required variable of the specification is set.
4
+ """
5
+
6
+ import abc
7
+ import ctypes
8
+ import json
9
+ import os
10
+ import shutil
11
+ import struct
12
+
13
+ from typing import Dict, List, Optional
14
+
15
+ import numpy as np
16
+
17
+ try:
18
+ import torch
19
+
20
+ torch_is_available = True
21
+ except ImportError:
22
+ torch_is_available = False
23
+
24
+ OPTIONAL = "__optional"
25
+ CURRENT_BINARY_VERSION = 6
26
+
27
+ ACCEPTED_MODEL_TYPES = (
28
+ "int8",
29
+ "int8_float32",
30
+ "int8_float16",
31
+ "int8_bfloat16",
32
+ "int16",
33
+ "float16",
34
+ "bfloat16",
35
+ "float32",
36
+ )
37
+
38
+ SKIP_CREATING_ALIAS = ("rotary_scaling_long_factor", "rotary_scaling_short_factor")
39
+
40
+
41
+ def _join_scope(scope, name):
42
+ if not scope:
43
+ return name
44
+ return "%s/%s" % (scope, name)
45
+
46
+
47
+ def _split_scope(scope):
48
+ return scope.split("/")
49
+
50
+
51
+ def _parent_scope(scope):
52
+ keys = _split_scope(scope)
53
+ scope, attr = keys[:-1], keys[-1]
54
+ return "/".join(scope), attr
55
+
56
+
57
+ def visit_spec(spec, fn, scope=""):
58
+ """Recursively visits a layer spec."""
59
+ for name, value in list(spec.__dict__.items()):
60
+ if name.startswith("_"):
61
+ continue
62
+ if isinstance(value, list):
63
+ for i, elem in enumerate(value):
64
+ visit_spec(elem, fn, scope=_join_scope(scope, "%s_%d" % (name, i)))
65
+ elif isinstance(value, LayerSpec):
66
+ visit_spec(value, fn, scope=_join_scope(scope, name))
67
+ else:
68
+ fn(spec, _join_scope(scope, name), value)
69
+
70
+
71
+ def index_spec(spec, index):
72
+ if not index:
73
+ return spec
74
+ keys = _split_scope(index)
75
+ for key in keys:
76
+ try:
77
+ spec = getattr(spec, key)
78
+ except AttributeError:
79
+ attr, index = key.rsplit("_", 1)
80
+ spec = getattr(spec, attr)[int(index)]
81
+ return spec
82
+
83
+
84
+ class FrozenMeta(type):
85
+ def __call__(self, *args, **kwargs):
86
+ instance = super().__call__(*args, **kwargs)
87
+ instance._frozen = True
88
+ return instance
89
+
90
+
91
+ class FrozenAttr:
92
+ def __setattr__(self, key, value):
93
+ if hasattr(self, "_frozen") and not hasattr(self, key):
94
+ raise AttributeError("Attribute %s does not exist" % key)
95
+ super().__setattr__(key, value)
96
+
97
+
98
+ class LayerSpec(FrozenAttr, metaclass=FrozenMeta):
99
+ """A layer specification declares the weights that should be set by the converters."""
100
+
101
+ def validate(self) -> None:
102
+ """Verify that the required weights are set.
103
+
104
+ Raises:
105
+ ValueError: If a required weight is not set in the specification.
106
+ """
107
+ unset_attributes = []
108
+
109
+ def _check(spec, name, value):
110
+ if value is None:
111
+ unset_attributes.append(name)
112
+ return
113
+
114
+ if isinstance(value, np.ndarray):
115
+ # float64 is not a supported type.
116
+ if value.dtype == np.float64:
117
+ value = value.astype(np.float32)
118
+ elif isinstance(value, float):
119
+ value = np.dtype("float32").type(value)
120
+ elif isinstance(value, bool):
121
+ # Convert bool to an integer type.
122
+ value = np.dtype("int8").type(value)
123
+ elif isinstance(value, str):
124
+ if value != OPTIONAL:
125
+ value = np.frombuffer(value.encode("utf-8"), dtype=np.int8)
126
+
127
+ if isinstance(value, np.ndarray) or isinstance(value, np.generic):
128
+ value = NumpyVariable(value)
129
+ elif torch_is_available and isinstance(value, torch.Tensor):
130
+ value = PyTorchVariable(value)
131
+
132
+ attr_name = _split_scope(name)[-1]
133
+ setattr(spec, attr_name, value)
134
+
135
+ self._visit(_check)
136
+
137
+ if unset_attributes:
138
+ raise ValueError(
139
+ "Some required model attributes are not set:\n\n%s"
140
+ % "\n".join(unset_attributes)
141
+ )
142
+
143
+ def variables(
144
+ self,
145
+ prefix: str = "",
146
+ ordered: bool = False,
147
+ ) -> Dict[str, np.ndarray]:
148
+ """Recursively returns the weights from this layer and its children.
149
+
150
+ Arguments:
151
+ prefix: Prefix to prepend to all variable names.
152
+ ordered: If set, an ordered list is returned instead.
153
+
154
+ Returns:
155
+ Dictionary mapping variables name to value.
156
+ """
157
+ var = {}
158
+
159
+ def _register_var(spec, name, value):
160
+ if isinstance(value, str) and value == OPTIONAL:
161
+ return
162
+ var[_join_scope(prefix, name)] = value
163
+
164
+ self._visit(_register_var)
165
+ if ordered:
166
+ return list(sorted(var.items(), key=lambda x: x[0]))
167
+ return var
168
+
169
+ def _alias_variables(self):
170
+ """Find duplicate variables in spec and create aliases."""
171
+ # When a variable is duplicated, keep the version that comes first in
172
+ # the alphabetical order and alias the others.
173
+ variables = self.variables(ordered=True)
174
+ for name, value in reversed(variables):
175
+ for other_name, other_value in variables:
176
+ if name == other_name:
177
+ break
178
+ # Because variables can be transformed on load (e.g. transposed),
179
+ # we use an element-wise equality check.
180
+ scope, attr_name = _parent_scope(name)
181
+ if (
182
+ not value.is_scalar()
183
+ and value.equal(other_value)
184
+ and attr_name not in SKIP_CREATING_ALIAS
185
+ ):
186
+ # Replace variable value by the alias name.
187
+ spec = index_spec(self, scope)
188
+ setattr(spec, attr_name, other_name)
189
+ break
190
+
191
+ def _quantize(self, quantization):
192
+ """Possibly quantizes the variable of the layer."""
193
+ if quantization is not None and quantization not in ACCEPTED_MODEL_TYPES:
194
+ raise ValueError(
195
+ "%s is not a valid quantization type. Accepted types are: %s"
196
+ % (quantization, ", ".join(ACCEPTED_MODEL_TYPES))
197
+ )
198
+
199
+ def _quantize(spec, name, value):
200
+ if not isinstance(value, Variable) or value.is_scalar():
201
+ return
202
+
203
+ key = _split_scope(name)[-1]
204
+ scale = None
205
+ is_quantizable = hasattr(spec, "%s_scale" % key)
206
+ is_convertible = value.dtype in ("float32", "float16", "bfloat16")
207
+
208
+ if is_quantizable:
209
+ if quantization == "int16":
210
+ value = value.to("float32").numpy()
211
+ # Represent the value with 10 bits so the multiplication is 20 bits
212
+ # and 12 bits are left for accumulation.
213
+ scale = np.float32(2**10 / np.amax(np.absolute(value)))
214
+ value *= scale
215
+ value = np.rint(value)
216
+ value = np.clip(
217
+ value, np.iinfo(np.int16).min, np.iinfo(np.int16).max
218
+ )
219
+ value = value.astype(np.int16)
220
+ scale = NumpyVariable(scale)
221
+ value = NumpyVariable(value)
222
+ elif quantization in (
223
+ "int8",
224
+ "int8_float32",
225
+ "int8_float16",
226
+ "int8_bfloat16",
227
+ ):
228
+ value = value.to("float32").numpy()
229
+ # For conv1d layer we need to reshape to 2D before calculating scale
230
+ old_shape = None
231
+ if len(value.shape) == 3:
232
+ old_shape = value.shape
233
+ value = value.reshape(value.shape[0], -1)
234
+ amax = np.amax(np.absolute(value), axis=1)
235
+ amax[amax == 0] = 127.0
236
+ scale = 127.0 / amax
237
+ value *= np.expand_dims(scale, 1)
238
+ value = np.rint(value)
239
+ value = value.astype(np.int8)
240
+ # reshape back to old shape
241
+ if old_shape:
242
+ value = value.reshape(old_shape)
243
+ scale = NumpyVariable(scale)
244
+ value = NumpyVariable(value)
245
+ elif quantization in ("float16", "bfloat16", "float32"):
246
+ value = value.to(quantization)
247
+
248
+ elif is_convertible:
249
+ if quantization in ("float16", "int8_float16"):
250
+ value = value.to("float16")
251
+ elif quantization in ("bfloat16", "int8_bfloat16"):
252
+ value = value.to("bfloat16")
253
+ elif quantization in ("float32", "int16", "int8_float32"):
254
+ value = value.to("float32")
255
+
256
+ setattr(spec, key, value)
257
+ if scale is not None:
258
+ setattr(spec, "%s_scale" % key, scale)
259
+
260
+ self._visit(_quantize)
261
+
262
+ def optimize(self, quantization: Optional[str] = None) -> None:
263
+ """Recursively applies some optimizations to this layer:
264
+
265
+ * Alias variables with the same shape and value.
266
+ * Quantize weights.
267
+
268
+ Arguments:
269
+ quantization: Weight quantization scheme (possible values are: int8, int8_float32,
270
+ int8_float16, int8_bfloat16, int16, float16, bfloat16, float32).
271
+ """
272
+ self._alias_variables()
273
+ self._quantize(quantization)
274
+
275
+ def _visit(self, fn):
276
+ """Recursively visits this layer and its children."""
277
+ visit_spec(self, fn)
278
+
279
+
280
+ def _dtype_to_type_id(object_dtype):
281
+ # Order should match the DataType enum in include/ctranslate2/types.h
282
+ dtypes = ("float32", "int8", "int16", "int32", "float16", "bfloat16")
283
+ try:
284
+ return dtypes.index(object_dtype)
285
+ except ValueError:
286
+ raise ValueError(
287
+ "%s is not in list of supported dtypes: %s"
288
+ % (object_dtype, ", ".join(dtypes))
289
+ )
290
+
291
+
292
+ class ModelConfig(FrozenAttr, metaclass=FrozenMeta):
293
+ """Base class for model configurations."""
294
+
295
+ def __init__(self, **kwargs):
296
+ """Initializes the configuration with a set of parameters."""
297
+ for key, value in kwargs.items():
298
+ setattr(self, key, value)
299
+
300
+ def to_dict(self):
301
+ """Returns the configuration as a dictionary."""
302
+ return {
303
+ key: value
304
+ for key, value in self.__dict__.items()
305
+ if not key.startswith("_")
306
+ }
307
+
308
+ def add_attribute(self, key, value):
309
+ self.__dict__[key] = value
310
+
311
+ def save_as_json(self, path):
312
+ """Saves the configuration as a JSON file."""
313
+ with open(path, "w", encoding="utf-8") as config_file:
314
+ json.dump(
315
+ self.to_dict(),
316
+ config_file,
317
+ indent=2,
318
+ sort_keys=True,
319
+ )
320
+ config_file.write("\n")
321
+
322
+
323
+ class ModelSpec(LayerSpec):
324
+ """The top level layer specification."""
325
+
326
+ def __init__(self):
327
+ """Initializes the model specification."""
328
+ self._config = self.get_default_config()
329
+ self._files = {}
330
+
331
+ @property
332
+ def name(self):
333
+ """The name of the model specification."""
334
+ raise NotImplementedError()
335
+
336
+ @property
337
+ def revision(self):
338
+ """The model specification revision.
339
+
340
+ This value is incremented each time the weights layout of the model is
341
+ changed (e.g. a weight is renamed).
342
+ """
343
+ return 1
344
+
345
+ @property
346
+ def config(self):
347
+ """The model configuration."""
348
+ return self._config
349
+
350
+ def get_default_config(self):
351
+ """Returns the default configuration used by this model."""
352
+ return None
353
+
354
+ def register_file(self, path: str, filename: Optional[str] = None) -> None:
355
+ """Registers a file to be saved in the model directory."""
356
+ if not os.path.isfile(path):
357
+ raise ValueError("File %s does not exist" % path)
358
+ if filename is None:
359
+ filename = os.path.basename(path)
360
+ if filename in self._files:
361
+ raise ValueError("A file with name %s was already registered" % filename)
362
+ self._files[filename] = path
363
+
364
+ def save(self, output_dir: str) -> None:
365
+ """Saves this model on disk.
366
+
367
+ Arguments:
368
+ output_dir: Output directory where the model is saved.
369
+ """
370
+ self._serialize(os.path.join(output_dir, "model.bin"))
371
+ if self._config is not None:
372
+ self._config.save_as_json(os.path.join(output_dir, "config.json"))
373
+
374
+ for filename, path in self._files.items():
375
+ destination = os.path.join(output_dir, filename)
376
+ if os.path.exists(destination):
377
+ raise RuntimeError(
378
+ "File %s already exists in the model directory" % destination
379
+ )
380
+ shutil.copy(path, destination)
381
+
382
+ def _serialize(self, path):
383
+ """Serializes the model variables."""
384
+ variables = []
385
+ aliases = []
386
+ for variable in self.variables(ordered=True):
387
+ if isinstance(variable[1], str):
388
+ aliases.append(variable)
389
+ else:
390
+ variables.append(variable)
391
+
392
+ with open(path, "wb") as model:
393
+
394
+ def _write_string(string):
395
+ model.write(struct.pack("H", len(string) + 1))
396
+ model.write(string.encode("utf-8"))
397
+ model.write(struct.pack("B", 0))
398
+
399
+ model.write(struct.pack("I", CURRENT_BINARY_VERSION))
400
+ _write_string(self.name)
401
+ model.write(struct.pack("I", self.revision))
402
+ model.write(struct.pack("I", len(variables)))
403
+ for name, value in variables:
404
+ _write_string(name)
405
+ model.write(struct.pack("B", len(value.shape)))
406
+ for dim in value.shape:
407
+ model.write(struct.pack("I", dim))
408
+ model.write(struct.pack("B", _dtype_to_type_id(value.dtype)))
409
+ model.write(struct.pack("I", value.num_bytes()))
410
+ model.write(value.to_bytes())
411
+ model.write(struct.pack("I", len(aliases)))
412
+ for alias, variable_name in aliases:
413
+ _write_string(alias)
414
+ _write_string(variable_name)
415
+
416
+
417
+ def _flatten_vocabularies(vocabularies):
418
+ for name, vocabulary in vocabularies.items():
419
+ if len(vocabulary) == 1:
420
+ yield name, vocabulary[0]
421
+ else:
422
+ for i, vocab in enumerate(vocabulary):
423
+ yield "%s_%d" % (name, i + 1), vocab
424
+
425
+
426
+ class SequenceToSequenceModelConfig(ModelConfig):
427
+ """Configuration for sequence-to-sequence models."""
428
+
429
+ def __init__(
430
+ self,
431
+ unk_token: str = "<unk>",
432
+ bos_token: str = "<s>",
433
+ eos_token: str = "</s>",
434
+ decoder_start_token: Optional[str] = "<s>",
435
+ add_source_bos: bool = False,
436
+ add_source_eos: bool = False,
437
+ **kwargs,
438
+ ):
439
+ """Initializes the configuration for sequence-to-sequence models.
440
+
441
+ Args:
442
+ unk_token: The unknown token.
443
+ bos_token: The start of sentence token.
444
+ eos_token: The end of sentence token.
445
+ decoder_start_token: The decoder start token. If ``None``, the token should
446
+ be passed by the user in the target prefix.
447
+ add_source_bos: If ``True``, ``bos_token`` will be automatically added to
448
+ the source input.
449
+ add_source_eos: If ``True``, ``eos_token`` will be automatically added to
450
+ the source input.
451
+ **kwargs: Additional configuration.
452
+ """
453
+ super().__init__(
454
+ unk_token=unk_token,
455
+ bos_token=bos_token,
456
+ eos_token=eos_token,
457
+ decoder_start_token=decoder_start_token,
458
+ add_source_bos=add_source_bos,
459
+ add_source_eos=add_source_eos,
460
+ **kwargs,
461
+ )
462
+
463
+
464
+ class SequenceToSequenceModelSpec(ModelSpec):
465
+ """Base specification for sequence to sequence models."""
466
+
467
+ def __init__(self):
468
+ """Initializes a sequence to sequence model specification."""
469
+ super().__init__()
470
+ self._vocabularies = {
471
+ "source": [],
472
+ "target": [],
473
+ }
474
+
475
+ def get_default_config(self):
476
+ return SequenceToSequenceModelConfig()
477
+
478
+ @abc.abstractmethod
479
+ def get_source_vocabulary_size(self):
480
+ """Returns the source vocabulary size expected by the model."""
481
+ raise NotImplementedError()
482
+
483
+ @abc.abstractmethod
484
+ def get_target_vocabulary_size(self):
485
+ """Returns the target vocabulary size expected by the model."""
486
+ raise NotImplementedError()
487
+
488
+ def register_source_vocabulary(self, tokens: List[str]) -> None:
489
+ """Registers a source vocabulary of tokens.
490
+
491
+ Arguments:
492
+ tokens: List of source tokens.
493
+ """
494
+ self._vocabularies["source"].append(tokens)
495
+
496
+ def register_target_vocabulary(self, tokens: List[str]) -> None:
497
+ """Registers a target vocabulary of tokens.
498
+
499
+ Arguments:
500
+ tokens: List of target tokens.
501
+ """
502
+ self._vocabularies["target"].append(tokens)
503
+
504
+ def register_vocabulary_mapping(self, path: str) -> None:
505
+ """Registers a vocabulary mapping file.
506
+
507
+ Arguments:
508
+ path: Path to the vocabulary mapping file.
509
+ """
510
+ self.register_file(path, "vmap.txt")
511
+
512
+ def validate(self) -> None:
513
+ super().validate()
514
+
515
+ # Check that vocabularies are registered and have the correct size.
516
+ vocabulary_sizes = {
517
+ "source": self.get_source_vocabulary_size(),
518
+ "target": self.get_target_vocabulary_size(),
519
+ }
520
+
521
+ for name, sizes in vocabulary_sizes.items():
522
+ if not isinstance(sizes, list):
523
+ sizes = [sizes]
524
+ vocabularies = self._vocabularies[name]
525
+ if len(vocabularies) != len(sizes):
526
+ raise ValueError(
527
+ "Incorrect number of %s vocabularies: %d registered, but expected %d"
528
+ % (name, len(vocabularies), len(sizes))
529
+ )
530
+ for i, (vocabulary, expected_size) in enumerate(zip(vocabularies, sizes)):
531
+ if len(vocabulary) != expected_size:
532
+ raise ValueError(
533
+ "%s vocabulary %d has size %d but the model expected a vocabulary "
534
+ "of size %d"
535
+ % (name.capitalize(), i, len(vocabulary), expected_size)
536
+ )
537
+
538
+ def save(self, output_dir: str) -> None:
539
+ # Save the vocabularies.
540
+ vocabularies = dict(_flatten_vocabularies(self._vocabularies))
541
+ all_vocabularies = list(vocabularies.values())
542
+ if all(vocabulary == all_vocabularies[0] for vocabulary in all_vocabularies):
543
+ vocabularies = {"shared": all_vocabularies[0]}
544
+
545
+ for name, tokens in vocabularies.items():
546
+ _save_vocabulary(output_dir, "%s_vocabulary" % name, tokens)
547
+
548
+ # Save the rest of the model.
549
+ super().save(output_dir)
550
+
551
+
552
+ class LanguageModelConfig(ModelConfig):
553
+ """Configuration for language models."""
554
+
555
+ def __init__(
556
+ self,
557
+ unk_token: str = "<unk>",
558
+ bos_token: str = "<s>",
559
+ eos_token: str = "</s>",
560
+ **kwargs,
561
+ ):
562
+ """Initializes the configuration for language models.
563
+
564
+ Args:
565
+ unk_token: The unknown token.
566
+ bos_token: The start of sentence token.
567
+ eos_token: The end of sentence token.
568
+ **kwargs: Additional configuration.
569
+ """
570
+ super().__init__(
571
+ unk_token=unk_token,
572
+ bos_token=bos_token,
573
+ eos_token=eos_token,
574
+ **kwargs,
575
+ )
576
+
577
+
578
+ class LanguageModelSpec(ModelSpec):
579
+ """Base specification for language models."""
580
+
581
+ def __init__(self):
582
+ """Initializes a language model specification."""
583
+ super().__init__()
584
+ self._vocabulary = []
585
+
586
+ def get_default_config(self):
587
+ return LanguageModelConfig()
588
+
589
+ @abc.abstractmethod
590
+ def get_vocabulary_size(self):
591
+ """Returns the vocabulary size expected by the model."""
592
+ raise NotImplementedError()
593
+
594
+ def register_vocabulary(self, tokens: List[str]) -> None:
595
+ """Registers the vocabulary of tokens.
596
+
597
+ Arguments:
598
+ tokens: List of tokens.
599
+ """
600
+ self._vocabulary = list(tokens)
601
+
602
+ def validate(self) -> None:
603
+ super().validate()
604
+
605
+ expected_vocabulary_size = self.get_vocabulary_size()
606
+ if len(self._vocabulary) != expected_vocabulary_size:
607
+ raise ValueError(
608
+ "Vocabulary has size %d but the model expected a vocabulary of size %d"
609
+ % (len(self._vocabulary), expected_vocabulary_size)
610
+ )
611
+
612
+ def save(self, output_dir: str) -> None:
613
+ # Save the vocabulary.
614
+ _save_vocabulary(output_dir, "vocabulary", self._vocabulary)
615
+
616
+ # Save the rest of the model.
617
+ super().save(output_dir)
618
+
619
+
620
+ def _save_vocabulary(output_dir, name, tokens):
621
+ vocabulary_path = os.path.join(output_dir, "%s.json" % name)
622
+
623
+ with open(vocabulary_path, "w", encoding="utf-8") as vocabulary_file:
624
+ json.dump(tokens, vocabulary_file, indent=2)
625
+
626
+
627
+ class Variable(abc.ABC):
628
+ """Abstract base class for model variables."""
629
+
630
+ @property
631
+ @abc.abstractmethod
632
+ def shape(self) -> List[int]:
633
+ raise NotImplementedError()
634
+
635
+ def is_scalar(self) -> bool:
636
+ return len(self.shape) == 0
637
+
638
+ @property
639
+ @abc.abstractmethod
640
+ def dtype(self) -> str:
641
+ raise NotImplementedError()
642
+
643
+ def to(self, dtype: str) -> "Variable":
644
+ if dtype == self.dtype:
645
+ return self
646
+ return self._to(dtype)
647
+
648
+ @abc.abstractmethod
649
+ def numpy(self) -> np.ndarray:
650
+ raise NotImplementedError()
651
+
652
+ def equal(self, other) -> bool:
653
+ return type(self) is type(other) and self._equal(other)
654
+
655
+ @abc.abstractmethod
656
+ def num_bytes(self) -> int:
657
+ raise NotImplementedError()
658
+
659
+ @abc.abstractmethod
660
+ def to_bytes(self) -> bytes:
661
+ raise NotImplementedError()
662
+
663
+ @abc.abstractmethod
664
+ def _to(self, dtype: str) -> "Variable":
665
+ raise NotImplementedError()
666
+
667
+ @abc.abstractmethod
668
+ def _equal(self, other) -> bool:
669
+ raise NotImplementedError()
670
+
671
+
672
+ class NumpyVariable(Variable):
673
+ """Model variable as a Numpy array."""
674
+
675
+ def __init__(self, array):
676
+ self.array = array
677
+
678
+ @property
679
+ def shape(self) -> List[int]:
680
+ return self.array.shape
681
+
682
+ @property
683
+ def dtype(self) -> str:
684
+ return self.array.dtype.name
685
+
686
+ def numpy(self) -> np.ndarray:
687
+ return self.array
688
+
689
+ def num_bytes(self) -> int:
690
+ return self.array.nbytes
691
+
692
+ def to_bytes(self) -> bytes:
693
+ return self.array.tobytes()
694
+
695
+ def _to(self, dtype: str) -> Variable:
696
+ if dtype == "bfloat16":
697
+ if not torch_is_available:
698
+ raise RuntimeError(
699
+ "Converting to bfloat16 requires torch to be installed"
700
+ )
701
+ return PyTorchVariable.from_numpy(self.array).to(dtype)
702
+
703
+ dtype = np.dtype(dtype)
704
+ self.array = self.array.astype(dtype)
705
+ return self
706
+
707
+ def _equal(self, other) -> bool:
708
+ a = self.array
709
+ b = other.array
710
+ return a is b or (
711
+ a.dtype == b.dtype
712
+ and a.shape == b.shape
713
+ and a.flat[0] == b.flat[0]
714
+ and np.array_equal(a, b)
715
+ )
716
+
717
+
718
+ class PyTorchVariable(Variable):
719
+ """Model variable as a PyTorch tensor."""
720
+
721
+ def __init__(self, tensor):
722
+ if isinstance(tensor, torch.nn.Parameter):
723
+ tensor = tensor.data
724
+
725
+ self.tensor = tensor.contiguous()
726
+
727
+ @classmethod
728
+ def from_numpy(cls, array):
729
+ tensor = torch.from_numpy(array)
730
+ return cls(tensor)
731
+
732
+ @property
733
+ def shape(self) -> List[int]:
734
+ return list(self.tensor.shape)
735
+
736
+ @property
737
+ def dtype(self) -> str:
738
+ return str(self.tensor.dtype).replace("torch.", "")
739
+
740
+ def numpy(self) -> np.ndarray:
741
+ return self.tensor.detach().numpy()
742
+
743
+ def num_bytes(self) -> int:
744
+ return self.tensor.numel() * self.tensor.element_size()
745
+
746
+ def to_bytes(self) -> bytes:
747
+ max_size = 2**31 - 1
748
+ num_bytes = self.num_bytes()
749
+ output = b""
750
+ offset = 0
751
+ while num_bytes > 0:
752
+ chunk_size = max_size if num_bytes > max_size else num_bytes
753
+ chunk = ctypes.string_at(self.tensor.data_ptr() + offset, chunk_size)
754
+ output += chunk
755
+ offset += chunk_size
756
+ num_bytes -= chunk_size
757
+ return output
758
+
759
+ def _to(self, dtype: str) -> Variable:
760
+ dtype = getattr(torch, dtype)
761
+ self.tensor = self.tensor.to(dtype)
762
+ return self
763
+
764
+ def _equal(self, other) -> bool:
765
+ a = self.tensor
766
+ b = other.tensor
767
+ return a is b or (a.dtype == b.dtype and torch.equal(a, b))