csv-detective 0.9.1.dev1801__py3-none-any.whl → 0.9.1.dev1847__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- csv_detective/detect_fields/temp/date/__init__.py +28 -0
- csv_detective/detect_fields/temp/datetime_aware/__init__.py +12 -2
- csv_detective/detect_fields/temp/datetime_naive/__init__.py +12 -2
- csv_detective/output/dataframe.py +5 -9
- csv_detective/parsing/csv.py +1 -3
- csv_detective/parsing/excel.py +3 -3
- {csv_detective-0.9.1.dev1801.dist-info → csv_detective-0.9.1.dev1847.dist-info}/METADATA +1 -1
- {csv_detective-0.9.1.dev1801.dist-info → csv_detective-0.9.1.dev1847.dist-info}/RECORD +13 -13
- tests/test_fields.py +23 -3
- {csv_detective-0.9.1.dev1801.dist-info → csv_detective-0.9.1.dev1847.dist-info}/WHEEL +0 -0
- {csv_detective-0.9.1.dev1801.dist-info → csv_detective-0.9.1.dev1847.dist-info}/entry_points.txt +0 -0
- {csv_detective-0.9.1.dev1801.dist-info → csv_detective-0.9.1.dev1847.dist-info}/licenses/LICENSE +0 -0
- {csv_detective-0.9.1.dev1801.dist-info → csv_detective-0.9.1.dev1847.dist-info}/top_level.txt +0 -0
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import re
|
|
1
2
|
from datetime import datetime
|
|
2
3
|
from typing import Optional
|
|
3
4
|
|
|
@@ -19,6 +20,23 @@ def date_casting(val: str) -> Optional[datetime]:
|
|
|
19
20
|
return None
|
|
20
21
|
|
|
21
22
|
|
|
23
|
+
seps = r"[\s/\-\*_\|;.,]"
|
|
24
|
+
# matches JJ-MM-AAAA with any of the listed separators
|
|
25
|
+
jjmmaaaa_pattern = r"^(0[1-9]|[12][0-9]|3[01])SEP(0[1-9]|1[0-2])SEP((19|20)\d{2})$".replace(
|
|
26
|
+
"SEP", seps
|
|
27
|
+
)
|
|
28
|
+
# matches AAAA-MM-JJ with any of the listed separators OR NO SEPARATOR
|
|
29
|
+
aaaammjj_pattern = r"^((19|20)\d{2})SEP(0[1-9]|1[0-2])SEP(0[1-9]|[12][0-9]|3[01])$".replace(
|
|
30
|
+
"SEP", seps + "?"
|
|
31
|
+
)
|
|
32
|
+
# matches JJ-mmm-AAAA and JJ-mmm...mm-AAAA with any of the listed separators OR NO SEPARATOR
|
|
33
|
+
string_month_pattern = (
|
|
34
|
+
r"^(0[1-9]|[12][0-9]|3[01])SEP(jan|fev|feb|mar|avr|apr"
|
|
35
|
+
r"|mai|may|jun|jui|jul|aou|aug|sep|oct|nov|dec|janvier|fevrier|mars|avril|"
|
|
36
|
+
r"mai|juin|jullet|aout|septembre|octobre|novembre|decembre)SEP"
|
|
37
|
+
r"([0-9]{2}$|(19|20)[0-9]{2}$)"
|
|
38
|
+
).replace("SEP", seps + "?")
|
|
39
|
+
|
|
22
40
|
threshold = 0.3
|
|
23
41
|
|
|
24
42
|
|
|
@@ -27,6 +45,16 @@ def _is(val):
|
|
|
27
45
|
# early stops, to cut processing time
|
|
28
46
|
if not isinstance(val, str) or len(val) > 20 or len(val) < 8:
|
|
29
47
|
return False
|
|
48
|
+
# if it's a usual date pattern
|
|
49
|
+
if any(
|
|
50
|
+
# with this syntax, if any of the first value is True, the next ones are not computed
|
|
51
|
+
[
|
|
52
|
+
bool(re.match(jjmmaaaa_pattern, val))
|
|
53
|
+
or bool(re.match(aaaammjj_pattern, val))
|
|
54
|
+
or bool(re.match(string_month_pattern, val, re.IGNORECASE))
|
|
55
|
+
]
|
|
56
|
+
):
|
|
57
|
+
return True
|
|
30
58
|
if sum([char.isdigit() for char in val]) / len(val) < threshold:
|
|
31
59
|
return False
|
|
32
60
|
res = date_casting(val)
|
|
@@ -1,8 +1,16 @@
|
|
|
1
|
+
import re
|
|
1
2
|
from typing import Any, Optional
|
|
2
3
|
|
|
3
|
-
from csv_detective.detect_fields.temp.date import date_casting
|
|
4
|
+
from csv_detective.detect_fields.temp.date import aaaammjj_pattern, date_casting
|
|
4
5
|
|
|
5
6
|
PROPORTION = 1
|
|
7
|
+
threshold = 0.7
|
|
8
|
+
|
|
9
|
+
# matches AAAA-MM-JJTHH:MM:SS(.dddddd)±HH:MM with any of the listed separators for the date OR NO SEPARATOR
|
|
10
|
+
pat = (
|
|
11
|
+
aaaammjj_pattern.replace("$", "")
|
|
12
|
+
+ r"(T|\s)(0\d|1[0-9]|2[0-3]):([0-5][0-9]):([0-5][0-9])(.\d{1,6})?[+-](0\d|1[0-9]|2[0-3]):([0-5][0-9])$"
|
|
13
|
+
)
|
|
6
14
|
|
|
7
15
|
|
|
8
16
|
def _is(val: Optional[Any]) -> bool:
|
|
@@ -12,7 +20,9 @@ def _is(val: Optional[Any]) -> bool:
|
|
|
12
20
|
# 32 is the maximal length of an ISO datetime format YYYY-MM-DDTHH:MM:SS.dddddd+HH:MM, keeping some slack
|
|
13
21
|
if not isinstance(val, str) or len(val) > 35 or len(val) < 21:
|
|
14
22
|
return False
|
|
15
|
-
|
|
23
|
+
# if usual format, no need to parse
|
|
24
|
+
if bool(re.match(pat, val)):
|
|
25
|
+
return True
|
|
16
26
|
if sum([char.isdigit() or char in {"-", "/", ":", " "} for char in val]) / len(val) < threshold:
|
|
17
27
|
return False
|
|
18
28
|
res = date_casting(val)
|
|
@@ -1,8 +1,16 @@
|
|
|
1
|
+
import re
|
|
1
2
|
from typing import Any, Optional
|
|
2
3
|
|
|
3
|
-
from csv_detective.detect_fields.temp.date import date_casting
|
|
4
|
+
from csv_detective.detect_fields.temp.date import aaaammjj_pattern, date_casting
|
|
4
5
|
|
|
5
6
|
PROPORTION = 1
|
|
7
|
+
threshold = 0.7
|
|
8
|
+
|
|
9
|
+
# matches AAAA-MM-JJTHH:MM:SS(.dddddd)Z with any of the listed separators for the date OR NO SEPARATOR
|
|
10
|
+
pat = (
|
|
11
|
+
aaaammjj_pattern.replace("$", "")
|
|
12
|
+
+ r"(T|\s)(0\d|1[0-9]|2[0-3]):([0-5][0-9]):([0-5][0-9])(.\d{1,6})?Z$"
|
|
13
|
+
)
|
|
6
14
|
|
|
7
15
|
|
|
8
16
|
def _is(val: Optional[Any]) -> bool:
|
|
@@ -12,7 +20,9 @@ def _is(val: Optional[Any]) -> bool:
|
|
|
12
20
|
# 26 is the maximal length of an ISO datetime format YYYY-MM-DDTHH:MM:SS.dddddd, keeping some slack
|
|
13
21
|
if not isinstance(val, str) or len(val) > 30 or len(val) < 15:
|
|
14
22
|
return False
|
|
15
|
-
|
|
23
|
+
# if usual format, no need to parse
|
|
24
|
+
if bool(re.match(pat, val)):
|
|
25
|
+
return True
|
|
16
26
|
if sum([char.isdigit() or char in {"-", "/", ":", " "} for char in val]) / len(val) < threshold:
|
|
17
27
|
return False
|
|
18
28
|
res = date_casting(val)
|
|
@@ -33,27 +33,23 @@ def cast(value: str, _type: str) -> Optional[Union[str, float, bool, date, datet
|
|
|
33
33
|
def cast_df(
|
|
34
34
|
df: pd.DataFrame, columns: dict, cast_json: bool = True, verbose: bool = False
|
|
35
35
|
) -> pd.DataFrame:
|
|
36
|
+
# for efficiency this modifies the dataframe in place as we don't need it anymore afterwards
|
|
36
37
|
if verbose:
|
|
37
38
|
start = time()
|
|
38
|
-
output_df = pd.DataFrame()
|
|
39
39
|
for col_name, detection in columns.items():
|
|
40
40
|
if detection["python_type"] == "string" or (
|
|
41
41
|
detection["python_type"] == "json" and not cast_json
|
|
42
42
|
):
|
|
43
43
|
# no change if detected type is string
|
|
44
|
-
|
|
44
|
+
continue
|
|
45
45
|
elif detection["python_type"] == "int":
|
|
46
46
|
# to allow having ints and NaN in the same column
|
|
47
|
-
|
|
47
|
+
df[col_name] = df[col_name].astype(pd.Int64Dtype())
|
|
48
48
|
else:
|
|
49
|
-
|
|
50
|
-
lambda col: cast(col, _type=detection["python_type"])
|
|
51
|
-
)
|
|
52
|
-
# to save RAM
|
|
53
|
-
del df[col_name]
|
|
49
|
+
df[col_name] = df[col_name].apply(lambda col: cast(col, _type=detection["python_type"]))
|
|
54
50
|
if verbose:
|
|
55
51
|
display_logs_depending_process_time(
|
|
56
52
|
f"Casting columns completed in {round(time() - start, 3)}s",
|
|
57
53
|
time() - start,
|
|
58
54
|
)
|
|
59
|
-
return
|
|
55
|
+
return df
|
csv_detective/parsing/csv.py
CHANGED
|
@@ -32,9 +32,7 @@ def parse_csv(
|
|
|
32
32
|
if "ISO-8859" in encoding:
|
|
33
33
|
encoding = "ISO-8859-1"
|
|
34
34
|
try:
|
|
35
|
-
table = pd.read_csv(
|
|
36
|
-
the_file, sep=sep, dtype="unicode", encoding=encoding, skiprows=skiprows
|
|
37
|
-
)
|
|
35
|
+
table = pd.read_csv(the_file, sep=sep, dtype=str, encoding=encoding, skiprows=skiprows)
|
|
38
36
|
total_lines = len(table)
|
|
39
37
|
nb_duplicates = len(table.loc[table.duplicated()])
|
|
40
38
|
if num_rows > 0:
|
csv_detective/parsing/excel.py
CHANGED
|
@@ -101,7 +101,7 @@ def parse_excel(
|
|
|
101
101
|
file_path,
|
|
102
102
|
engine="odf",
|
|
103
103
|
sheet_name=None,
|
|
104
|
-
dtype=
|
|
104
|
+
dtype=str,
|
|
105
105
|
)
|
|
106
106
|
sizes = {sheet_name: table.size for sheet_name, table in tables.items()}
|
|
107
107
|
sheet_name = max(sizes, key=sizes.get)
|
|
@@ -121,7 +121,7 @@ def parse_excel(
|
|
|
121
121
|
file_path,
|
|
122
122
|
engine="odf",
|
|
123
123
|
sheet_name=sheet_name,
|
|
124
|
-
dtype=
|
|
124
|
+
dtype=str,
|
|
125
125
|
)
|
|
126
126
|
table, header_row_idx = remove_empty_first_rows(table)
|
|
127
127
|
total_lines = len(table)
|
|
@@ -152,7 +152,7 @@ def parse_excel(
|
|
|
152
152
|
file_path,
|
|
153
153
|
engine=engine,
|
|
154
154
|
sheet_name=sheet_name,
|
|
155
|
-
dtype=
|
|
155
|
+
dtype=str,
|
|
156
156
|
)
|
|
157
157
|
table, header_row_idx = remove_empty_first_rows(table)
|
|
158
158
|
total_lines = len(table)
|
|
@@ -67,9 +67,9 @@ csv_detective/detect_fields/other/twitter/__init__.py,sha256=Npu6ZbyNfHq1y7xn0Gd
|
|
|
67
67
|
csv_detective/detect_fields/other/url/__init__.py,sha256=L7h9fZldh1w86XwCx0x3Q1TXSJ_nIId1C-l1yFzZYrA,299
|
|
68
68
|
csv_detective/detect_fields/other/uuid/__init__.py,sha256=XFxbIsdIhRw0dtFxBXQBhicE4yy7P4jmwYXeJhq6FVY,215
|
|
69
69
|
csv_detective/detect_fields/temp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
70
|
-
csv_detective/detect_fields/temp/date/__init__.py,sha256=
|
|
71
|
-
csv_detective/detect_fields/temp/datetime_aware/__init__.py,sha256=
|
|
72
|
-
csv_detective/detect_fields/temp/datetime_naive/__init__.py,sha256=
|
|
70
|
+
csv_detective/detect_fields/temp/date/__init__.py,sha256=JtWaK8hkzBaIUc-fu0G7lIFpWqCfraRh6l0Mo65U3b0,2155
|
|
71
|
+
csv_detective/detect_fields/temp/datetime_aware/__init__.py,sha256=ZDNUcbU0ZJzaxUt0Utc1Y9dRrq4HHW9uCbcnOuz5Sfk,1247
|
|
72
|
+
csv_detective/detect_fields/temp/datetime_naive/__init__.py,sha256=QoVOA98lT_GVSGO_mQwKtAy2o-REs8C9d6JB9d_L_B4,1189
|
|
73
73
|
csv_detective/detect_fields/temp/datetime_rfc822/__init__.py,sha256=-pFdIIPgaLq2_QbFJ9zwy4YIwZuC73F0A_cNDntTuvQ,512
|
|
74
74
|
csv_detective/detect_fields/temp/year/__init__.py,sha256=gHchVciZExbGZLMBcbBaDXB0IgGptkQc4RhfSOMY0Ww,194
|
|
75
75
|
csv_detective/detect_labels/__init__.py,sha256=93s93DRNeFw9fJiGp0rW3iRWZX3WOeVau2PAaF4QlPE,1777
|
|
@@ -138,7 +138,7 @@ csv_detective/detection/rows.py,sha256=quf3ZTTFPOo09H-faZ9cRKibb1QGHEKHlpivFRx2V
|
|
|
138
138
|
csv_detective/detection/separator.py,sha256=XjeDBqhiBxVfkCPJKem9BAgJqs_hOgQltc_pxrH_-Tg,1547
|
|
139
139
|
csv_detective/detection/variables.py,sha256=wfsA_MOk14TPMOY7gkvpTGpo9-USzMnFaAou3MPHqxc,3536
|
|
140
140
|
csv_detective/output/__init__.py,sha256=f-UFv_iULpVF_Fy39H4sfACEnrthjK4N3mCAVPkjnKw,1860
|
|
141
|
-
csv_detective/output/dataframe.py,sha256=
|
|
141
|
+
csv_detective/output/dataframe.py,sha256=pjxvpzIWVUW9_xvT3JjoPnOIVUUHnzL7kZo1xQdMDxQ,2139
|
|
142
142
|
csv_detective/output/example.py,sha256=XrnPS_uC0cICn7tgnLWNctpUbnPzl7fIMzNTzJEWGJc,8655
|
|
143
143
|
csv_detective/output/profile.py,sha256=Jeh0mrfH_hAVxV2E5I4XzdCm7ZAGAV_Xj3AXOi77lcA,3130
|
|
144
144
|
csv_detective/output/schema.py,sha256=5Duw5qnsJ-LaVC6JgF7p1zZAkehDzsbXA4iTSJUgLNM,13760
|
|
@@ -146,14 +146,14 @@ csv_detective/output/utils.py,sha256=tbji3dEH7bDc6gLCeVSVquqU3xaHA1CQOMuaJT4Hub8
|
|
|
146
146
|
csv_detective/parsing/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
147
147
|
csv_detective/parsing/columns.py,sha256=fbvQMu12gAmz4TnNCL7pLnMFB-mWN_O-zEoj8jEGj0A,5696
|
|
148
148
|
csv_detective/parsing/compression.py,sha256=Fnw5tj-PpBNI8NYsWj5gD-DUoWcVLnsVpiKm9MpxmIA,350
|
|
149
|
-
csv_detective/parsing/csv.py,sha256=
|
|
150
|
-
csv_detective/parsing/excel.py,sha256=
|
|
149
|
+
csv_detective/parsing/csv.py,sha256=fJkjKvyk7InkNnYKtmivyi48mmcwvrha7gvZ5J4-86A,1588
|
|
150
|
+
csv_detective/parsing/excel.py,sha256=sKD5PRN1TlzPPOKFnZ3VRb0r1yIjPLlpxVWmZQeLYFk,7027
|
|
151
151
|
csv_detective/parsing/load.py,sha256=C3M8nvgWenOb8aDFi5dpDGCoAw9EBqr4EB63zbz2M14,3699
|
|
152
152
|
csv_detective/parsing/text.py,sha256=uz8wfmNTQnOd_4fjrIZ_5rxmFmgrg343hJh2szB73Hc,1770
|
|
153
|
-
csv_detective-0.9.1.
|
|
153
|
+
csv_detective-0.9.1.dev1847.dist-info/licenses/LICENSE,sha256=A1dQrzxyxRHRih02KwibWj1khQyF7GeA6SqdOU87Gk4,1088
|
|
154
154
|
tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
155
155
|
tests/test_example.py,sha256=uTWswvUzBWEADGXZmMAdZvKhKvIjvT5zWOVVABgCDN4,1987
|
|
156
|
-
tests/test_fields.py,sha256=
|
|
156
|
+
tests/test_fields.py,sha256=5901OxKDReGMPQm3ZJ36oDjtJ8H3El5jPxf1YNu5wVg,12542
|
|
157
157
|
tests/test_file.py,sha256=YuVbSfeo_ASPiLT8CyxXqJENcDpj4wAFXzLwu_GzsOA,8437
|
|
158
158
|
tests/test_labels.py,sha256=Y0XlOpztCyV65pk7iAS_nMMfdysoBujlBmz10vHul9A,469
|
|
159
159
|
tests/test_structure.py,sha256=GRDYKy0UcdqlN4qglzsRC0puFj5cb-SVvONjvcPvtAA,1400
|
|
@@ -161,8 +161,8 @@ tests/test_validation.py,sha256=ie-Xf0vk6-M6GQq-x7kY5yse1EmXfxQkbaV7fR3fvYo,3308
|
|
|
161
161
|
venv/bin/activate_this.py,sha256=NRy3waFmwW1pOaNUp33wNN0vD1Kzkd-zXX-Sgl4EiVI,1286
|
|
162
162
|
venv/bin/jp.py,sha256=7z7dvRg0M7HzpZG4ssQID7nScjvQx7bcYTxJWDOrS6E,1717
|
|
163
163
|
venv/bin/runxlrd.py,sha256=YlZMuycM_V_hzNt2yt3FyXPuwouMCmMhvj1oZaBeeuw,16092
|
|
164
|
-
csv_detective-0.9.1.
|
|
165
|
-
csv_detective-0.9.1.
|
|
166
|
-
csv_detective-0.9.1.
|
|
167
|
-
csv_detective-0.9.1.
|
|
168
|
-
csv_detective-0.9.1.
|
|
164
|
+
csv_detective-0.9.1.dev1847.dist-info/METADATA,sha256=4GPrJUwsDAkxwVV9fnFv4pVHmelYX1C1H4QCh_zG8wc,9767
|
|
165
|
+
csv_detective-0.9.1.dev1847.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
166
|
+
csv_detective-0.9.1.dev1847.dist-info/entry_points.txt,sha256=JjweTReFqKJmuvkegzlew2j3D5pZzfxvbEGOtGVGmaY,56
|
|
167
|
+
csv_detective-0.9.1.dev1847.dist-info/top_level.txt,sha256=cYKb4Ok3XgYA7rMDOYtxysjSJp_iUA9lJjynhVzue8g,30
|
|
168
|
+
csv_detective-0.9.1.dev1847.dist-info/RECORD,,
|
tests/test_fields.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
from datetime import date as _date
|
|
2
2
|
from datetime import datetime as _datetime
|
|
3
|
+
from unittest.mock import patch
|
|
3
4
|
|
|
4
5
|
import pandas as pd
|
|
5
6
|
import pytest
|
|
@@ -98,7 +99,7 @@ def test_detetect_categorical_variable():
|
|
|
98
99
|
"cat2": categorical_col2,
|
|
99
100
|
"not_cat": not_categorical_col,
|
|
100
101
|
}
|
|
101
|
-
df = pd.DataFrame(df_dict, dtype=
|
|
102
|
+
df = pd.DataFrame(df_dict, dtype=str)
|
|
102
103
|
|
|
103
104
|
res, _ = detect_categorical_variable(df)
|
|
104
105
|
assert len(res.values) and all(k in res.values for k in ["cat", "cat2"])
|
|
@@ -113,8 +114,8 @@ def test_detect_continuous_variable():
|
|
|
113
114
|
df_dict = {"cont": continuous_col, "not_cont": not_continuous_col}
|
|
114
115
|
df_dict_2 = {"cont": continuous_col_2, "not_cont": not_continuous_col}
|
|
115
116
|
|
|
116
|
-
df = pd.DataFrame(df_dict, dtype=
|
|
117
|
-
df2 = pd.DataFrame(df_dict_2, dtype=
|
|
117
|
+
df = pd.DataFrame(df_dict, dtype=str)
|
|
118
|
+
df2 = pd.DataFrame(df_dict_2, dtype=str)
|
|
118
119
|
|
|
119
120
|
res = detect_continuous_variable(df)
|
|
120
121
|
res2 = detect_continuous_variable(df2, continuous_th=0.65)
|
|
@@ -441,3 +442,22 @@ def test_priority(args):
|
|
|
441
442
|
col = "col1"
|
|
442
443
|
output = prepare_output_dict(pd.DataFrame({col: detections}), limited_output=True)
|
|
443
444
|
assert output[col]["format"] == expected
|
|
445
|
+
|
|
446
|
+
|
|
447
|
+
@pytest.mark.parametrize(
|
|
448
|
+
"args",
|
|
449
|
+
(
|
|
450
|
+
("1996-02-13", date),
|
|
451
|
+
("28/01/2000", date),
|
|
452
|
+
("2025-08-20T14:30:00+02:00", datetime_aware),
|
|
453
|
+
("2025/08/20 14:30:00.2763-12:00", datetime_aware),
|
|
454
|
+
("1925_12_20T14:30:00.2763Z", datetime_naive),
|
|
455
|
+
("1925 12 20 14:30:00Z", datetime_naive),
|
|
456
|
+
),
|
|
457
|
+
)
|
|
458
|
+
def test_early_detection(args):
|
|
459
|
+
value, module = args
|
|
460
|
+
with patch("csv_detective.detect_fields.temp.date.date_casting") as mock_func:
|
|
461
|
+
res = module._is(value)
|
|
462
|
+
assert res
|
|
463
|
+
mock_func.assert_not_called()
|
|
File without changes
|
{csv_detective-0.9.1.dev1801.dist-info → csv_detective-0.9.1.dev1847.dist-info}/entry_points.txt
RENAMED
|
File without changes
|
{csv_detective-0.9.1.dev1801.dist-info → csv_detective-0.9.1.dev1847.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|
{csv_detective-0.9.1.dev1801.dist-info → csv_detective-0.9.1.dev1847.dist-info}/top_level.txt
RENAMED
|
File without changes
|