csv-detective 0.8.1.dev1617__py3-none-any.whl → 0.8.1.dev1703__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
csv_detective/__init__.py CHANGED
@@ -1,4 +1,2 @@
1
1
  from csv_detective.explore_csv import routine, routine_minio, validate_then_detect # noqa
2
2
  from csv_detective.output.example import create_example_csv_file # noqa
3
-
4
- __version__ = '0.8.1.dev'
@@ -1,3 +1,34 @@
1
+ Metadata-Version: 2.4
2
+ Name: csv-detective
3
+ Version: 0.8.1.dev1703
4
+ Summary: Detect tabular files column content
5
+ Author-email: Etalab <opendatateam@data.gouv.fr>
6
+ License: MIT
7
+ Project-URL: Source, https://github.com/datagouv/csv_detective
8
+ Keywords: CSV,data processing,encoding,guess,parser,tabular
9
+ Requires-Python: <3.14,>=3.9
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+ Requires-Dist: boto3<2,>=1.34.0
13
+ Requires-Dist: dateparser<2,>=1.2.0
14
+ Requires-Dist: faust-cchardet==2.1.19
15
+ Requires-Dist: pandas<3,>=2.2.0
16
+ Requires-Dist: python-dateutil<3,>=2.8.2
17
+ Requires-Dist: Unidecode<2,>=1.3.6
18
+ Requires-Dist: openpyxl==3.1.5
19
+ Requires-Dist: xlrd==2.0.1
20
+ Requires-Dist: odfpy==1.4.1
21
+ Requires-Dist: requests<3,>=2.32.3
22
+ Requires-Dist: python-magic==0.4.27
23
+ Requires-Dist: frformat==0.4.0
24
+ Requires-Dist: Faker>=33.0.0
25
+ Requires-Dist: rstr==3.2.2
26
+ Provides-Extra: dev
27
+ Requires-Dist: pytest>=8.3.0; extra == "dev"
28
+ Requires-Dist: responses>=0.25.0; extra == "dev"
29
+ Requires-Dist: bumpx>=0.3.10; extra == "dev"
30
+ Dynamic: license-file
31
+
1
32
  # CSV Detective
2
33
 
3
34
  This is a package to **automatically detect column content in tabular files**. The script reads either the whole file or the first few rows and performs various checks to see for each column if it matches with various content types. This is currently done through regex and string comparison.
@@ -1,4 +1,4 @@
1
- csv_detective/__init__.py,sha256=TwRP1gozmEmweSbK-lqihSsb-EqmCFSKUnJXz2x-dHE,191
1
+ csv_detective/__init__.py,sha256=XY7pnoNHlocvyUiK8EQpJYPSQt5BRWWJD8KiPlvI9pU,164
2
2
  csv_detective/cli.py,sha256=VNztFz2nc90E3zkghF8PYtXTEZ6TrBSCQMi9v1ljkJs,1414
3
3
  csv_detective/explore_csv.py,sha256=VEeAJaz3FPOmGmQ-Yuf3FuSRRPULM03FrTf3qwZX52s,9222
4
4
  csv_detective/load_tests.py,sha256=GILvfkd4OVI-72mA4nzbPlZqgcXZ4wznOhGfZ1ucWkM,2385
@@ -150,10 +150,7 @@ csv_detective/parsing/csv.py,sha256=11mibDnJhIjykXLGZvA5ZEU5U7KgxIrbyO6BNv6jlro,
150
150
  csv_detective/parsing/excel.py,sha256=AslE2S1e67o8yTIAIhp-lAnJ6-XqeBBRz1-VMFqhZBM,7055
151
151
  csv_detective/parsing/load.py,sha256=u6fbGFZsL2GwPQRzhAXgt32JpUur7vbQdErREHxNJ-w,3661
152
152
  csv_detective/parsing/text.py,sha256=_TprGi0gHZlRsafizI3dqQhBehZW4BazqxmypMcAZ-o,1824
153
- csv_detective-0.8.1.dev1617.data/data/share/csv_detective/CHANGELOG.md,sha256=RT2mP1INh2SePA7bPsfu2U4ruoxAwQ5CVjJZbpN9uoU,9764
154
- csv_detective-0.8.1.dev1617.data/data/share/csv_detective/LICENSE,sha256=A1dQrzxyxRHRih02KwibWj1khQyF7GeA6SqdOU87Gk4,1088
155
- csv_detective-0.8.1.dev1617.data/data/share/csv_detective/README.md,sha256=gKLFmC8kuCCywS9eAhMak_JNriUWWNOsBKleAu5TIEY,8501
156
- csv_detective-0.8.1.dev1617.dist-info/licenses/LICENSE,sha256=A1dQrzxyxRHRih02KwibWj1khQyF7GeA6SqdOU87Gk4,1088
153
+ csv_detective-0.8.1.dev1703.dist-info/licenses/LICENSE,sha256=A1dQrzxyxRHRih02KwibWj1khQyF7GeA6SqdOU87Gk4,1088
157
154
  tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
158
155
  tests/test_example.py,sha256=JeHxSK0IVDcSrOhSZlNGSQv4JAc_r6mzvJM8PfmLTMw,2018
159
156
  tests/test_fields.py,sha256=IwMpjOn8W5kDCvJYp3Cer4m571qomzjupOAvSRFMg_Q,11819
@@ -161,8 +158,11 @@ tests/test_file.py,sha256=0bHV9wx9mSRoav_DVF19g694yohb1p0bw7rtcBeKG-8,8451
161
158
  tests/test_labels.py,sha256=Nkr645bUewrj8hjNDKr67FQ6Sy_TID6f3E5Kfkl231M,464
162
159
  tests/test_structure.py,sha256=bv-tjgXohvQAxwmxzH0BynFpK2TyPjcxvtIAmIRlZmA,1393
163
160
  tests/test_validation.py,sha256=CTGonR6htxcWF9WH8MxumDD8cF45Y-G4hm94SM4lFjU,3246
164
- csv_detective-0.8.1.dev1617.dist-info/METADATA,sha256=4SAhn9DUS3Wz3RzNLJRxeICYW7prXrGWqMJNB92vu6I,10443
165
- csv_detective-0.8.1.dev1617.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
166
- csv_detective-0.8.1.dev1617.dist-info/entry_points.txt,sha256=JjweTReFqKJmuvkegzlew2j3D5pZzfxvbEGOtGVGmaY,56
167
- csv_detective-0.8.1.dev1617.dist-info/top_level.txt,sha256=M0Nv646VHo-49zWjPkwo2C48UmtfddV8_9mEZeIxy8Q,20
168
- csv_detective-0.8.1.dev1617.dist-info/RECORD,,
161
+ venv/bin/activate_this.py,sha256=NRy3waFmwW1pOaNUp33wNN0vD1Kzkd-zXX-Sgl4EiVI,1286
162
+ venv/bin/jp.py,sha256=7z7dvRg0M7HzpZG4ssQID7nScjvQx7bcYTxJWDOrS6E,1717
163
+ venv/bin/runxlrd.py,sha256=YlZMuycM_V_hzNt2yt3FyXPuwouMCmMhvj1oZaBeeuw,16092
164
+ csv_detective-0.8.1.dev1703.dist-info/METADATA,sha256=HsL5tsoa92LIZSGCAth5zhUCRd-ovvKqHQSO2CaSrIo,9527
165
+ csv_detective-0.8.1.dev1703.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
166
+ csv_detective-0.8.1.dev1703.dist-info/entry_points.txt,sha256=JjweTReFqKJmuvkegzlew2j3D5pZzfxvbEGOtGVGmaY,56
167
+ csv_detective-0.8.1.dev1703.dist-info/top_level.txt,sha256=cYKb4Ok3XgYA7rMDOYtxysjSJp_iUA9lJjynhVzue8g,30
168
+ csv_detective-0.8.1.dev1703.dist-info/RECORD,,
@@ -0,0 +1,38 @@
1
+ """
2
+ Activate virtualenv for current interpreter:
3
+
4
+ import runpy
5
+ runpy.run_path(this_file)
6
+
7
+ This can be used when you must use an existing Python interpreter, not the virtualenv bin/python.
8
+ """ # noqa: D415
9
+
10
+ from __future__ import annotations
11
+
12
+ import os
13
+ import site
14
+ import sys
15
+
16
+ try:
17
+ abs_file = os.path.abspath(__file__)
18
+ except NameError as exc:
19
+ msg = "You must use import runpy; runpy.run_path(this_file)"
20
+ raise AssertionError(msg) from exc
21
+
22
+ bin_dir = os.path.dirname(abs_file)
23
+ base = bin_dir[: -len('bin') - 1] # strip away the bin part from the __file__, plus the path separator
24
+
25
+ # prepend bin to PATH (this file is inside the bin directory)
26
+ os.environ["PATH"] = os.pathsep.join([bin_dir, *os.environ.get("PATH", "").split(os.pathsep)])
27
+ os.environ["VIRTUAL_ENV"] = base # virtual env is right above bin directory
28
+ os.environ["VIRTUAL_ENV_PROMPT"] = '' or os.path.basename(base)
29
+
30
+ # add the virtual environments libraries to the host python import mechanism
31
+ prev_length = len(sys.path)
32
+ for lib in '../lib/python3.9/site-packages'.split(os.pathsep):
33
+ path = os.path.realpath(os.path.join(bin_dir, lib))
34
+ site.addsitedir(path.decode("utf-8") if '' else path)
35
+ sys.path[:] = sys.path[prev_length:] + sys.path[0:prev_length]
36
+
37
+ sys.real_prefix = sys.prefix
38
+ sys.prefix = base
venv/bin/jp.py ADDED
@@ -0,0 +1,54 @@
1
+ #!/home/circleci/project/venv/bin/python
2
+
3
+ import sys
4
+ import json
5
+ import argparse
6
+ from pprint import pformat
7
+
8
+ import jmespath
9
+ from jmespath import exceptions
10
+
11
+
12
+ def main():
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument('expression')
15
+ parser.add_argument('-f', '--filename',
16
+ help=('The filename containing the input data. '
17
+ 'If a filename is not given then data is '
18
+ 'read from stdin.'))
19
+ parser.add_argument('--ast', action='store_true',
20
+ help=('Pretty print the AST, do not search the data.'))
21
+ args = parser.parse_args()
22
+ expression = args.expression
23
+ if args.ast:
24
+ # Only print the AST
25
+ expression = jmespath.compile(args.expression)
26
+ sys.stdout.write(pformat(expression.parsed))
27
+ sys.stdout.write('\n')
28
+ return 0
29
+ if args.filename:
30
+ with open(args.filename, 'r') as f:
31
+ data = json.load(f)
32
+ else:
33
+ data = sys.stdin.read()
34
+ data = json.loads(data)
35
+ try:
36
+ sys.stdout.write(json.dumps(
37
+ jmespath.search(expression, data), indent=4, ensure_ascii=False))
38
+ sys.stdout.write('\n')
39
+ except exceptions.ArityError as e:
40
+ sys.stderr.write("invalid-arity: %s\n" % e)
41
+ return 1
42
+ except exceptions.JMESPathTypeError as e:
43
+ sys.stderr.write("invalid-type: %s\n" % e)
44
+ return 1
45
+ except exceptions.UnknownFunctionError as e:
46
+ sys.stderr.write("unknown-function: %s\n" % e)
47
+ return 1
48
+ except exceptions.ParseError as e:
49
+ sys.stderr.write("syntax-error: %s\n" % e)
50
+ return 1
51
+
52
+
53
+ if __name__ == '__main__':
54
+ sys.exit(main())
venv/bin/runxlrd.py ADDED
@@ -0,0 +1,410 @@
1
+ #!/home/circleci/project/venv/bin/python
2
+ # Copyright (c) 2005-2012 Stephen John Machin, Lingfo Pty Ltd
3
+ # This script is part of the xlrd package, which is released under a
4
+ # BSD-style licence.
5
+
6
+ from __future__ import print_function
7
+
8
+ cmd_doc = """
9
+ Commands:
10
+
11
+ 2rows Print the contents of first and last row in each sheet
12
+ 3rows Print the contents of first, second and last row in each sheet
13
+ bench Same as "show", but doesn't print -- for profiling
14
+ biff_count[1] Print a count of each type of BIFF record in the file
15
+ biff_dump[1] Print a dump (char and hex) of the BIFF records in the file
16
+ fonts hdr + print a dump of all font objects
17
+ hdr Mini-overview of file (no per-sheet information)
18
+ hotshot Do a hotshot profile run e.g. ... -f1 hotshot bench bigfile*.xls
19
+ labels Dump of sheet.col_label_ranges and ...row... for each sheet
20
+ name_dump Dump of each object in book.name_obj_list
21
+ names Print brief information for each NAME record
22
+ ov Overview of file
23
+ profile Like "hotshot", but uses cProfile
24
+ show Print the contents of all rows in each sheet
25
+ version[0] Print versions of xlrd and Python and exit
26
+ xfc Print "XF counts" and cell-type counts -- see code for details
27
+
28
+ [0] means no file arg
29
+ [1] means only one file arg i.e. no glob.glob pattern
30
+ """
31
+
32
+ options = None
33
+ if __name__ == "__main__":
34
+ import xlrd
35
+ import sys
36
+ import time
37
+ import glob
38
+ import traceback
39
+ import gc
40
+
41
+ from xlrd.timemachine import xrange, REPR
42
+
43
+
44
+ class LogHandler(object):
45
+
46
+ def __init__(self, logfileobj):
47
+ self.logfileobj = logfileobj
48
+ self.fileheading = None
49
+ self.shown = 0
50
+
51
+ def setfileheading(self, fileheading):
52
+ self.fileheading = fileheading
53
+ self.shown = 0
54
+
55
+ def write(self, text):
56
+ if self.fileheading and not self.shown:
57
+ self.logfileobj.write(self.fileheading)
58
+ self.shown = 1
59
+ self.logfileobj.write(text)
60
+
61
+ null_cell = xlrd.empty_cell
62
+
63
+ def show_row(bk, sh, rowx, colrange, printit):
64
+ if bk.ragged_rows:
65
+ colrange = range(sh.row_len(rowx))
66
+ if not colrange: return
67
+ if printit: print()
68
+ if bk.formatting_info:
69
+ for colx, ty, val, cxfx in get_row_data(bk, sh, rowx, colrange):
70
+ if printit:
71
+ print("cell %s%d: type=%d, data: %r, xfx: %s"
72
+ % (xlrd.colname(colx), rowx+1, ty, val, cxfx))
73
+ else:
74
+ for colx, ty, val, _unused in get_row_data(bk, sh, rowx, colrange):
75
+ if printit:
76
+ print("cell %s%d: type=%d, data: %r" % (xlrd.colname(colx), rowx+1, ty, val))
77
+
78
+ def get_row_data(bk, sh, rowx, colrange):
79
+ result = []
80
+ dmode = bk.datemode
81
+ ctys = sh.row_types(rowx)
82
+ cvals = sh.row_values(rowx)
83
+ for colx in colrange:
84
+ cty = ctys[colx]
85
+ cval = cvals[colx]
86
+ if bk.formatting_info:
87
+ cxfx = str(sh.cell_xf_index(rowx, colx))
88
+ else:
89
+ cxfx = ''
90
+ if cty == xlrd.XL_CELL_DATE:
91
+ try:
92
+ showval = xlrd.xldate_as_tuple(cval, dmode)
93
+ except xlrd.XLDateError as e:
94
+ showval = "%s:%s" % (type(e).__name__, e)
95
+ cty = xlrd.XL_CELL_ERROR
96
+ elif cty == xlrd.XL_CELL_ERROR:
97
+ showval = xlrd.error_text_from_code.get(cval, '<Unknown error code 0x%02x>' % cval)
98
+ else:
99
+ showval = cval
100
+ result.append((colx, cty, showval, cxfx))
101
+ return result
102
+
103
+ def bk_header(bk):
104
+ print()
105
+ print("BIFF version: %s; datemode: %s"
106
+ % (xlrd.biff_text_from_num[bk.biff_version], bk.datemode))
107
+ print("codepage: %r (encoding: %s); countries: %r"
108
+ % (bk.codepage, bk.encoding, bk.countries))
109
+ print("Last saved by: %r" % bk.user_name)
110
+ print("Number of data sheets: %d" % bk.nsheets)
111
+ print("Use mmap: %d; Formatting: %d; On demand: %d"
112
+ % (bk.use_mmap, bk.formatting_info, bk.on_demand))
113
+ print("Ragged rows: %d" % bk.ragged_rows)
114
+ if bk.formatting_info:
115
+ print("FORMATs: %d, FONTs: %d, XFs: %d"
116
+ % (len(bk.format_list), len(bk.font_list), len(bk.xf_list)))
117
+ if not options.suppress_timing:
118
+ print("Load time: %.2f seconds (stage 1) %.2f seconds (stage 2)"
119
+ % (bk.load_time_stage_1, bk.load_time_stage_2))
120
+ print()
121
+
122
+ def show_fonts(bk):
123
+ print("Fonts:")
124
+ for x in xrange(len(bk.font_list)):
125
+ font = bk.font_list[x]
126
+ font.dump(header='== Index %d ==' % x, indent=4)
127
+
128
+ def show_names(bk, dump=0):
129
+ bk_header(bk)
130
+ if bk.biff_version < 50:
131
+ print("Names not extracted in this BIFF version")
132
+ return
133
+ nlist = bk.name_obj_list
134
+ print("Name list: %d entries" % len(nlist))
135
+ for nobj in nlist:
136
+ if dump:
137
+ nobj.dump(sys.stdout,
138
+ header="\n=== Dump of name_obj_list[%d] ===" % nobj.name_index)
139
+ else:
140
+ print("[%d]\tName:%r macro:%r scope:%d\n\tresult:%r\n"
141
+ % (nobj.name_index, nobj.name, nobj.macro, nobj.scope, nobj.result))
142
+
143
+ def print_labels(sh, labs, title):
144
+ if not labs:return
145
+ for rlo, rhi, clo, chi in labs:
146
+ print("%s label range %s:%s contains:"
147
+ % (title, xlrd.cellname(rlo, clo), xlrd.cellname(rhi-1, chi-1)))
148
+ for rx in xrange(rlo, rhi):
149
+ for cx in xrange(clo, chi):
150
+ print(" %s: %r" % (xlrd.cellname(rx, cx), sh.cell_value(rx, cx)))
151
+
152
+ def show_labels(bk):
153
+ # bk_header(bk)
154
+ hdr = 0
155
+ for shx in range(bk.nsheets):
156
+ sh = bk.sheet_by_index(shx)
157
+ clabs = sh.col_label_ranges
158
+ rlabs = sh.row_label_ranges
159
+ if clabs or rlabs:
160
+ if not hdr:
161
+ bk_header(bk)
162
+ hdr = 1
163
+ print("sheet %d: name = %r; nrows = %d; ncols = %d" %
164
+ (shx, sh.name, sh.nrows, sh.ncols))
165
+ print_labels(sh, clabs, 'Col')
166
+ print_labels(sh, rlabs, 'Row')
167
+ if bk.on_demand: bk.unload_sheet(shx)
168
+
169
+ def show(bk, nshow=65535, printit=1):
170
+ bk_header(bk)
171
+ if 0:
172
+ rclist = xlrd.sheet.rc_stats.items()
173
+ rclist = sorted(rclist)
174
+ print("rc stats")
175
+ for k, v in rclist:
176
+ print("0x%04x %7d" % (k, v))
177
+ if options.onesheet:
178
+ try:
179
+ shx = int(options.onesheet)
180
+ except ValueError:
181
+ shx = bk.sheet_by_name(options.onesheet).number
182
+ shxrange = [shx]
183
+ else:
184
+ shxrange = range(bk.nsheets)
185
+ # print("shxrange", list(shxrange))
186
+ for shx in shxrange:
187
+ sh = bk.sheet_by_index(shx)
188
+ nrows, ncols = sh.nrows, sh.ncols
189
+ colrange = range(ncols)
190
+ anshow = min(nshow, nrows)
191
+ print("sheet %d: name = %s; nrows = %d; ncols = %d" %
192
+ (shx, REPR(sh.name), sh.nrows, sh.ncols))
193
+ if nrows and ncols:
194
+ # Beat the bounds
195
+ for rowx in xrange(nrows):
196
+ nc = sh.row_len(rowx)
197
+ if nc:
198
+ sh.row_types(rowx)[nc-1]
199
+ sh.row_values(rowx)[nc-1]
200
+ sh.cell(rowx, nc-1)
201
+ for rowx in xrange(anshow-1):
202
+ if not printit and rowx % 10000 == 1 and rowx > 1:
203
+ print("done %d rows" % (rowx-1,))
204
+ show_row(bk, sh, rowx, colrange, printit)
205
+ if anshow and nrows:
206
+ show_row(bk, sh, nrows-1, colrange, printit)
207
+ print()
208
+ if bk.on_demand: bk.unload_sheet(shx)
209
+
210
+ def count_xfs(bk):
211
+ bk_header(bk)
212
+ for shx in range(bk.nsheets):
213
+ sh = bk.sheet_by_index(shx)
214
+ nrows = sh.nrows
215
+ print("sheet %d: name = %r; nrows = %d; ncols = %d" %
216
+ (shx, sh.name, sh.nrows, sh.ncols))
217
+ # Access all xfindexes to force gathering stats
218
+ type_stats = [0, 0, 0, 0, 0, 0, 0]
219
+ for rowx in xrange(nrows):
220
+ for colx in xrange(sh.row_len(rowx)):
221
+ xfx = sh.cell_xf_index(rowx, colx)
222
+ assert xfx >= 0
223
+ cty = sh.cell_type(rowx, colx)
224
+ type_stats[cty] += 1
225
+ print("XF stats", sh._xf_index_stats)
226
+ print("type stats", type_stats)
227
+ print()
228
+ if bk.on_demand: bk.unload_sheet(shx)
229
+
230
+ def main(cmd_args):
231
+ import optparse
232
+ global options
233
+ usage = "\n%prog [options] command [input-file-patterns]\n" + cmd_doc
234
+ oparser = optparse.OptionParser(usage)
235
+ oparser.add_option(
236
+ "-l", "--logfilename",
237
+ default="",
238
+ help="contains error messages")
239
+ oparser.add_option(
240
+ "-v", "--verbosity",
241
+ type="int", default=0,
242
+ help="level of information and diagnostics provided")
243
+ oparser.add_option(
244
+ "-m", "--mmap",
245
+ type="int", default=-1,
246
+ help="1: use mmap; 0: don't use mmap; -1: accept heuristic")
247
+ oparser.add_option(
248
+ "-e", "--encoding",
249
+ default="",
250
+ help="encoding override")
251
+ oparser.add_option(
252
+ "-f", "--formatting",
253
+ type="int", default=0,
254
+ help="0 (default): no fmt info\n"
255
+ "1: fmt info (all cells)\n",
256
+ )
257
+ oparser.add_option(
258
+ "-g", "--gc",
259
+ type="int", default=0,
260
+ help="0: auto gc enabled; 1: auto gc disabled, manual collect after each file; 2: no gc")
261
+ oparser.add_option(
262
+ "-s", "--onesheet",
263
+ default="",
264
+ help="restrict output to this sheet (name or index)")
265
+ oparser.add_option(
266
+ "-u", "--unnumbered",
267
+ action="store_true", default=0,
268
+ help="omit line numbers or offsets in biff_dump")
269
+ oparser.add_option(
270
+ "-d", "--on-demand",
271
+ action="store_true", default=0,
272
+ help="load sheets on demand instead of all at once")
273
+ oparser.add_option(
274
+ "-t", "--suppress-timing",
275
+ action="store_true", default=0,
276
+ help="don't print timings (diffs are less messy)")
277
+ oparser.add_option(
278
+ "-r", "--ragged-rows",
279
+ action="store_true", default=0,
280
+ help="open_workbook(..., ragged_rows=True)")
281
+ options, args = oparser.parse_args(cmd_args)
282
+ if len(args) == 1 and args[0] in ("version", ):
283
+ pass
284
+ elif len(args) < 2:
285
+ oparser.error("Expected at least 2 args, found %d" % len(args))
286
+ cmd = args[0]
287
+ xlrd_version = getattr(xlrd, "__VERSION__", "unknown; before 0.5")
288
+ if cmd == 'biff_dump':
289
+ xlrd.dump(args[1], unnumbered=options.unnumbered)
290
+ sys.exit(0)
291
+ if cmd == 'biff_count':
292
+ xlrd.count_records(args[1])
293
+ sys.exit(0)
294
+ if cmd == 'version':
295
+ print("xlrd: %s, from %s" % (xlrd_version, xlrd.__file__))
296
+ print("Python:", sys.version)
297
+ sys.exit(0)
298
+ if options.logfilename:
299
+ logfile = LogHandler(open(options.logfilename, 'w'))
300
+ else:
301
+ logfile = sys.stdout
302
+ mmap_opt = options.mmap
303
+ mmap_arg = xlrd.USE_MMAP
304
+ if mmap_opt in (1, 0):
305
+ mmap_arg = mmap_opt
306
+ elif mmap_opt != -1:
307
+ print('Unexpected value (%r) for mmap option -- assuming default' % mmap_opt)
308
+ fmt_opt = options.formatting | (cmd in ('xfc', ))
309
+ gc_mode = options.gc
310
+ if gc_mode:
311
+ gc.disable()
312
+ for pattern in args[1:]:
313
+ for fname in glob.glob(pattern):
314
+ print("\n=== File: %s ===" % fname)
315
+ if logfile != sys.stdout:
316
+ logfile.setfileheading("\n=== File: %s ===\n" % fname)
317
+ if gc_mode == 1:
318
+ n_unreachable = gc.collect()
319
+ if n_unreachable:
320
+ print("GC before open:", n_unreachable, "unreachable objects")
321
+ try:
322
+ t0 = time.time()
323
+ bk = xlrd.open_workbook(
324
+ fname,
325
+ verbosity=options.verbosity, logfile=logfile,
326
+ use_mmap=mmap_arg,
327
+ encoding_override=options.encoding,
328
+ formatting_info=fmt_opt,
329
+ on_demand=options.on_demand,
330
+ ragged_rows=options.ragged_rows,
331
+ )
332
+ t1 = time.time()
333
+ if not options.suppress_timing:
334
+ print("Open took %.2f seconds" % (t1-t0,))
335
+ except xlrd.XLRDError as e:
336
+ print("*** Open failed: %s: %s" % (type(e).__name__, e))
337
+ continue
338
+ except KeyboardInterrupt:
339
+ print("*** KeyboardInterrupt ***")
340
+ traceback.print_exc(file=sys.stdout)
341
+ sys.exit(1)
342
+ except BaseException as e:
343
+ print("*** Open failed: %s: %s" % (type(e).__name__, e))
344
+ traceback.print_exc(file=sys.stdout)
345
+ continue
346
+ t0 = time.time()
347
+ if cmd == 'hdr':
348
+ bk_header(bk)
349
+ elif cmd == 'ov': # OverView
350
+ show(bk, 0)
351
+ elif cmd == 'show': # all rows
352
+ show(bk)
353
+ elif cmd == '2rows': # first row and last row
354
+ show(bk, 2)
355
+ elif cmd == '3rows': # first row, 2nd row and last row
356
+ show(bk, 3)
357
+ elif cmd == 'bench':
358
+ show(bk, printit=0)
359
+ elif cmd == 'fonts':
360
+ bk_header(bk)
361
+ show_fonts(bk)
362
+ elif cmd == 'names': # named reference list
363
+ show_names(bk)
364
+ elif cmd == 'name_dump': # named reference list
365
+ show_names(bk, dump=1)
366
+ elif cmd == 'labels':
367
+ show_labels(bk)
368
+ elif cmd == 'xfc':
369
+ count_xfs(bk)
370
+ else:
371
+ print("*** Unknown command <%s>" % cmd)
372
+ sys.exit(1)
373
+ del bk
374
+ if gc_mode == 1:
375
+ n_unreachable = gc.collect()
376
+ if n_unreachable:
377
+ print("GC post cmd:", fname, "->", n_unreachable, "unreachable objects")
378
+ if not options.suppress_timing:
379
+ t1 = time.time()
380
+ print("\ncommand took %.2f seconds\n" % (t1-t0,))
381
+
382
+ return None
383
+
384
+ av = sys.argv[1:]
385
+ if not av:
386
+ main(av)
387
+ firstarg = av[0].lower()
388
+ if firstarg == "hotshot":
389
+ import hotshot
390
+ import hotshot.stats
391
+ av = av[1:]
392
+ prof_log_name = "XXXX.prof"
393
+ prof = hotshot.Profile(prof_log_name)
394
+ # benchtime, result = prof.runcall(main, *av)
395
+ result = prof.runcall(main, *(av, ))
396
+ print("result", repr(result))
397
+ prof.close()
398
+ stats = hotshot.stats.load(prof_log_name)
399
+ stats.strip_dirs()
400
+ stats.sort_stats('time', 'calls')
401
+ stats.print_stats(20)
402
+ elif firstarg == "profile":
403
+ import cProfile
404
+ av = av[1:]
405
+ cProfile.run('main(av)', 'YYYY.prof')
406
+ import pstats
407
+ p = pstats.Stats('YYYY.prof')
408
+ p.strip_dirs().sort_stats('cumulative').print_stats(30)
409
+ else:
410
+ main(av)
@@ -1,186 +0,0 @@
1
- # Changelog
2
-
3
- ## Current (in progress)
4
-
5
- - Refactor label testing [#119](https://github.com/datagouv/csv-detective/pull/119)
6
- - Refactor repo metadata and requirements [#120](https://github.com/datagouv/csv-detective/pull/120) [#122](https://github.com/datagouv/csv-detective/pull/122) [#135](https://github.com/datagouv/csv-detective/pull/135) [#136](https://github.com/datagouv/csv-detective/pull/136)
7
- - Better URL detection [#121](https://github.com/datagouv/csv-detective/pull/121)
8
- - For big files, analyse on sample then validate on whole file [#124](https://github.com/datagouv/csv-detective/pull/124) [#129](https://github.com/datagouv/csv-detective/pull/129)
9
- - Fix imports [#125](https://github.com/datagouv/csv-detective/pull/125) [#126](https://github.com/datagouv/csv-detective/pull/126) [#127](https://github.com/datagouv/csv-detective/pull/127) [#128](https://github.com/datagouv/csv-detective/pull/128)
10
- - Split aware and naive datetimes for hydra to cast them separately [#130](https://github.com/datagouv/csv-detective/pull/130)
11
- - Validate using the testing function, to consider PROPORTIONS [#131](https://github.com/datagouv/csv-detective/pull/131)
12
- - Remove `datetime_iso` format due to ambiguous cast in db (can be naive or aware) [#132](https://github.com/datagouv/csv-detective/pull/132)
13
- - Add `lonlat_wgs` format and handle optional brackets for `latlon_wgs` [#133](https://github.com/datagouv/csv-detective/pull/133)
14
- - Refactor format prioritizing [#134](https://github.com/datagouv/csv-detective/pull/134)
15
-
16
- ## 0.8.0 (2025-05-20)
17
-
18
- - New function that creates a csv from a list of fields and constraints, or from a TableSchema [#101](https://github.com/datagouv/csv-detective/pull/101)
19
- - Enable outputing loaded dataframe [#102](https://github.com/datagouv/csv-detective/pull/102)
20
- - Better naming, hint types and minor refactors [#103](https://github.com/datagouv/csv-detective/pull/103)
21
- - The returned dataframe has its columns properly cast to the detected types [#104](https://github.com/datagouv/csv-detective/pull/104)
22
- - Raise an error if the encoding could not be guessed [#106](https://github.com/datagouv/csv-detective/pull/106)
23
- - Fix CLI and minio routine [#107](https://github.com/datagouv/csv-detective/pull/107)
24
- - Allow to only specify tests to skip ("all but...") [#108](https://github.com/datagouv/csv-detective/pull/108)
25
- - Fix bool casting [#109](https://github.com/datagouv/csv-detective/pull/109)
26
- - Handle csv.gz files [#110](https://github.com/datagouv/csv-detective/pull/110)
27
- - Refactor file tests [#110](https://github.com/datagouv/csv-detective/pull/110)
28
- - Restructure repo (breaking changes) [#111](https://github.com/datagouv/csv-detective/pull/111)
29
- - Add validation function and associated flow [#112](https://github.com/datagouv/csv-detective/pull/112)
30
- - Better float detection [#113](https://github.com/datagouv/csv-detective/pull/113)
31
- - Refactor fields tests [#114](https://github.com/datagouv/csv-detective/pull/114)
32
- - Better code waldec and add code import [#116](https://github.com/datagouv/csv-detective/pull/116)
33
- - Better validation and refactors [#117](https://github.com/datagouv/csv-detective/pull/117)
34
- - Fix validation [#118](https://github.com/datagouv/csv-detective/pull/118)
35
-
36
- ## 0.7.4 (2024-11-15)
37
-
38
- - Enable calling main functions from base [#97](https://github.com/datagouv/csv-detective/pull/97)
39
- - Better detection of ints and floats [#94](https://github.com/datagouv/csv-detective/pull/94)
40
- - Better handle NaN values [#96](https://github.com/datagouv/csv-detective/pull/96)
41
- - Reshape exemple.py, clean up code and improve changelog [#98](https://github.com/datagouv/csv-detective/pull/98)
42
-
43
- ## 0.7.3 (2024-10-07)
44
-
45
- - Refactor tests import, now using folder arborescence instead of pre-made file [#93](https://github.com/datagouv/csv-detective/pull/93)
46
- - Fix inversion (count<=>value) in profile [#95](https://github.com/datagouv/csv-detective/pull/95)
47
-
48
- ## 0.7.2 (2024-08-27)
49
-
50
- - Outsource many formats to fr-format library [#87](https://github.com/datagouv/csv-detective/pull/87)
51
- - Better date detection [#89](https://github.com/datagouv/csv-detective/pull/89)
52
- - Update dependencies to make tests pass [#81](https://github.com/datagouv/csv-detective/pull/81)
53
- - Update readme [#81](https://github.com/datagouv/csv-detective/pull/81)
54
- - Hint type [#81](https://github.com/datagouv/csv-detective/pull/81)
55
- - Minor refactors [#81](https://github.com/datagouv/csv-detective/pull/81)
56
-
57
- ## 0.7.1 (2024-03-27)
58
-
59
- - Fixes after production release in hydra [#80](https://github.com/datagouv/csv-detective/pull/80)
60
-
61
- ## 0.7.0 (2024-03-21)
62
-
63
- - Handle other file formats: xls, xlsx, ods (and more) and analysis through URLs [#73](https://github.com/datagouv/csv-detective/pull/73)
64
- - Handle files with no extension (cc hydra) [#79](https://github.com/datagouv/csv-detective/pull/79)
65
-
66
- ## 0.6.8 (2024-01-18)
67
-
68
- - prevent exporting NaN values in profile [#72](https://github.com/datagouv/csv-detective/pull/72)
69
- - raise ValueError if analyzed file has various number of columns across first rows [#72](https://github.com/datagouv/csv-detective/pull/72)
70
-
71
- ## 0.6.7 (2024-01-15)
72
-
73
- - Add logs for columns that would take too much time within a specific test [#70](https://github.com/datagouv/csv-detective/pull/70)
74
- - Refactor some tests to improve performances and make detection more accurate [#69](https://github.com/datagouv/csv-detective/pull/69)
75
- - Try alternative ways to clean text [#71](https://github.com/datagouv/csv-detective/pull/71)
76
-
77
- ## 0.6.6 (2023-11-24)
78
-
79
- - Change setup.py to better convey dependencies [#67](https://github.com/datagouv/csv-detective/pull/67)
80
-
81
- ## 0.6.5 (2023-11-17)
82
-
83
- - Change encoding detection for faust-cchardet (forked from cchardet) [#66](https://github.com/etalab/csv-detective/pull/66)
84
-
85
- ## 0.6.4 (2023-10-18)
86
-
87
- - Better handling of ints and floats (now not accepting blanks and "+" in string) [#62](https://github.com/etalab/csv-detective/pull/62)
88
-
89
- ## 0.6.3 (2023-03-23)
90
-
91
- - Faster routine [#59](https://github.com/etalab/csv-detective/pull/59)
92
-
93
- ## 0.6.2 (2023-02-10)
94
-
95
- - Catch OverflowError for latitude and longitude checks [#58](https://github.com/etalab/csv-detective/pull/58)
96
-
97
- ## 0.6.0 (2023-02-10)
98
-
99
- - Add CI and upgrade dependencies [#49](https://github.com/etalab/csv-detective/pull/49)
100
- - Shuffle data before analysis [#56](https://github.com/etalab/csv-detective/pull/56)
101
- - Better discrimination between `code_departement` and `code_region` [#56](https://github.com/etalab/csv-detective/pull/56)
102
- - Add schema in output analysis [#57](https://github.com/etalab/csv-detective/pull/57)
103
-
104
- ## 0.4.7 [#51](https://github.com/etalab/csv-detective/pull/51)
105
-
106
- - Allow possibility to analyze entire file instead of a limited number of rows [#48](https://github.com/etalab/csv-detective/pull/48)
107
- - Better boolean detection [#42](https://github.com/etalab/csv-detective/issues/42)
108
- - Differentiate python types and format for `date` and `datetime` [#43](https://github.com/etalab/csv-detective/issues/43)
109
- - Better `code_departement` and `code_commune_insee` detection [#44](https://github.com/etalab/csv-detective/issues/44)
110
- - Fix header line (`header_row_idx`) detection [#44](https://github.com/etalab/csv-detective/issues/44)
111
- - Allow possibility to get profile of csv [#46](https://github.com/etalab/csv-detective/issues/46)
112
-
113
- ## 0.4.6 [#39](https://github.com/etalab/csv-detective/pull/39)
114
-
115
- - Fix tests
116
- - Prioritise lat / lon FR detection over more generic lat / lon.
117
- - To reduce false positives, prevent detection of the following if label detection is missing: `['code_departement', 'code_commune_insee', 'code_postal', 'latitude_wgs', 'longitude_wgs', 'latitude_wgs_fr_metropole', 'longitude_wgs_fr_metropole', 'latitude_l93', 'longitude_l93']`
118
- - Lower threshold of label detection so that if one relevant is detected in the label, it boosts the detection score.
119
- - Add ISO country alpha-3 and numeric detection
120
- - include camel case parsing in _process_text function
121
- - Support optional brackets in latlon format
122
-
123
- ## 0.4.5 [#29](https://github.com/etalab/csv-detective/pull/29)
124
-
125
- - Use `netloc` instead of `url` in location dict
126
-
127
- ## 0.4.4 [#24] (https://github.com/etalab/csv-detective/pull/28)
128
-
129
- - Prevent crash on empty CSVs
130
- - Add optional arguments encoding and sep to routine and routine_minio functions
131
- - Field detection improvements (code_csp_insee and datetime RFC 822)
132
- - Schema generation improvements with examples
133
-
134
-
135
- ## 0.4.3 [#24] (https://github.com/etalab/csv-detective/pull/24)
136
-
137
- - Add uuid and MongoID detection
138
- - Add new function dedicated to interaction with minio data
139
- - Add table schema automatic generation (only on minio data)
140
- - Modification of calculated score (consider label detection as a boost for score)
141
-
142
- ## 0.4.2 [#22] (https://github.com/etalab/csv-detective/pull/22)
143
-
144
- Add type detection by header name
145
-
146
- ## 0.4.1 [#19] (https://github.com/etalab/csv-detective/pull/19)
147
-
148
- Fix bug
149
- * num_rows was causing problem when it was fix to other value than default - Fixed
150
-
151
- ## 0.4.0 [#18] (https://github.com/etalab/csv_detective/pull/18)
152
-
153
- Add detailed output possibility
154
-
155
- Details :
156
- * two modes now for output report : "LIMITED" and "ALL"
157
- * "ALL" option give user information on found proportion for each column types and each columns
158
-
159
- ## 0.3.0 [#15] (https://github.com/etalab/csv_detective/pull/15)
160
-
161
- Fix bugs
162
-
163
- Details :
164
- * Facilitate ML Integration
165
- * Add column types detection
166
- * Fix documentation
167
-
168
- ## 0.2.1 - [#2](https://github.com/etalab/csv_detective/pull/2)
169
-
170
- Add continuous integration
171
-
172
- Details :
173
- * Add configuration for CircleCI
174
- * Add `CONTRIBUTING.md`
175
- * Push automatically new versions to PyPI
176
- * Use semantic versioning
177
-
178
- ## 0.2 - [#1](https://github.com/etalab/csv_detective/pull/1)
179
-
180
- Port from python2 to python3
181
-
182
- Details :
183
- * Add license AGPLv3
184
- * Update requirements
185
-
186
- ## 0.1
@@ -1,267 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: csv_detective
3
- Version: 0.8.1.dev1617
4
- Summary: Detect tabular files column content
5
- Home-page: https://github.com/datagouv/csv_detective
6
- Author: Etalab
7
- Author-email: opendatateam@data.gouv.fr
8
- License: https://spdx.org/licenses/MIT.html#licenseText
9
- Project-URL: Source, https://github.com/datagouv/csv_detective
10
- Keywords: CSV data processing encoding guess parser tabular
11
- Classifier: Development Status :: 2 - Pre-Alpha
12
- Classifier: License :: OSI Approved :: MIT License
13
- Classifier: Operating System :: OS Independent
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: Python :: 3.9
16
- Classifier: Programming Language :: Python :: 3.10
17
- Classifier: Programming Language :: Python :: 3.11
18
- Classifier: Programming Language :: Python :: 3.12
19
- Classifier: Programming Language :: Python :: 3.13
20
- Classifier: Programming Language :: Python :: Implementation :: CPython
21
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
22
- Requires-Python: >=3.9
23
- Description-Content-Type: text/markdown
24
- License-File: LICENSE
25
- Requires-Dist: boto3<2,>=1.34.0
26
- Requires-Dist: dateparser<2,>=1.2.0
27
- Requires-Dist: faust-cchardet==2.1.19
28
- Requires-Dist: pandas<3,>=2.2.0
29
- Requires-Dist: python-dateutil<3,>=2.8.2
30
- Requires-Dist: Unidecode<2,>=1.3.6
31
- Requires-Dist: openpyxl==3.1.5
32
- Requires-Dist: xlrd==2.0.1
33
- Requires-Dist: odfpy==1.4.1
34
- Requires-Dist: requests<3,>=2.32.3
35
- Requires-Dist: python-magic==0.4.27
36
- Requires-Dist: frformat==0.4.0
37
- Requires-Dist: Faker>=33.0.0
38
- Requires-Dist: rstr==3.2.2
39
- Provides-Extra: dev
40
- Requires-Dist: pytest==8.3.0; extra == "dev"
41
- Requires-Dist: responses==0.25.0; extra == "dev"
42
- Dynamic: author
43
- Dynamic: author-email
44
- Dynamic: classifier
45
- Dynamic: description
46
- Dynamic: description-content-type
47
- Dynamic: home-page
48
- Dynamic: keywords
49
- Dynamic: license
50
- Dynamic: license-file
51
- Dynamic: project-url
52
- Dynamic: provides-extra
53
- Dynamic: requires-dist
54
- Dynamic: requires-python
55
- Dynamic: summary
56
-
57
- # CSV Detective
58
-
59
- This is a package to **automatically detect column content in tabular files**. The script reads either the whole file or the first few rows and performs various checks to see for each column if it matches with various content types. This is currently done through regex and string comparison.
60
-
61
- Currently supported file types: csv, xls, xlsx, ods.
62
-
63
- You can also directly feed the URL of a remote file (from data.gouv.fr for instance).
64
-
65
- ## How To ?
66
-
67
- ### Install the package
68
-
69
- You need to have python >= 3.9 installed. We recommend using a virtual environement.
70
-
71
- ```
72
- pip install csv-detective
73
- ```
74
-
75
- ### Detect some columns
76
-
77
- Say you have a tabular file located at `file_path`. This is how you could use `csv_detective`:
78
-
79
- ```
80
- # Import the csv_detective package
81
- from csv_detective import routine
82
- import os # for this example only
83
-
84
- # Replace by your file path
85
- file_path = os.path.join('.', 'tests', 'code_postaux_v201410.csv')
86
-
87
- # Open your file and run csv_detective
88
- inspection_results = routine(
89
- file_path, # or file URL
90
- num_rows=-1, # Value -1 will analyze all lines of your file, you can change with the number of lines you wish to analyze
91
- save_results=False, # Default False. If True, it will save result output into the same directory as the analyzed file, using the same name as your file and .json extension
92
- output_profile=True, # Default False. If True, returned dict will contain a property "profile" indicating profile (min, max, mean, tops...) of every column of you csv
93
- output_schema=True, # Default False. If True, returned dict will contain a property "schema" containing basic [tableschema](https://specs.frictionlessdata.io/table-schema/) of your file. This can be use to validate structure of other csv which should match same structure.
94
- )
95
- ```
96
-
97
- ## So What Do You Get ?
98
-
99
- ### Output
100
-
101
- The program creates a `Python` dictionnary with the following information :
102
-
103
- ```
104
- {
105
- "encoding": "windows-1252", # Encoding detected
106
- "separator": ";", # Detected CSV separator
107
- "header_row_idx": 0 # Index of the header (aka how many lines to skip to get it)
108
- "headers": ['code commune INSEE', 'nom de la commune', 'code postal', "libellé d'acheminement"], # Header row
109
- "total_lines": 42, # Number of rows (excluding header)
110
- "nb_duplicates": 0, # Number of exact duplicates in rows
111
- "heading_columns": 0, # Number of heading columns
112
- "trailing_columns": 0, # Number of trailing columns
113
- "categorical": ['Code commune'] # Columns that contain less than 25 different values (arbitrary threshold)
114
- "columns": { # Property that conciliate detection from labels and content of a column
115
- "Code commune": {
116
- "python_type": "string",
117
- "format": "code_commune_insee",
118
- "score": 1.0
119
- },
120
- },
121
- "columns_labels": { # Property that return detection from header columns
122
- "Code commune": {
123
- "python_type": "string",
124
- "format": "code_commune_insee",
125
- "score": 0.5
126
- },
127
- },
128
- "columns_fields": { # Property that return detection from content columns
129
- "Code commune": {
130
- "python_type": "string",
131
- "format": "code_commune_insee",
132
- "score": 1.25
133
- },
134
- },
135
- "profile": {
136
- "column_name" : {
137
- "min": 1, # only int and float
138
- "max: 12, # only int and float
139
- "mean": 5, # only int and float
140
- "std": 5, # only int and float
141
- "tops": [ # 10 most frequent values in the column
142
- "xxx",
143
- "yyy",
144
- "..."
145
- ],
146
- "nb_distinct": 67, # number of distinct values
147
- "nb_missing_values": 102 # number of empty cells in the column
148
- }
149
- },
150
- "schema": { # TableSchema of the file if `output_schema` was set to `True`
151
- "$schema": "https://frictionlessdata.io/schemas/table-schema.json",
152
- "name": "",
153
- "title": "",
154
- "description": "",
155
- "countryCode": "FR",
156
- "homepage": "",
157
- "path": "https://github.com/datagouv/csv-detective",
158
- "resources": [],
159
- "sources": [
160
- {"title": "Spécification Tableschema", "path": "https://specs.frictionlessdata.io/table-schema"},
161
- {"title": "schema.data.gouv.fr", "path": "https://schema.data.gouv.fr"}
162
- ],
163
- "created": "2023-02-10",
164
- "lastModified": "2023-02-10",
165
- "version": "0.0.1",
166
- "contributors": [
167
- {"title": "Table schema bot", "email": "schema@data.gouv.fr", "organisation": "data.gouv.fr", "role": "author"}
168
- ],
169
- "fields": [
170
- {
171
- "name": "Code commune",
172
- "description": "Le code INSEE de la commune",
173
- "example": "23150",
174
- "type": "string",
175
- "formatFR": "code_commune_insee",
176
- "constraints": {
177
- "required": False,
178
- "pattern": "^([013-9]\\d|2[AB1-9])\\d{3}$",
179
- }
180
- }
181
- ]
182
- }
183
- }
184
- ```
185
-
186
- The output slightly differs depending on the file format:
187
- - csv files have `encoding` and `separator`
188
- - xls, xls, ods files have `engine` and `sheet_name`
189
-
190
- ### What Formats Can Be Detected
191
-
192
- Includes :
193
-
194
- - Communes, Départements, Régions, Pays
195
- - Codes Communes, Codes Postaux, Codes Departement, ISO Pays
196
- - Codes CSP, Description CSP, SIREN
197
- - E-Mails, URLs, Téléphones FR
198
- - Years, Dates, Jours de la Semaine FR
199
- - UUIDs, Mongo ObjectIds
200
-
201
- ### Format detection and scoring
202
- For each column, 3 scores are computed for each format, the higher the score, the more likely the format:
203
- - the field score based on the values contained in the column (0.0 to 1.0).
204
- - the label score based on the header of the column (0.0 to 1.0).
205
- - the overall score, computed as `field_score * (1 + label_score/2)` (0.0 to 1.5).
206
-
207
- The overall score computation aims to give more weight to the column contents while
208
- still leveraging the column header.
209
-
210
- #### `limited_output` - Select the output mode you want for json report
211
-
212
- This option allows you to select the output mode you want to pass. To do so, you have to pass a `limited_output` argument to the `routine` function. This variable has two possible values:
213
-
214
- - `limited_output` defaults to `True` which means report will contain only detected column formats based on a pre-selected threshold proportion in data. Report result is the standard output (an example can be found above in 'Output' section).
215
- Only the format with highest score is present in the output.
216
- - `limited_output=False` means report will contain a full list of all column format possibilities for each input data columns with a value associated which match to the proportion of found column type in data. With this report, user can adjust its rules of detection based on a specific threshold and has a better vision of quality detection for each columns. Results could also be easily transformed into a dataframe (columns types in column / column names in rows) for analysis and test.
217
-
218
- ## Improvement suggestions
219
-
220
- - Smarter refactors
221
- - Improve performances
222
- - Test other ways to load and process data (`pandas` alternatives)
223
- - Add more and more detection modules...
224
-
225
- Related ideas:
226
-
227
- - store column names to make a learning model based on column names for (possible pre-screen)
228
- - normalising data based on column prediction
229
- - entity resolution (good luck...)
230
-
231
- ## Why Could This Be of Any Use ?
232
-
233
- Organisations such as [data.gouv.fr](http://data.gouv.fr) aggregate huge amounts of un-normalised data. Performing cross-examination across datasets can be difficult. This tool could help enrich the datasets metadata and facilitate linking them together.
234
-
235
- [`udata-hydra`](https://github.com/etalab/udata-hydra) is a crawler that checks, analyzes (using `csv-detective`) and APIfies all tabular files from [data.gouv.fr](http://data.gouv.fr).
236
-
237
- An early version of this analysis of all resources on data.gouv.fr can be found [here](https://github.com/Leobouloc/data.gouv-exploration).
238
-
239
- ## Release
240
-
241
- The release process uses `bumpx`.
242
-
243
- ```shell
244
- pip install -r requirements-build.txt
245
- ```
246
-
247
- ### Process
248
-
249
- 1. `bumpx` will handle bumping the version according to your command (patch, minor, major)
250
- 2. It will update the CHANGELOG according to the new version being published
251
- 3. It will push a tag with the given version to github
252
- 4. CircleCI will pickup this tag, build the package and publish it to pypi
253
- 5. `bumpx` will have everything ready for the next version (version, changelog...)
254
-
255
- ### Dry run
256
-
257
- ```shell
258
- bumpx -d -v
259
- ```
260
-
261
- ### Release
262
-
263
- This will release a patch version:
264
-
265
- ```shell
266
- bumpx -v
267
- ```
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2025 data.gouv.fr
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.