csv-detective 0.8.1.dev1460__py3-none-any.whl → 0.8.1.dev1469__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
File without changes
@@ -0,0 +1,89 @@
1
+ import logging
2
+ from typing import TextIO
3
+ from time import time
4
+
5
+ from csv_detective.utils import display_logs_depending_process_time
6
+
7
+
8
+ def detect_extra_columns(file: TextIO, sep: str):
9
+ """regarde s'il y a des colonnes en trop
10
+ Attention, file ne doit pas avoir de ligne vide"""
11
+ file.seek(0)
12
+ retour = False
13
+ nb_useless_col = 99999
14
+
15
+ for i in range(10):
16
+ line = file.readline()
17
+ # regarde si on a un retour
18
+ if retour:
19
+ assert line[-1] == "\n"
20
+ if line[-1] == "\n":
21
+ retour = True
22
+
23
+ # regarde le nombre de derniere colonne inutile
24
+ deb = 0 + retour
25
+ line = line[::-1][deb:]
26
+ k = 0
27
+ for sign in line:
28
+ if sign != sep:
29
+ break
30
+ k += 1
31
+ if k == 0:
32
+ return 0, retour
33
+ nb_useless_col = min(k, nb_useless_col)
34
+ return nb_useless_col, retour
35
+
36
+
37
+ def detect_heading_columns(file: TextIO, sep: str, verbose: bool = False) -> int:
38
+ """Tests first 10 lines to see if there are empty heading columns"""
39
+ if verbose:
40
+ start = time()
41
+ logging.info("Detecting heading columns")
42
+ file.seek(0)
43
+ return_int = float("Inf")
44
+ for i in range(10):
45
+ line = file.readline()
46
+ return_int = min(return_int, len(line) - len(line.strip(sep)))
47
+ if return_int == 0:
48
+ if verbose:
49
+ display_logs_depending_process_time(
50
+ f'No heading column detected in {round(time() - start, 3)}s',
51
+ time() - start,
52
+ )
53
+ return 0
54
+ if verbose:
55
+ display_logs_depending_process_time(
56
+ f'{return_int} heading columns detected in {round(time() - start, 3)}s',
57
+ time() - start,
58
+ )
59
+ return return_int
60
+
61
+
62
+ def detect_trailing_columns(file: TextIO, sep: str, heading_columns: int, verbose: bool = False) -> int:
63
+ """Tests first 10 lines to see if there are empty trailing columns"""
64
+ if verbose:
65
+ start = time()
66
+ logging.info("Detecting trailing columns")
67
+ file.seek(0)
68
+ return_int = float("Inf")
69
+ for i in range(10):
70
+ line = file.readline()
71
+ return_int = min(
72
+ return_int,
73
+ len(line.replace("\n", ""))
74
+ - len(line.replace("\n", "").strip(sep))
75
+ - heading_columns,
76
+ )
77
+ if return_int == 0:
78
+ if verbose:
79
+ display_logs_depending_process_time(
80
+ f'No trailing column detected in {round(time() - start, 3)}s',
81
+ time() - start,
82
+ )
83
+ return 0
84
+ if verbose:
85
+ display_logs_depending_process_time(
86
+ f'{return_int} trailing columns detected in {round(time() - start, 3)}s',
87
+ time() - start,
88
+ )
89
+ return return_int
@@ -0,0 +1,27 @@
1
+ import logging
2
+ from time import time
3
+ from io import BytesIO
4
+
5
+ from cchardet import detect
6
+
7
+ from csv_detective.utils import display_logs_depending_process_time
8
+
9
+
10
+ def detect_encoding(binary_file: BytesIO, verbose: bool = False) -> str:
11
+ """
12
+ Detects file encoding using faust-cchardet (forked from the original cchardet)
13
+ """
14
+ if verbose:
15
+ start = time()
16
+ logging.info("Detecting encoding")
17
+ encoding_dict = detect(binary_file.read())
18
+ if not encoding_dict["encoding"]:
19
+ raise ValueError("Could not detect the file's encoding. Consider specifying it in the routine call.")
20
+ if verbose:
21
+ message = f'Detected encoding: "{encoding_dict["encoding"]}"'
22
+ message += f' in {round(time() - start, 3)}s (confidence: {round(encoding_dict["confidence"]*100)}%)'
23
+ display_logs_depending_process_time(
24
+ message,
25
+ time() - start,
26
+ )
27
+ return encoding_dict['encoding']
@@ -0,0 +1,46 @@
1
+ from time import time
2
+ from typing import Optional
3
+
4
+ import magic
5
+ import requests
6
+
7
+ from csv_detective.utils import display_logs_depending_process_time, is_url
8
+
9
+ COMPRESSION_ENGINES = ["gzip"]
10
+ EXCEL_ENGINES = ["openpyxl", "xlrd", "odf"]
11
+ engine_to_file = {
12
+ "openpyxl": "Excel",
13
+ "xlrd": "old Excel",
14
+ "odf": "OpenOffice",
15
+ "gzip": "csv.gz",
16
+ }
17
+
18
+
19
+ def detect_engine(file_path: str, verbose=False) -> Optional[str]:
20
+ if verbose:
21
+ start = time()
22
+ mapping = {
23
+ "application/gzip": "gzip",
24
+ "application/x-gzip": "gzip",
25
+ 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': 'openpyxl',
26
+ 'application/vnd.ms-excel': 'xlrd',
27
+ 'application/vnd.oasis.opendocument.spreadsheet': 'odf',
28
+ # all these files could be recognized as zip, may need to check all cases then
29
+ 'application/zip': 'openpyxl',
30
+ }
31
+ # if none of the above, we move forwards with the csv process
32
+ if is_url(file_path):
33
+ remote_content = requests.get(file_path).content
34
+ engine = mapping.get(magic.from_buffer(remote_content, mime=True))
35
+ else:
36
+ engine = mapping.get(magic.from_file(file_path, mime=True))
37
+ if verbose:
38
+ message = (
39
+ f"File is not csv, detected {engine_to_file.get(engine, 'csv')}"
40
+ if engine else "Processing the file as a csv"
41
+ )
42
+ display_logs_depending_process_time(
43
+ message,
44
+ time() - start,
45
+ )
46
+ return engine
@@ -0,0 +1,170 @@
1
+ from collections import defaultdict
2
+ import logging
3
+ from typing import Union
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ from csv_detective.detection.variables import (
8
+ detect_categorical_variable,
9
+ # detect_continuous_variable,
10
+ )
11
+ from csv_detective.load_tests import return_all_tests
12
+ from csv_detective.output.utils import prepare_output_dict
13
+ from csv_detective.parsing.columns import test_col, test_label, MAX_ROWS_ANALYSIS
14
+ from csv_detective.validate import validate
15
+
16
+
17
+ def detect_formats(
18
+ table: pd.DataFrame,
19
+ analysis: dict,
20
+ file_path: str,
21
+ user_input_tests: Union[str, list[str]] = "ALL",
22
+ limited_output: bool = True,
23
+ skipna: bool = True,
24
+ verbose: bool = False,
25
+ ):
26
+ on_sample = len(table) > MAX_ROWS_ANALYSIS
27
+ if on_sample:
28
+ if verbose:
29
+ logging.warning(f"File is too long, analysing the {MAX_ROWS_ANALYSIS} first rows")
30
+ table = table.sample(n=MAX_ROWS_ANALYSIS, random_state=1)
31
+
32
+ if table.empty:
33
+ res_categorical = []
34
+ # res_continuous = []
35
+ else:
36
+ # Detects columns that are categorical
37
+ res_categorical, categorical_mask = detect_categorical_variable(table, verbose=verbose)
38
+ res_categorical = list(res_categorical)
39
+ # Detect columns that are continuous (we already know the categorical) :
40
+ # we don't need this for now, cuts processing time
41
+ # res_continuous = list(
42
+ # detect_continuous_variable(table.iloc[:, ~categorical_mask.values], verbose=verbose)
43
+ # )
44
+
45
+ analysis.update({
46
+ "categorical": res_categorical,
47
+ # "continuous": res_continuous,
48
+ })
49
+
50
+ # list testing to be performed
51
+ all_tests_fields = return_all_tests(
52
+ user_input_tests, detect_type="detect_fields"
53
+ ) # list all tests for the fields
54
+ all_tests_labels = return_all_tests(
55
+ user_input_tests, detect_type="detect_labels"
56
+ ) # list all tests for the labels
57
+
58
+ # if no testing then return
59
+ if not all_tests_fields and not all_tests_labels:
60
+ return analysis
61
+
62
+ # Perform testing on fields
63
+ scores_table_fields = test_col(table, all_tests_fields, limited_output, skipna=skipna, verbose=verbose)
64
+ analysis["columns_fields"] = prepare_output_dict(scores_table_fields, limited_output)
65
+
66
+ # Perform testing on labels
67
+ scores_table_labels = test_label(table, all_tests_labels, limited_output, verbose=verbose)
68
+ analysis["columns_labels"] = prepare_output_dict(scores_table_labels, limited_output)
69
+
70
+ # Multiply the results of the fields by 1 + 0.5 * the results of the labels.
71
+ # This is because the fields are more important than the labels and yields a max
72
+ # of 1.5 for the final score.
73
+ scores_table = scores_table_fields * (
74
+ 1
75
+ + scores_table_labels.reindex(
76
+ index=scores_table_fields.index, fill_value=0
77
+ ).values / 2
78
+ )
79
+
80
+ # To reduce false positives: ensure these formats are detected only if the label yields
81
+ # a detection (skipping the ones that have been excluded by the users).
82
+ formats_with_mandatory_label = [
83
+ f for f in [
84
+ "code_departement",
85
+ "code_commune_insee",
86
+ "code_postal",
87
+ "latitude_wgs",
88
+ "longitude_wgs",
89
+ "latitude_wgs_fr_metropole",
90
+ "longitude_wgs_fr_metropole",
91
+ "latitude_l93",
92
+ "longitude_l93",
93
+ ] if f in scores_table.index
94
+ ]
95
+ scores_table.loc[formats_with_mandatory_label, :] = np.where(
96
+ scores_table_labels.loc[formats_with_mandatory_label, :],
97
+ scores_table.loc[formats_with_mandatory_label, :],
98
+ 0,
99
+ )
100
+ analysis["columns"] = prepare_output_dict(scores_table, limited_output)
101
+
102
+ metier_to_python_type = {
103
+ "booleen": "bool",
104
+ "int": "int",
105
+ "float": "float",
106
+ "string": "string",
107
+ "json": "json",
108
+ "json_geojson": "json",
109
+ "datetime": "datetime",
110
+ "datetime_iso": "datetime",
111
+ "datetime_rfc822": "datetime",
112
+ "date": "date",
113
+ "latitude": "float",
114
+ "latitude_l93": "float",
115
+ "latitude_wgs": "float",
116
+ "latitude_wgs_fr_metropole": "float",
117
+ "longitude": "float",
118
+ "longitude_l93": "float",
119
+ "longitude_wgs": "float",
120
+ "longitude_wgs_fr_metropole": "float",
121
+ }
122
+
123
+ if not limited_output:
124
+ for detection_method in ["columns_fields", "columns_labels", "columns"]:
125
+ analysis[detection_method] = {
126
+ col_name: [
127
+ {
128
+ "python_type": metier_to_python_type.get(
129
+ detection["format"], "string"
130
+ ),
131
+ **detection,
132
+ }
133
+ for detection in detections
134
+ ]
135
+ for col_name, detections in analysis[detection_method].items()
136
+ }
137
+ else:
138
+ for detection_method in ["columns_fields", "columns_labels", "columns"]:
139
+ analysis[detection_method] = {
140
+ col_name: {
141
+ "python_type": metier_to_python_type.get(
142
+ detection["format"], "string"
143
+ ),
144
+ **detection,
145
+ }
146
+ for col_name, detection in analysis[detection_method].items()
147
+ }
148
+
149
+ # Add detection with formats as keys
150
+ analysis["formats"] = defaultdict(list)
151
+ for header, col_metadata in analysis["columns"].items():
152
+ analysis["formats"][col_metadata["format"]].append(header)
153
+
154
+ if on_sample:
155
+ if verbose:
156
+ logging.warning("Validating that analysis on the sample works on the whole file")
157
+ is_valid, _, _ = validate(
158
+ file_path=file_path,
159
+ previous_analysis=analysis,
160
+ num_rows=-1,
161
+ encoding=analysis.get("encoding"),
162
+ sep=analysis.get("separator"),
163
+ sheet_name=analysis.get("sheet_name"),
164
+ verbose=verbose,
165
+ skipna=skipna,
166
+ )
167
+ if not is_valid:
168
+ raise ValueError("Could not infer detected formats on the whole file")
169
+
170
+ return analysis
@@ -0,0 +1,32 @@
1
+ import logging
2
+ from time import time
3
+ from typing import Optional, TextIO
4
+
5
+ from csv_detective.utils import display_logs_depending_process_time
6
+
7
+
8
+ def detect_headers(file: TextIO, sep: str, verbose: bool = False) -> tuple[int, Optional[list]]:
9
+ """Tests 10 first rows for possible header (in case header is not 1st row)"""
10
+ if verbose:
11
+ start = time()
12
+ logging.info("Detecting headers")
13
+ file.seek(0)
14
+ for i in range(10):
15
+ header = file.readline()
16
+ position = file.tell()
17
+ chaine = [c for c in header.replace("\n", "").split(sep) if c]
18
+ if chaine[-1] not in ["", "\n"] and all(
19
+ [mot not in ["", "\n"] for mot in chaine[1:-1]]
20
+ ):
21
+ next_row = file.readline()
22
+ file.seek(position)
23
+ if header != next_row:
24
+ if verbose:
25
+ display_logs_depending_process_time(
26
+ f'Detected headers in {round(time() - start, 3)}s',
27
+ time() - start,
28
+ )
29
+ return i, chaine
30
+ if verbose:
31
+ logging.info('No header detected')
32
+ return 0, None
@@ -0,0 +1,18 @@
1
+ import pandas as pd
2
+
3
+
4
+ def remove_empty_first_rows(table: pd.DataFrame) -> tuple[pd.DataFrame, int]:
5
+ """Analog process to detect_headers for csv files, determines how many rows to skip
6
+ to end up with the header at the right place"""
7
+ idx = 0
8
+ if all([str(c).startswith('Unnamed:') for c in table.columns]):
9
+ # there is on offset between the index in the file (idx here)
10
+ # and the index in the dataframe, because of the header
11
+ idx = 1
12
+ while table.iloc[idx - 1].isna().all():
13
+ idx += 1
14
+ cols = table.iloc[idx - 1]
15
+ table = table.iloc[idx:]
16
+ table.columns = cols.to_list()
17
+ # +1 here because the headers should count as a row
18
+ return table, idx
@@ -0,0 +1,44 @@
1
+ import csv
2
+ import logging
3
+ from time import time
4
+ from typing import TextIO
5
+
6
+ from csv_detective.utils import display_logs_depending_process_time
7
+
8
+
9
+ def detect_separator(file: TextIO, verbose: bool = False) -> str:
10
+ """Detects csv separator"""
11
+ # TODO: add a robust detection:
12
+ # si on a un point virgule comme texte et \t comme séparateur, on renvoie
13
+ # pour l'instant un point virgule
14
+ if verbose:
15
+ start = time()
16
+ logging.info("Detecting separator")
17
+ file.seek(0)
18
+ header = file.readline()
19
+ possible_separators = [";", ",", "|", "\t"]
20
+ sep_count = dict()
21
+ for sep in possible_separators:
22
+ sep_count[sep] = header.count(sep)
23
+ sep = max(sep_count, key=sep_count.get)
24
+ # testing that the first 10 (arbitrary) rows all have the same number of fields
25
+ # as the header. Prevents downstream unwanted behaviour where pandas can load
26
+ # the file (in a weird way) but the process is irrelevant.
27
+ file.seek(0)
28
+ reader = csv.reader(file, delimiter=sep)
29
+ rows_lengths = set()
30
+ for idx, row in enumerate(reader):
31
+ if idx > 10:
32
+ break
33
+ rows_lengths.add(len(row))
34
+ if len(rows_lengths) > 1:
35
+ raise ValueError(
36
+ f"Number of columns is not even across the first 10 rows (detected separator: {sep})."
37
+ )
38
+
39
+ if verbose:
40
+ display_logs_depending_process_time(
41
+ f'Detected separator: "{sep}" in {round(time() - start, 3)}s',
42
+ time() - start,
43
+ )
44
+ return sep
@@ -0,0 +1,98 @@
1
+ from ast import literal_eval
2
+ import logging
3
+ from time import time
4
+
5
+ import pandas as pd
6
+
7
+ from csv_detective.utils import display_logs_depending_process_time
8
+
9
+
10
+ def detect_continuous_variable(table: pd.DataFrame, continuous_th: float = 0.9, verbose: bool = False):
11
+ """
12
+ Detects whether a column contains continuous variables. We consider a continuous column
13
+ one that contains a considerable amount of float values.
14
+ We removed the integers as we then end up with postal codes, insee codes, and all sort
15
+ of codes and types.
16
+ This is not optimal but it will do for now.
17
+ """
18
+ # if we need this again in the future, could be first based on columns detected as int/float to cut time
19
+
20
+ def check_threshold(serie: pd.Series, continuous_th: float) -> bool:
21
+ count = serie.value_counts().to_dict()
22
+ total_nb = len(serie)
23
+ if float in count:
24
+ nb_floats = count[float]
25
+ else:
26
+ return False
27
+ if nb_floats / total_nb >= continuous_th:
28
+ return True
29
+ else:
30
+ return False
31
+
32
+ def parses_to_integer(value: str):
33
+ try:
34
+ value = value.replace(",", ".")
35
+ value = literal_eval(value)
36
+ return type(value)
37
+ # flake8: noqa
38
+ except:
39
+ return False
40
+
41
+ if verbose:
42
+ start = time()
43
+ logging.info("Detecting continuous columns")
44
+ res = table.apply(
45
+ lambda serie: check_threshold(serie.apply(parses_to_integer), continuous_th)
46
+ )
47
+ if verbose:
48
+ display_logs_depending_process_time(
49
+ f"Detected {sum(res)} continuous columns in {round(time() - start, 3)}s",
50
+ time() - start,
51
+ )
52
+ return res.index[res]
53
+
54
+
55
+ def detect_categorical_variable(
56
+ table: pd.DataFrame,
57
+ threshold_pct_categorical: float = 0.05,
58
+ max_number_categorical_values: int = 25,
59
+ verbose: bool = False,
60
+ ):
61
+ """
62
+ Heuristically detects whether a table (df) contains categorical values according to
63
+ the number of unique values contained.
64
+ As the idea of detecting categorical values is to then try to learn models to predict
65
+ them, we limit categorical values to at most 25 different modes or at most 5% disparity.
66
+ Postal code, insee code, code region and so on, may be thus not considered categorical values.
67
+ :param table:
68
+ :param threshold_pct_categorical:
69
+ :param max_number_categorical_values:
70
+ :return:
71
+ """
72
+
73
+ def abs_number_different_values(column_values: pd.Series):
74
+ return column_values.nunique()
75
+
76
+ def rel_number_different_values(column_values: pd.Series):
77
+ return column_values.nunique() / len(column_values)
78
+
79
+ def detect_categorical(column_values: pd.Series):
80
+ abs_unique_values = abs_number_different_values(column_values)
81
+ rel_unique_values = rel_number_different_values(column_values)
82
+ if (
83
+ abs_unique_values <= max_number_categorical_values
84
+ or rel_unique_values <= threshold_pct_categorical
85
+ ):
86
+ return True
87
+ return False
88
+
89
+ if verbose:
90
+ start = time()
91
+ logging.info("Detecting categorical columns")
92
+ res = table.apply(lambda serie: detect_categorical(serie))
93
+ if verbose:
94
+ display_logs_depending_process_time(
95
+ f"Detected {sum(res)} categorical columns out of {len(table.columns)} in {round(time() - start, 3)}s",
96
+ time() - start,
97
+ )
98
+ return res.index[res], res
@@ -6,6 +6,7 @@
6
6
  - Refactor repo metadata and requirements [#120](https://github.com/datagouv/csv-detective/pull/120) [#122](https://github.com/datagouv/csv-detective/pull/122)
7
7
  - Better URL detection [#121](https://github.com/datagouv/csv-detective/pull/121)
8
8
  - For big files, analyse on sample then validate on whole file [#124](https://github.com/datagouv/csv-detective/pull/124)
9
+ - Fix imports [#125](https://github.com/datagouv/csv-detective/pull/125)
9
10
 
10
11
  ## 0.8.0 (2025-05-20)
11
12
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: csv_detective
3
- Version: 0.8.1.dev1460
3
+ Version: 0.8.1.dev1469
4
4
  Summary: Detect tabular files column content
5
5
  Home-page: https://github.com/datagouv/csv_detective
6
6
  Author: Etalab
@@ -121,16 +121,25 @@ csv_detective/detect_labels/temp/date/__init__.py,sha256=w0eeZIseAmPwL4OvCWzZXbx
121
121
  csv_detective/detect_labels/temp/datetime_iso/__init__.py,sha256=d0laZNzHx-kSARs9Re8TZ11GNs99aMz6gXc72CJ6ul4,440
122
122
  csv_detective/detect_labels/temp/datetime_rfc822/__init__.py,sha256=53ysj7QgsxXwG1le3zfSJd1oaTTf-Er3jBeYi_A4F9g,458
123
123
  csv_detective/detect_labels/temp/year/__init__.py,sha256=7uWaCZY7dOG7nolW46IgBWmcu8K-9jPED-pOlMlErfo,433
124
+ csv_detective/detection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
125
+ csv_detective/detection/columns.py,sha256=vfE-DKESA6J9Rfsl-a8tjgZfE21VmzArO5TrbzL0KmE,2905
126
+ csv_detective/detection/encoding.py,sha256=tpjJEMNM_2TcLXDzn1lNQPnSRnsWYjs83tQ8jNwTj4E,973
127
+ csv_detective/detection/engine.py,sha256=HiIrU-l9EO5Fbc2Vh8W_Uy5-dpKcQQzlxCqMuWc09LY,1530
128
+ csv_detective/detection/formats.py,sha256=5ZW7gmhyQt6BB7xLcVVhui17oGn1udAWI9w22EAOHy4,6337
129
+ csv_detective/detection/headers.py,sha256=wrVII2RQpsVmHhrO1DHf3dmiu8kbtOjBlskf41cnQmc,1172
130
+ csv_detective/detection/rows.py,sha256=3qvsbsBcMxiqqfSYYkOgsRpX777rk22tnRHDwUA97kU,742
131
+ csv_detective/detection/separator.py,sha256=XjeDBqhiBxVfkCPJKem9BAgJqs_hOgQltc_pxrH_-Tg,1547
132
+ csv_detective/detection/variables.py,sha256=3qEMtjZ_zyIFXvTnFgK7ZMDx8C12uQXKfFjEj2moyJc,3558
124
133
  csv_detective/output/__init__.py,sha256=5KTevPfp_4MRxByJyOntQjToNfeG7dPQn-_13wSq7EU,1910
125
134
  csv_detective/output/dataframe.py,sha256=89iQRE59cHQyQQEsujQVIKP2YAUYpPklWkdDOqZE-wE,2183
126
135
  csv_detective/output/example.py,sha256=EdPX1iqHhIG4DsiHuYdy-J7JxOkjgUh_o2D5nrfM5fA,8649
127
136
  csv_detective/output/profile.py,sha256=B8YU541T_YPDezJGh4dkHckOShiwHSrZd9GS8jbmz7A,2919
128
137
  csv_detective/output/schema.py,sha256=ZDBWDOD8IYp7rcB0_n8l9JXGIhOQ6bTZHFWfTmnNNEQ,13480
129
138
  csv_detective/output/utils.py,sha256=HbmvCCCmFo7NJxhD_UsJIveuw-rrfhrvYckv1CJn_10,2301
130
- csv_detective-0.8.1.dev1460.data/data/share/csv_detective/CHANGELOG.md,sha256=BsmO9YQAMi31co_c0I8aYRsm2m5Q5--vORWoJArdhOM,8725
131
- csv_detective-0.8.1.dev1460.data/data/share/csv_detective/LICENSE,sha256=A1dQrzxyxRHRih02KwibWj1khQyF7GeA6SqdOU87Gk4,1088
132
- csv_detective-0.8.1.dev1460.data/data/share/csv_detective/README.md,sha256=gKLFmC8kuCCywS9eAhMak_JNriUWWNOsBKleAu5TIEY,8501
133
- csv_detective-0.8.1.dev1460.dist-info/licenses/LICENSE,sha256=A1dQrzxyxRHRih02KwibWj1khQyF7GeA6SqdOU87Gk4,1088
139
+ csv_detective-0.8.1.dev1469.data/data/share/csv_detective/CHANGELOG.md,sha256=-Ut6d9FycTm_ax8QNjBEATCH9NOWOq3fwVLeSgjRTDU,8798
140
+ csv_detective-0.8.1.dev1469.data/data/share/csv_detective/LICENSE,sha256=A1dQrzxyxRHRih02KwibWj1khQyF7GeA6SqdOU87Gk4,1088
141
+ csv_detective-0.8.1.dev1469.data/data/share/csv_detective/README.md,sha256=gKLFmC8kuCCywS9eAhMak_JNriUWWNOsBKleAu5TIEY,8501
142
+ csv_detective-0.8.1.dev1469.dist-info/licenses/LICENSE,sha256=A1dQrzxyxRHRih02KwibWj1khQyF7GeA6SqdOU87Gk4,1088
134
143
  tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
135
144
  tests/test_example.py,sha256=JeHxSK0IVDcSrOhSZlNGSQv4JAc_r6mzvJM8PfmLTMw,2018
136
145
  tests/test_fields.py,sha256=d2tNvjtal6ZbO646x1GDbp_CGgp-EIcdg2SgMG72J6E,10270
@@ -138,8 +147,8 @@ tests/test_file.py,sha256=FWVtYHlD5uU7tPeYsqlQg6O4lpU8Ct35vddkbzhvvjA,8508
138
147
  tests/test_labels.py,sha256=Nkr645bUewrj8hjNDKr67FQ6Sy_TID6f3E5Kfkl231M,464
139
148
  tests/test_structure.py,sha256=bv-tjgXohvQAxwmxzH0BynFpK2TyPjcxvtIAmIRlZmA,1393
140
149
  tests/test_validation.py,sha256=CTGonR6htxcWF9WH8MxumDD8cF45Y-G4hm94SM4lFjU,3246
141
- csv_detective-0.8.1.dev1460.dist-info/METADATA,sha256=Rhi872uRXV2PcYpcI64GJ9vw12TsYIEQJxf8H1srLic,10443
142
- csv_detective-0.8.1.dev1460.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
143
- csv_detective-0.8.1.dev1460.dist-info/entry_points.txt,sha256=JjweTReFqKJmuvkegzlew2j3D5pZzfxvbEGOtGVGmaY,56
144
- csv_detective-0.8.1.dev1460.dist-info/top_level.txt,sha256=M0Nv646VHo-49zWjPkwo2C48UmtfddV8_9mEZeIxy8Q,20
145
- csv_detective-0.8.1.dev1460.dist-info/RECORD,,
150
+ csv_detective-0.8.1.dev1469.dist-info/METADATA,sha256=J9fGXJjtRLS17DxyfwmzjteKpx23J01Cr3oNZaw0DSg,10443
151
+ csv_detective-0.8.1.dev1469.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
152
+ csv_detective-0.8.1.dev1469.dist-info/entry_points.txt,sha256=JjweTReFqKJmuvkegzlew2j3D5pZzfxvbEGOtGVGmaY,56
153
+ csv_detective-0.8.1.dev1469.dist-info/top_level.txt,sha256=M0Nv646VHo-49zWjPkwo2C48UmtfddV8_9mEZeIxy8Q,20
154
+ csv_detective-0.8.1.dev1469.dist-info/RECORD,,