csv-detective 0.10.1__py3-none-any.whl → 0.10.1.dev2576__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. csv_detective/detection/formats.py +38 -11
  2. csv_detective/format.py +4 -11
  3. csv_detective/formats/adresse.py +9 -9
  4. csv_detective/formats/binary.py +1 -2
  5. csv_detective/formats/booleen.py +2 -3
  6. csv_detective/formats/code_commune_insee.py +10 -12
  7. csv_detective/formats/code_csp_insee.py +1 -1
  8. csv_detective/formats/code_departement.py +7 -8
  9. csv_detective/formats/code_fantoir.py +5 -6
  10. csv_detective/formats/code_import.py +1 -1
  11. csv_detective/formats/code_postal.py +9 -10
  12. csv_detective/formats/code_region.py +6 -7
  13. csv_detective/formats/code_rna.py +6 -7
  14. csv_detective/formats/code_waldec.py +1 -1
  15. csv_detective/formats/commune.py +5 -5
  16. csv_detective/formats/csp_insee.py +5 -6
  17. csv_detective/formats/data/insee_ape700.txt +1 -1
  18. csv_detective/formats/data/iso_country_code_alpha2.txt +397 -153
  19. csv_detective/formats/data/iso_country_code_alpha3.txt +132 -132
  20. csv_detective/formats/data/iso_country_code_numeric.txt +94 -94
  21. csv_detective/formats/date.py +17 -18
  22. csv_detective/formats/date_fr.py +1 -1
  23. csv_detective/formats/datetime_aware.py +2 -7
  24. csv_detective/formats/datetime_naive.py +0 -3
  25. csv_detective/formats/datetime_rfc822.py +0 -1
  26. csv_detective/formats/departement.py +15 -15
  27. csv_detective/formats/email.py +13 -13
  28. csv_detective/formats/float.py +1 -2
  29. csv_detective/formats/geojson.py +10 -10
  30. csv_detective/formats/insee_ape700.py +8 -10
  31. csv_detective/formats/insee_canton.py +6 -6
  32. csv_detective/formats/int.py +1 -2
  33. csv_detective/formats/iso_country_code_alpha2.py +14 -14
  34. csv_detective/formats/iso_country_code_alpha3.py +13 -6
  35. csv_detective/formats/iso_country_code_numeric.py +9 -2
  36. csv_detective/formats/jour_de_la_semaine.py +12 -11
  37. csv_detective/formats/json.py +0 -6
  38. csv_detective/formats/latitude_l93.py +22 -8
  39. csv_detective/formats/latitude_wgs.py +29 -31
  40. csv_detective/formats/latitude_wgs_fr_metropole.py +30 -7
  41. csv_detective/formats/latlon_wgs.py +28 -30
  42. csv_detective/formats/longitude_l93.py +13 -8
  43. csv_detective/formats/longitude_wgs.py +19 -34
  44. csv_detective/formats/longitude_wgs_fr_metropole.py +19 -6
  45. csv_detective/formats/lonlat_wgs.py +11 -12
  46. csv_detective/formats/mois_de_lannee.py +1 -1
  47. csv_detective/formats/money.py +1 -1
  48. csv_detective/formats/mongo_object_id.py +1 -1
  49. csv_detective/formats/pays.py +13 -11
  50. csv_detective/formats/percent.py +1 -1
  51. csv_detective/formats/region.py +13 -13
  52. csv_detective/formats/sexe.py +1 -1
  53. csv_detective/formats/siren.py +10 -9
  54. csv_detective/formats/siret.py +9 -9
  55. csv_detective/formats/tel_fr.py +13 -7
  56. csv_detective/formats/uai.py +18 -17
  57. csv_detective/formats/url.py +16 -16
  58. csv_detective/formats/username.py +1 -1
  59. csv_detective/formats/uuid.py +1 -1
  60. csv_detective/formats/year.py +12 -7
  61. csv_detective/output/dataframe.py +1 -6
  62. csv_detective/output/profile.py +1 -5
  63. csv_detective/parsing/text.py +12 -13
  64. {csv_detective-0.10.1.dist-info → csv_detective-0.10.1.dev2576.dist-info}/METADATA +2 -2
  65. csv_detective-0.10.1.dev2576.dist-info/RECORD +92 -0
  66. {csv_detective-0.10.1.dist-info → csv_detective-0.10.1.dev2576.dist-info}/WHEEL +1 -1
  67. csv_detective-0.10.1.dist-info/RECORD +0 -92
  68. {csv_detective-0.10.1.dist-info → csv_detective-0.10.1.dev2576.dist-info}/entry_points.txt +0 -0
@@ -82,7 +82,22 @@ def detect_formats(
82
82
  # To reduce false positives: ensure these formats are detected only if the label yields
83
83
  # a detection (skipping the ones that have been excluded by the users).
84
84
  formats_with_mandatory_label = [
85
- f for f in fmtm.get_formats_with_mandatory_label() if f in scores_table.index
85
+ f
86
+ for f in [
87
+ "code_departement",
88
+ "code_commune_insee",
89
+ "code_postal",
90
+ "code_fantoir",
91
+ "latitude_wgs",
92
+ "longitude_wgs",
93
+ "latitude_wgs_fr_metropole",
94
+ "longitude_wgs_fr_metropole",
95
+ "latitude_l93",
96
+ "longitude_l93",
97
+ "siren",
98
+ "siret",
99
+ ]
100
+ if f in scores_table.index
86
101
  ]
87
102
  scores_table.loc[formats_with_mandatory_label, :] = np.where(
88
103
  scores_table_labels.loc[formats_with_mandatory_label, :],
@@ -91,16 +106,32 @@ def detect_formats(
91
106
  )
92
107
  analysis["columns"] = prepare_output_dict(scores_table, limited_output)
93
108
 
109
+ metier_to_python_type = {
110
+ "booleen": "bool",
111
+ "int": "int",
112
+ "float": "float",
113
+ "string": "string",
114
+ "json": "json",
115
+ "geojson": "json",
116
+ "datetime_aware": "datetime",
117
+ "datetime_naive": "datetime",
118
+ "datetime_rfc822": "datetime",
119
+ "date": "date",
120
+ "latitude_l93": "float",
121
+ "latitude_wgs": "float",
122
+ "latitude_wgs_fr_metropole": "float",
123
+ "longitude_l93": "float",
124
+ "longitude_wgs": "float",
125
+ "longitude_wgs_fr_metropole": "float",
126
+ "binary": "binary",
127
+ }
128
+
94
129
  if not limited_output:
95
130
  for detection_method in ["columns_fields", "columns_labels", "columns"]:
96
131
  analysis[detection_method] = {
97
132
  col_name: [
98
133
  {
99
- "python_type": (
100
- "string"
101
- if detection["format"] == "string"
102
- else fmtm.formats[detection["format"]].python_type
103
- ),
134
+ "python_type": metier_to_python_type.get(detection["format"], "string"),
104
135
  **detection,
105
136
  }
106
137
  for detection in detections
@@ -111,11 +142,7 @@ def detect_formats(
111
142
  for detection_method in ["columns_fields", "columns_labels", "columns"]:
112
143
  analysis[detection_method] = {
113
144
  col_name: {
114
- "python_type": (
115
- "string"
116
- if detection["format"] == "string"
117
- else fmtm.formats[detection["format"]].python_type
118
- ),
145
+ "python_type": metier_to_python_type.get(detection["format"], "string"),
119
146
  **detection,
120
147
  }
121
148
  for col_name, detection in analysis[detection_method].items()
csv_detective/format.py CHANGED
@@ -9,11 +9,9 @@ class Format:
9
9
  name: str,
10
10
  func: Callable[[Any], bool],
11
11
  _test_values: dict[bool, list[str]],
12
- labels: dict[str, float] = {},
12
+ labels: list[str] = [],
13
13
  proportion: float = 1,
14
14
  tags: list[str] = [],
15
- mandatory_label: bool = False,
16
- python_type: str = "string",
17
15
  ) -> None:
18
16
  """
19
17
  Instanciates a Format object.
@@ -22,18 +20,16 @@ class Format:
22
20
  name: the name of the format.
23
21
  func: the value test for the format (returns whether a string is valid).
24
22
  _test_values: lists of valid and invalid values, used in the tests
25
- labels: the dict of hint headers and their credibilty for the header score (NB: credibility is relative witin a single format, should be used to rank the valid labels)
23
+ labels: the list of hint headers for the header score
26
24
  proportion: the tolerance (between 0 and 1) to say a column is valid for a format. (1 => 100% of the column has to pass the func check for the column to be considered valid)
27
25
  tags: to allow users to submit a file to only a subset of formats
28
26
  """
29
27
  self.name: str = name
30
28
  self.func: Callable = func
31
29
  self._test_values: dict[bool, list[str]] = _test_values
32
- self.labels: dict[str, float] = labels
30
+ self.labels: list[str] = labels
33
31
  self.proportion: float = proportion
34
32
  self.tags: list[str] = tags
35
- self.mandatory_label: bool = mandatory_label
36
- self.python_type: str = python_type
37
33
 
38
34
  def is_valid_label(self, val: str) -> float:
39
35
  return header_score(val, self.labels)
@@ -53,7 +49,7 @@ class FormatsManager:
53
49
  _test_values=module._test_values,
54
50
  **{
55
51
  attr: val
56
- for attr in ["labels", "proportion", "tags", "mandatory_label", "python_type"]
52
+ for attr in ["labels", "proportion", "tags"]
57
53
  if (val := getattr(module, attr, None))
58
54
  },
59
55
  )
@@ -67,8 +63,5 @@ class FormatsManager:
67
63
  if all(tag in fmt.tags for tag in tags)
68
64
  }
69
65
 
70
- def get_formats_with_mandatory_label(self) -> dict[str, Format]:
71
- return {label: fmt for label, fmt in self.formats.items() if fmt.mandatory_label}
72
-
73
66
  def available_tags(self) -> set[str]:
74
67
  return set(tag for format in self.formats.values() for tag in format.tags)
@@ -2,15 +2,15 @@ from csv_detective.parsing.text import _process_text
2
2
 
3
3
  proportion = 0.55
4
4
  tags = ["fr", "geo"]
5
- labels = {
6
- "adresse": 1,
7
- "localisation": 1,
8
- "adresse postale": 1,
9
- "adresse geographique": 1,
10
- "adr": 0.5,
11
- "adresse complete": 1,
12
- "adresse station": 1,
13
- }
5
+ labels = [
6
+ "adresse",
7
+ "localisation",
8
+ "adresse postale",
9
+ "adresse geographique",
10
+ "adr",
11
+ "adresse complete",
12
+ "adresse station",
13
+ ]
14
14
 
15
15
  voies = {
16
16
  "aire ",
@@ -2,8 +2,7 @@ import codecs
2
2
 
3
3
  proportion = 1
4
4
  tags = ["type"]
5
- python_type = "binary"
6
- labels = {"bytes": 1, "binary": 1, "image": 1, "encode": 1, "content": 1}
5
+ labels = ["bytes", "binary", "image", "encode", "content"]
7
6
 
8
7
 
9
8
  def binary_casting(val: str) -> bytes:
@@ -1,7 +1,6 @@
1
1
  proportion = 1
2
2
  tags = ["type"]
3
- python_type = "bool"
4
- labels = {"is ": 1, "has ": 1, "est ": 1}
3
+ labels = ["is ", "has ", "est "]
5
4
 
6
5
  bool_mapping = {
7
6
  "1": True,
@@ -22,7 +21,7 @@ bool_mapping = {
22
21
  liste_bool = set(bool_mapping.keys())
23
22
 
24
23
 
25
- def bool_casting(val: str) -> bool | None:
24
+ def bool_casting(val: str) -> bool:
26
25
  return bool_mapping.get(val.lower())
27
26
 
28
27
 
@@ -2,18 +2,16 @@ from frformat import CodeCommuneInsee, Millesime
2
2
 
3
3
  proportion = 0.75
4
4
  tags = ["fr", "geo"]
5
- mandatory_label = True
6
- labels = {
7
- "code commune insee": 1,
8
- "code insee": 1,
9
- "codes insee": 1,
10
- "code commune": 1,
11
- "code insee commune": 1,
12
- "insee": 0.75,
13
- "code com": 1,
14
- "com": 0.5,
15
- "code": 0.5,
16
- }
5
+ labels = [
6
+ "code commune insee",
7
+ "code insee",
8
+ "codes insee",
9
+ "code commune",
10
+ "code insee commune",
11
+ "insee",
12
+ "code com",
13
+ "com",
14
+ ]
17
15
 
18
16
  _code_commune_insee = CodeCommuneInsee(Millesime.LATEST)
19
17
 
@@ -4,7 +4,7 @@ from csv_detective.parsing.text import _process_text
4
4
 
5
5
  proportion = 1
6
6
  tags = ["fr"]
7
- labels = {"code csp insee": 1, "code csp": 1}
7
+ labels = ["code csp insee", "code csp"]
8
8
 
9
9
 
10
10
  def _is(val):
@@ -2,14 +2,13 @@ from frformat import Millesime, NumeroDepartement, Options
2
2
 
3
3
  proportion = 1
4
4
  tags = ["fr", "geo"]
5
- mandatory_label = True
6
- labels = {
7
- "code departement": 1,
8
- "code_departement": 1,
9
- "dep": 0.5,
10
- "departement": 1,
11
- "dept": 0.75,
12
- }
5
+ labels = [
6
+ "code departement",
7
+ "code_departement",
8
+ "dep",
9
+ "departement",
10
+ "dept",
11
+ ]
13
12
 
14
13
  _options = Options(
15
14
  ignore_case=True,
@@ -2,12 +2,11 @@ from frformat import CodeFantoir
2
2
 
3
3
  proportion = 1
4
4
  tags = ["fr", "geo"]
5
- mandatory_label = True
6
- labels = {
7
- "cadastre1": 1,
8
- "code fantoir": 1,
9
- "fantoir": 1,
10
- }
5
+ labels = [
6
+ "cadastre1",
7
+ "code fantoir",
8
+ "fantoir",
9
+ ]
11
10
 
12
11
  _code_fantoir = CodeFantoir()
13
12
 
@@ -2,7 +2,7 @@ import re
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr"]
5
- labels = {"code": 0.5}
5
+ labels = ["code"]
6
6
 
7
7
  regex = r"^(\d{3}[SP]\d{4,10}(.\w{1,3}\d{0,5})?|\d[A-Z0-9]\d[SP]\w(\w-?\w{0,2}\d{0,6})?)$"
8
8
 
@@ -2,16 +2,15 @@ from frformat import CodePostal
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr", "geo"]
5
- mandatory_label = True
6
- labels = {
7
- "code postal": 1,
8
- "postal code": 1,
9
- "postcode": 1,
10
- "post code": 1,
11
- "cp": 0.5,
12
- "codes postaux": 1,
13
- "location postcode": 1,
14
- }
5
+ labels = [
6
+ "code postal",
7
+ "postal code",
8
+ "postcode",
9
+ "post code",
10
+ "cp",
11
+ "codes postaux",
12
+ "location postcode",
13
+ ]
15
14
 
16
15
  _code_postal = CodePostal()
17
16
 
@@ -2,13 +2,12 @@ from frformat import CodeRegion, Millesime
2
2
 
3
3
  proportion = 1
4
4
  tags = ["fr", "geo"]
5
- mandatory_label = True
6
- labels = {
7
- "code region": 1,
8
- "reg": 0.5,
9
- "code insee region": 1,
10
- "region": 1,
11
- }
5
+ labels = [
6
+ "code region",
7
+ "reg",
8
+ "code insee region",
9
+ "region",
10
+ ]
12
11
 
13
12
  _code_region = CodeRegion(Millesime.LATEST)
14
13
 
@@ -2,13 +2,12 @@ from frformat import CodeRNA
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr"]
5
- labels = {
6
- "code rna": 1,
7
- "rna": 1,
8
- "n° inscription association": 1,
9
- "identifiant association": 1,
10
- "asso": 0.75,
11
- }
5
+ labels = [
6
+ "code rna",
7
+ "rna",
8
+ "n° inscription association",
9
+ "identifiant association",
10
+ ]
12
11
 
13
12
  _code_rna = CodeRNA()
14
13
 
@@ -2,7 +2,7 @@ import re
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr"]
5
- labels = {"code waldec": 1, "waldec": 1}
5
+ labels = ["code waldec", "waldec"]
6
6
 
7
7
  regex = r"^W\d[\dA-Z]\d{7}$"
8
8
 
@@ -2,11 +2,11 @@ from frformat import Commune, Millesime, Options
2
2
 
3
3
  proportion = 0.8
4
4
  tags = ["fr", "geo"]
5
- labels = {
6
- "commune": 1,
7
- "ville": 1,
8
- "libelle commune": 1,
9
- }
5
+ labels = [
6
+ "commune",
7
+ "ville",
8
+ "libelle commune",
9
+ ]
10
10
 
11
11
  _options = Options(
12
12
  ignore_case=True,
@@ -4,12 +4,11 @@ from csv_detective.parsing.text import _process_text
4
4
 
5
5
  proportion = 1
6
6
  tags = ["fr"]
7
- labels = {
8
- "csp insee": 1,
9
- "csp": 0.75,
10
- "categorie socioprofessionnelle": 1,
11
- "sociopro": 1,
12
- }
7
+ labels = [
8
+ "csp insee",
9
+ "csp",
10
+ "categorie socioprofessionnelle",
11
+ ]
13
12
 
14
13
  f = open(join(dirname(__file__), "data", "csp_insee.txt"), "r")
15
14
  codes_insee = f.read().split("\n")
@@ -1,6 +1,6 @@
1
1
  0000Z
2
2
  0000Z
3
- 000Z
3
+ 000Z
4
4
  0111Z
5
5
  0112Z
6
6
  0113Z