csv-detective 0.10.1.dev2581__py3-none-any.whl → 0.10.1.dev2599__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. csv_detective/detection/formats.py +11 -38
  2. csv_detective/format.py +11 -4
  3. csv_detective/formats/adresse.py +9 -9
  4. csv_detective/formats/binary.py +2 -1
  5. csv_detective/formats/booleen.py +3 -2
  6. csv_detective/formats/code_commune_insee.py +12 -10
  7. csv_detective/formats/code_csp_insee.py +1 -1
  8. csv_detective/formats/code_departement.py +8 -7
  9. csv_detective/formats/code_fantoir.py +6 -5
  10. csv_detective/formats/code_import.py +1 -1
  11. csv_detective/formats/code_postal.py +10 -9
  12. csv_detective/formats/code_region.py +7 -6
  13. csv_detective/formats/code_rna.py +7 -6
  14. csv_detective/formats/code_waldec.py +1 -1
  15. csv_detective/formats/commune.py +5 -5
  16. csv_detective/formats/csp_insee.py +6 -5
  17. csv_detective/formats/date.py +18 -17
  18. csv_detective/formats/date_fr.py +1 -1
  19. csv_detective/formats/datetime_aware.py +2 -1
  20. csv_detective/formats/datetime_naive.py +1 -0
  21. csv_detective/formats/datetime_rfc822.py +1 -0
  22. csv_detective/formats/departement.py +15 -15
  23. csv_detective/formats/email.py +13 -13
  24. csv_detective/formats/float.py +2 -1
  25. csv_detective/formats/geojson.py +10 -10
  26. csv_detective/formats/insee_ape700.py +10 -8
  27. csv_detective/formats/insee_canton.py +6 -6
  28. csv_detective/formats/int.py +2 -1
  29. csv_detective/formats/iso_country_code_alpha2.py +10 -9
  30. csv_detective/formats/iso_country_code_alpha3.py +2 -9
  31. csv_detective/formats/iso_country_code_numeric.py +2 -9
  32. csv_detective/formats/jour_de_la_semaine.py +11 -12
  33. csv_detective/formats/json.py +6 -0
  34. csv_detective/formats/latitude_l93.py +8 -22
  35. csv_detective/formats/latitude_wgs.py +21 -26
  36. csv_detective/formats/latitude_wgs_fr_metropole.py +4 -26
  37. csv_detective/formats/latlon_wgs.py +27 -26
  38. csv_detective/formats/longitude_l93.py +8 -13
  39. csv_detective/formats/longitude_wgs.py +24 -16
  40. csv_detective/formats/longitude_wgs_fr_metropole.py +4 -16
  41. csv_detective/formats/lonlat_wgs.py +10 -9
  42. csv_detective/formats/mois_de_lannee.py +1 -1
  43. csv_detective/formats/money.py +1 -1
  44. csv_detective/formats/mongo_object_id.py +1 -1
  45. csv_detective/formats/pays.py +11 -13
  46. csv_detective/formats/percent.py +1 -1
  47. csv_detective/formats/region.py +13 -13
  48. csv_detective/formats/sexe.py +1 -1
  49. csv_detective/formats/siren.py +9 -10
  50. csv_detective/formats/siret.py +9 -9
  51. csv_detective/formats/tel_fr.py +7 -13
  52. csv_detective/formats/uai.py +17 -18
  53. csv_detective/formats/url.py +16 -16
  54. csv_detective/formats/username.py +1 -1
  55. csv_detective/formats/uuid.py +1 -1
  56. csv_detective/formats/year.py +7 -12
  57. csv_detective/parsing/text.py +13 -12
  58. {csv_detective-0.10.1.dev2581.dist-info → csv_detective-0.10.1.dev2599.dist-info}/METADATA +1 -1
  59. csv_detective-0.10.1.dev2599.dist-info/RECORD +92 -0
  60. {csv_detective-0.10.1.dev2581.dist-info → csv_detective-0.10.1.dev2599.dist-info}/WHEEL +1 -1
  61. csv_detective-0.10.1.dev2581.dist-info/RECORD +0 -92
  62. {csv_detective-0.10.1.dev2581.dist-info → csv_detective-0.10.1.dev2599.dist-info}/entry_points.txt +0 -0
@@ -82,22 +82,7 @@ def detect_formats(
82
82
  # To reduce false positives: ensure these formats are detected only if the label yields
83
83
  # a detection (skipping the ones that have been excluded by the users).
84
84
  formats_with_mandatory_label = [
85
- f
86
- for f in [
87
- "code_departement",
88
- "code_commune_insee",
89
- "code_postal",
90
- "code_fantoir",
91
- "latitude_wgs",
92
- "longitude_wgs",
93
- "latitude_wgs_fr_metropole",
94
- "longitude_wgs_fr_metropole",
95
- "latitude_l93",
96
- "longitude_l93",
97
- "siren",
98
- "siret",
99
- ]
100
- if f in scores_table.index
85
+ f for f in fmtm.get_formats_with_mandatory_label() if f in scores_table.index
101
86
  ]
102
87
  scores_table.loc[formats_with_mandatory_label, :] = np.where(
103
88
  scores_table_labels.loc[formats_with_mandatory_label, :],
@@ -106,32 +91,16 @@ def detect_formats(
106
91
  )
107
92
  analysis["columns"] = prepare_output_dict(scores_table, limited_output)
108
93
 
109
- metier_to_python_type = {
110
- "booleen": "bool",
111
- "int": "int",
112
- "float": "float",
113
- "string": "string",
114
- "json": "json",
115
- "geojson": "json",
116
- "datetime_aware": "datetime",
117
- "datetime_naive": "datetime",
118
- "datetime_rfc822": "datetime",
119
- "date": "date",
120
- "latitude_l93": "float",
121
- "latitude_wgs": "float",
122
- "latitude_wgs_fr_metropole": "float",
123
- "longitude_l93": "float",
124
- "longitude_wgs": "float",
125
- "longitude_wgs_fr_metropole": "float",
126
- "binary": "binary",
127
- }
128
-
129
94
  if not limited_output:
130
95
  for detection_method in ["columns_fields", "columns_labels", "columns"]:
131
96
  analysis[detection_method] = {
132
97
  col_name: [
133
98
  {
134
- "python_type": metier_to_python_type.get(detection["format"], "string"),
99
+ "python_type": (
100
+ "string"
101
+ if detection["format"] == "string"
102
+ else fmtm.formats[detection["format"]].python_type
103
+ ),
135
104
  **detection,
136
105
  }
137
106
  for detection in detections
@@ -142,7 +111,11 @@ def detect_formats(
142
111
  for detection_method in ["columns_fields", "columns_labels", "columns"]:
143
112
  analysis[detection_method] = {
144
113
  col_name: {
145
- "python_type": metier_to_python_type.get(detection["format"], "string"),
114
+ "python_type": (
115
+ "string"
116
+ if detection["format"] == "string"
117
+ else fmtm.formats[detection["format"]].python_type
118
+ ),
146
119
  **detection,
147
120
  }
148
121
  for col_name, detection in analysis[detection_method].items()
csv_detective/format.py CHANGED
@@ -9,9 +9,11 @@ class Format:
9
9
  name: str,
10
10
  func: Callable[[Any], bool],
11
11
  _test_values: dict[bool, list[str]],
12
- labels: list[str] = [],
12
+ labels: dict[str, float] = {},
13
13
  proportion: float = 1,
14
14
  tags: list[str] = [],
15
+ mandatory_label: bool = False,
16
+ python_type: str = "string",
15
17
  ) -> None:
16
18
  """
17
19
  Instanciates a Format object.
@@ -20,16 +22,18 @@ class Format:
20
22
  name: the name of the format.
21
23
  func: the value test for the format (returns whether a string is valid).
22
24
  _test_values: lists of valid and invalid values, used in the tests
23
- labels: the list of hint headers for the header score
25
+ labels: the dict of hint headers and their credibilty for the header score (NB: credibility is relative witin a single format, should be used to rank the valid labels)
24
26
  proportion: the tolerance (between 0 and 1) to say a column is valid for a format. (1 => 100% of the column has to pass the func check for the column to be considered valid)
25
27
  tags: to allow users to submit a file to only a subset of formats
26
28
  """
27
29
  self.name: str = name
28
30
  self.func: Callable = func
29
31
  self._test_values: dict[bool, list[str]] = _test_values
30
- self.labels: list[str] = labels
32
+ self.labels: dict[str, float] = labels
31
33
  self.proportion: float = proportion
32
34
  self.tags: list[str] = tags
35
+ self.mandatory_label: bool = mandatory_label
36
+ self.python_type: str = python_type
33
37
 
34
38
  def is_valid_label(self, val: str) -> float:
35
39
  return header_score(val, self.labels)
@@ -49,7 +53,7 @@ class FormatsManager:
49
53
  _test_values=module._test_values,
50
54
  **{
51
55
  attr: val
52
- for attr in ["labels", "proportion", "tags"]
56
+ for attr in ["labels", "proportion", "tags", "mandatory_label", "python_type"]
53
57
  if (val := getattr(module, attr, None))
54
58
  },
55
59
  )
@@ -63,5 +67,8 @@ class FormatsManager:
63
67
  if all(tag in fmt.tags for tag in tags)
64
68
  }
65
69
 
70
+ def get_formats_with_mandatory_label(self) -> dict[str, Format]:
71
+ return {label: fmt for label, fmt in self.formats.items() if fmt.mandatory_label}
72
+
66
73
  def available_tags(self) -> set[str]:
67
74
  return set(tag for format in self.formats.values() for tag in format.tags)
@@ -2,15 +2,15 @@ from csv_detective.parsing.text import _process_text
2
2
 
3
3
  proportion = 0.55
4
4
  tags = ["fr", "geo"]
5
- labels = [
6
- "adresse",
7
- "localisation",
8
- "adresse postale",
9
- "adresse geographique",
10
- "adr",
11
- "adresse complete",
12
- "adresse station",
13
- ]
5
+ labels = {
6
+ "adresse": 1,
7
+ "localisation": 1,
8
+ "adresse postale": 1,
9
+ "adresse geographique": 1,
10
+ "adr": 0.5,
11
+ "adresse complete": 1,
12
+ "adresse station": 1,
13
+ }
14
14
 
15
15
  voies = {
16
16
  "aire ",
@@ -2,7 +2,8 @@ import codecs
2
2
 
3
3
  proportion = 1
4
4
  tags = ["type"]
5
- labels = ["bytes", "binary", "image", "encode", "content"]
5
+ python_type = "binary"
6
+ labels = {"bytes": 1, "binary": 1, "image": 1, "encode": 1, "content": 1}
6
7
 
7
8
 
8
9
  def binary_casting(val: str) -> bytes:
@@ -1,6 +1,7 @@
1
1
  proportion = 1
2
2
  tags = ["type"]
3
- labels = ["is ", "has ", "est "]
3
+ python_type = "bool"
4
+ labels = {"is ": 1, "has ": 1, "est ": 1}
4
5
 
5
6
  bool_mapping = {
6
7
  "1": True,
@@ -21,7 +22,7 @@ bool_mapping = {
21
22
  liste_bool = set(bool_mapping.keys())
22
23
 
23
24
 
24
- def bool_casting(val: str) -> bool:
25
+ def bool_casting(val: str) -> bool | None:
25
26
  return bool_mapping.get(val.lower())
26
27
 
27
28
 
@@ -2,16 +2,18 @@ from frformat import CodeCommuneInsee, Millesime
2
2
 
3
3
  proportion = 0.75
4
4
  tags = ["fr", "geo"]
5
- labels = [
6
- "code commune insee",
7
- "code insee",
8
- "codes insee",
9
- "code commune",
10
- "code insee commune",
11
- "insee",
12
- "code com",
13
- "com",
14
- ]
5
+ mandatory_label = True
6
+ labels = {
7
+ "code commune insee": 1,
8
+ "code insee": 1,
9
+ "codes insee": 1,
10
+ "code commune": 1,
11
+ "code insee commune": 1,
12
+ "insee": 0.75,
13
+ "code com": 1,
14
+ "com": 0.5,
15
+ "code": 0.5,
16
+ }
15
17
 
16
18
  _code_commune_insee = CodeCommuneInsee(Millesime.LATEST)
17
19
 
@@ -4,7 +4,7 @@ from csv_detective.parsing.text import _process_text
4
4
 
5
5
  proportion = 1
6
6
  tags = ["fr"]
7
- labels = ["code csp insee", "code csp"]
7
+ labels = {"code csp insee": 1, "code csp": 1}
8
8
 
9
9
 
10
10
  def _is(val):
@@ -2,13 +2,14 @@ from frformat import Millesime, NumeroDepartement, Options
2
2
 
3
3
  proportion = 1
4
4
  tags = ["fr", "geo"]
5
- labels = [
6
- "code departement",
7
- "code_departement",
8
- "dep",
9
- "departement",
10
- "dept",
11
- ]
5
+ mandatory_label = True
6
+ labels = {
7
+ "code departement": 1,
8
+ "code_departement": 1,
9
+ "dep": 0.5,
10
+ "departement": 1,
11
+ "dept": 0.75,
12
+ }
12
13
 
13
14
  _options = Options(
14
15
  ignore_case=True,
@@ -2,11 +2,12 @@ from frformat import CodeFantoir
2
2
 
3
3
  proportion = 1
4
4
  tags = ["fr", "geo"]
5
- labels = [
6
- "cadastre1",
7
- "code fantoir",
8
- "fantoir",
9
- ]
5
+ mandatory_label = True
6
+ labels = {
7
+ "cadastre1": 1,
8
+ "code fantoir": 1,
9
+ "fantoir": 1,
10
+ }
10
11
 
11
12
  _code_fantoir = CodeFantoir()
12
13
 
@@ -2,7 +2,7 @@ import re
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr"]
5
- labels = ["code"]
5
+ labels = {"code": 0.5}
6
6
 
7
7
  regex = r"^(\d{3}[SP]\d{4,10}(.\w{1,3}\d{0,5})?|\d[A-Z0-9]\d[SP]\w(\w-?\w{0,2}\d{0,6})?)$"
8
8
 
@@ -2,15 +2,16 @@ from frformat import CodePostal
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr", "geo"]
5
- labels = [
6
- "code postal",
7
- "postal code",
8
- "postcode",
9
- "post code",
10
- "cp",
11
- "codes postaux",
12
- "location postcode",
13
- ]
5
+ mandatory_label = True
6
+ labels = {
7
+ "code postal": 1,
8
+ "postal code": 1,
9
+ "postcode": 1,
10
+ "post code": 1,
11
+ "cp": 0.5,
12
+ "codes postaux": 1,
13
+ "location postcode": 1,
14
+ }
14
15
 
15
16
  _code_postal = CodePostal()
16
17
 
@@ -2,12 +2,13 @@ from frformat import CodeRegion, Millesime
2
2
 
3
3
  proportion = 1
4
4
  tags = ["fr", "geo"]
5
- labels = [
6
- "code region",
7
- "reg",
8
- "code insee region",
9
- "region",
10
- ]
5
+ mandatory_label = True
6
+ labels = {
7
+ "code region": 1,
8
+ "reg": 0.5,
9
+ "code insee region": 1,
10
+ "region": 1,
11
+ }
11
12
 
12
13
  _code_region = CodeRegion(Millesime.LATEST)
13
14
 
@@ -2,12 +2,13 @@ from frformat import CodeRNA
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr"]
5
- labels = [
6
- "code rna",
7
- "rna",
8
- "n° inscription association",
9
- "identifiant association",
10
- ]
5
+ labels = {
6
+ "code rna": 1,
7
+ "rna": 1,
8
+ "n° inscription association": 1,
9
+ "identifiant association": 1,
10
+ "asso": 0.75,
11
+ }
11
12
 
12
13
  _code_rna = CodeRNA()
13
14
 
@@ -2,7 +2,7 @@ import re
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr"]
5
- labels = ["code waldec", "waldec"]
5
+ labels = {"code waldec": 1, "waldec": 1}
6
6
 
7
7
  regex = r"^W\d[\dA-Z]\d{7}$"
8
8
 
@@ -2,11 +2,11 @@ from frformat import Commune, Millesime, Options
2
2
 
3
3
  proportion = 0.8
4
4
  tags = ["fr", "geo"]
5
- labels = [
6
- "commune",
7
- "ville",
8
- "libelle commune",
9
- ]
5
+ labels = {
6
+ "commune": 1,
7
+ "ville": 1,
8
+ "libelle commune": 1,
9
+ }
10
10
 
11
11
  _options = Options(
12
12
  ignore_case=True,
@@ -4,11 +4,12 @@ from csv_detective.parsing.text import _process_text
4
4
 
5
5
  proportion = 1
6
6
  tags = ["fr"]
7
- labels = [
8
- "csp insee",
9
- "csp",
10
- "categorie socioprofessionnelle",
11
- ]
7
+ labels = {
8
+ "csp insee": 1,
9
+ "csp": 0.75,
10
+ "categorie socioprofessionnelle": 1,
11
+ "sociopro": 1,
12
+ }
12
13
 
13
14
  f = open(join(dirname(__file__), "data", "csp_insee.txt"), "r")
14
15
  codes_insee = f.read().split("\n")
@@ -7,23 +7,24 @@ from dateutil.parser import parse as dateutil_parser
7
7
 
8
8
  proportion = 1
9
9
  tags = ["temp", "type"]
10
- SHARED_DATE_LABELS = [
11
- "date",
12
- "mise à jour",
13
- "modifie",
14
- "maj",
15
- "datemaj",
16
- "update",
17
- "created",
18
- "modified",
19
- ]
20
- labels = SHARED_DATE_LABELS + [
21
- "jour",
22
- "periode",
23
- "dpc",
24
- "yyyymmdd",
25
- "aaaammjj",
26
- ]
10
+ python_type = "date"
11
+ SHARED_DATE_LABELS = {
12
+ "date": 1,
13
+ "mise à jour": 1,
14
+ "modifie": 1,
15
+ "maj": 0.75,
16
+ "datemaj": 1,
17
+ "update": 1,
18
+ "created": 1,
19
+ "modified": 1,
20
+ }
21
+ labels = SHARED_DATE_LABELS | {
22
+ "jour": 0.75,
23
+ "periode": 0.75,
24
+ "dpc": 0.5,
25
+ "yyyymmdd": 1,
26
+ "aaaammjj": 1,
27
+ }
27
28
 
28
29
 
29
30
  def date_casting(val: str) -> datetime | None:
@@ -4,7 +4,7 @@ from csv_detective.parsing.text import _process_text
4
4
 
5
5
  proportion = 1
6
6
  tags = ["fr", "temp"]
7
- labels = ["date"]
7
+ labels = {"date": 1}
8
8
 
9
9
  pattern = (
10
10
  r"^(0?[1-9]|[12][0-9]|3[01])[ \-/](janvier|fevrier|mars|avril|mai|juin|juillet|aout|septembre"
@@ -4,7 +4,8 @@ from csv_detective.formats.date import SHARED_DATE_LABELS, aaaammjj_pattern, dat
4
4
 
5
5
  proportion = 1
6
6
  tags = ["temp", "type"]
7
- labels = SHARED_DATE_LABELS + ["datetime", "timestamp"]
7
+ python_type = "datetime"
8
+ labels = SHARED_DATE_LABELS | {"datetime": 1, "timestamp": 1}
8
9
 
9
10
  threshold = 0.7
10
11
  pat = (
@@ -6,6 +6,7 @@ from csv_detective.formats.datetime_aware import labels, prefix # noqa
6
6
 
7
7
  proportion = 1
8
8
  tags = ["temp", "type"]
9
+ python_type = "datetime"
9
10
  threshold = 0.7
10
11
 
11
12
  # matches AAAA-MM-JJTHH:MM:SS(.dddddd)Z with any of the listed separators for the date OR NO SEPARATOR
@@ -4,6 +4,7 @@ from csv_detective.formats.datetime_aware import labels # noqa
4
4
 
5
5
  proportion = 1
6
6
  tags = ["temp", "type"]
7
+ python_type = "datetime"
7
8
 
8
9
 
9
10
  def _is(val):
@@ -2,21 +2,21 @@ from frformat import Departement, Millesime, Options
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr", "geo"]
5
- labels = [
6
- "departement",
7
- "libelle du departement",
8
- "deplib",
9
- "nom dept",
10
- "dept",
11
- "libdepartement",
12
- "nom departement",
13
- "libelle dep",
14
- "libelle departement",
15
- "lb departements",
16
- "dep libusage",
17
- "lb departement",
18
- "nom dep",
19
- ]
5
+ labels = {
6
+ "departement": 1,
7
+ "libelle du departement": 1,
8
+ "deplib": 1,
9
+ "nom dept": 1,
10
+ "dept": 0.75,
11
+ "libdepartement": 1,
12
+ "nom departement": 1,
13
+ "libelle dep": 1,
14
+ "libelle departement": 1,
15
+ "lb departements": 1,
16
+ "dep libusage": 1,
17
+ "lb departement": 1,
18
+ "nom dep": 1,
19
+ }
20
20
 
21
21
  _options = Options(
22
22
  ignore_case=True,
@@ -1,19 +1,19 @@
1
1
  import re
2
2
 
3
3
  proportion = 0.9
4
- labels = [
5
- "email",
6
- "mail",
7
- "courriel",
8
- "contact",
9
- "mel",
10
- "lieucourriel",
11
- "coordinates.emailcontact",
12
- "e mail",
13
- "mo mail",
14
- "adresse mail",
15
- "adresse email",
16
- ]
4
+ labels = {
5
+ "email": 1,
6
+ "mail": 1,
7
+ "courriel": 1,
8
+ "contact": 1,
9
+ "mel": 1,
10
+ "lieucourriel": 1,
11
+ "coordinates.emailcontact": 1,
12
+ "e mail": 1,
13
+ "mo mail": 1,
14
+ "adresse mail": 1,
15
+ "adresse email": 1,
16
+ }
17
17
 
18
18
 
19
19
  def _is(val):
@@ -2,7 +2,8 @@ import re
2
2
 
3
3
  proportion = 1
4
4
  tags = ["type"]
5
- labels = ["part", "ratio", "taux"]
5
+ python_type = "float"
6
+ labels = {"part": 1, "ratio": 1, "taux": 1}
6
7
 
7
8
  scientific_notation_pattern = r"\d+\.\d+[e|E][+|-]?\d+"
8
9
 
@@ -2,16 +2,16 @@ import json
2
2
 
3
3
  proportion = 1
4
4
  tags = ["geo"]
5
- labels = [
6
- "json geojson",
7
- "json",
8
- "geojson",
9
- "geo shape",
10
- "geom",
11
- "geometry",
12
- "geo shape",
13
- "geoshape",
14
- ]
5
+ python_type = "json"
6
+ labels = {
7
+ "json geojson": 1,
8
+ "json": 1,
9
+ "geojson": 1,
10
+ "geo shape": 1,
11
+ "geom": 0.75,
12
+ "geometry": 1,
13
+ "geoshape": 1,
14
+ }
15
15
 
16
16
 
17
17
  def _is(val) -> bool:
@@ -4,14 +4,16 @@ from csv_detective.parsing.text import _process_text
4
4
 
5
5
  proportion = 0.8
6
6
  tags = ["fr"]
7
- labels = [
8
- "code ape",
9
- "code activite (ape)",
10
- "code naf",
11
- "code naf organisme designe",
12
- "code naf organisme designant",
13
- "base sirene : code ape de l'etablissement siege",
14
- ]
7
+ labels = {
8
+ "code ape": 1,
9
+ "code activite (ape)": 1,
10
+ "code naf": 1,
11
+ "code naf organisme designe": 1,
12
+ "code naf organisme designant": 1,
13
+ "base sirene : code ape de l'etablissement siege": 1,
14
+ "naf": 0.75,
15
+ "ape": 0.5,
16
+ }
15
17
 
16
18
  f = open(join(dirname(__file__), "data", "insee_ape700.txt"), "r")
17
19
  condes_insee_ape = f.read().split("\n")
@@ -2,12 +2,12 @@ from frformat import Canton, Millesime, Options
2
2
 
3
3
  proportion = 0.9
4
4
  tags = ["fr", "geo"]
5
- labels = [
6
- "insee canton",
7
- "canton",
8
- "cant",
9
- "nom canton",
10
- ]
5
+ labels = {
6
+ "insee canton": 1,
7
+ "canton": 1,
8
+ "cant": 0.5,
9
+ "nom canton": 1,
10
+ }
11
11
 
12
12
  _options = Options(
13
13
  ignore_case=True,
@@ -1,5 +1,6 @@
1
- labels = ["nb", "nombre", "nbre"]
2
1
  tag = ["type"]
2
+ python_type = "int"
3
+ labels = {"nb": 0.75, "nombre": 1, "nbre": 0.75}
3
4
 
4
5
 
5
6
  def _is(val):