csrlite 0.1.0__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
csrlite/__init__.py CHANGED
@@ -1,18 +1,19 @@
1
- from .ae.ae_listing import (
2
- # AE listing functions
1
+ import logging
2
+ import sys
3
+
4
+ from .ae.ae_listing import ( # AE listing functions
3
5
  ae_listing,
4
6
  study_plan_to_ae_listing,
5
7
  )
6
- from .ae.ae_specific import (
7
- # AE specific functions
8
+ from .ae.ae_specific import ( # AE specific functions
8
9
  ae_specific,
9
10
  study_plan_to_ae_specific,
10
11
  )
11
- from .ae.ae_summary import (
12
- # AE summary functions
12
+ from .ae.ae_summary import ( # AE summary functions
13
13
  ae_summary,
14
14
  study_plan_to_ae_summary,
15
15
  )
16
+ from .common.config import config
16
17
  from .common.count import (
17
18
  count_subject,
18
19
  count_subject_with_observation,
@@ -21,12 +22,19 @@ from .common.parse import (
21
22
  StudyPlanParser,
22
23
  parse_filter_to_sql,
23
24
  )
24
- from .common.plan import (
25
- # Core classes
25
+ from .common.plan import ( # Core classes
26
26
  load_plan,
27
27
  )
28
28
  from .disposition.disposition import study_plan_to_disposition_summary
29
29
 
30
+ # Configure logging
31
+ logging.basicConfig(
32
+ level=config.logging_level,
33
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
34
+ stream=sys.stdout,
35
+ )
36
+ logger = logging.getLogger("csrlite")
37
+
30
38
  # Main exports for common usage
31
39
  __all__ = [
32
40
  # Primary user interface
csrlite/ae/ae_listing.py CHANGED
@@ -71,6 +71,8 @@ def ae_listing_ard(
71
71
  parameter_filter=parameter_filter,
72
72
  )
73
73
 
74
+ assert observation_to_filter is not None
75
+
74
76
  # Filter observation to include only subjects in filtered population
75
77
  observation_filtered = observation_to_filter.filter(
76
78
  pl.col(id_var_name).is_in(population_filtered[id_var_name].to_list())
csrlite/ae/ae_specific.py CHANGED
@@ -24,8 +24,9 @@ from rtflite import RTFDocument
24
24
  from ..common.count import count_subject, count_subject_with_observation
25
25
  from ..common.parse import StudyPlanParser
26
26
  from ..common.plan import StudyPlan
27
+ from ..common.rtf import create_rtf_table_n_pct
27
28
  from ..common.utils import apply_common_filters
28
- from .ae_utils import create_ae_rtf_table, get_ae_parameter_row_labels, get_ae_parameter_title
29
+ from .ae_utils import get_ae_parameter_row_labels, get_ae_parameter_title
29
30
 
30
31
 
31
32
  def ae_specific_ard(
@@ -80,6 +81,8 @@ def ae_specific_ard(
80
81
  parameter_filter=parameter_filter,
81
82
  )
82
83
 
84
+ assert observation_to_filter is not None
85
+
83
86
  # Filter observation to include only subjects in filtered population
84
87
  observation_filtered = observation_to_filter.filter(
85
88
  pl.col(id_var_name).is_in(population_filtered[id_var_name].to_list())
@@ -114,7 +117,9 @@ def ae_specific_ard(
114
117
 
115
118
  # Get population with event indicator
116
119
  pop_with_indicator = population_filtered.with_columns(
117
- pl.col(id_var_name).is_in(subjects_with_events[id_var_name]).alias("__has_event__")
120
+ pl.col(id_var_name)
121
+ .is_in(subjects_with_events[id_var_name].to_list())
122
+ .alias("__has_event__")
118
123
  )
119
124
 
120
125
  # Count subjects with and without events using count_subject_with_observation
@@ -129,7 +134,7 @@ def ae_specific_ard(
129
134
  )
130
135
 
131
136
  # Extract 'with' counts
132
- n_with = event_counts.filter(pl.col("__has_event__")).select(
137
+ n_with = event_counts.filter(pl.col("__has_event__") == "true").select(
133
138
  [
134
139
  pl.lit(n_with_label).alias("__index__"),
135
140
  pl.col(group_var_name).cast(pl.String).alias("__group__"),
@@ -138,7 +143,7 @@ def ae_specific_ard(
138
143
  )
139
144
 
140
145
  # Extract 'without' counts
141
- n_without = event_counts.filter(~pl.col("__has_event__")).select(
146
+ n_without = event_counts.filter(pl.col("__has_event__") == "false").select(
142
147
  [
143
148
  pl.lit(n_without_label).alias("__index__"),
144
149
  pl.col(group_var_name).cast(pl.String).alias("__group__"),
@@ -254,7 +259,7 @@ def ae_specific_rtf(
254
259
  else:
255
260
  col_widths = col_rel_width
256
261
 
257
- return create_ae_rtf_table(
262
+ return create_rtf_table_n_pct(
258
263
  df=df_rtf,
259
264
  col_header_1=col_header_1,
260
265
  col_header_2=col_header_2,
csrlite/ae/ae_summary.py CHANGED
@@ -21,8 +21,8 @@ from rtflite import RTFDocument
21
21
  from ..common.count import count_subject, count_subject_with_observation
22
22
  from ..common.parse import StudyPlanParser
23
23
  from ..common.plan import StudyPlan
24
+ from ..common.rtf import create_rtf_table_n_pct
24
25
  from ..common.utils import apply_common_filters
25
- from .ae_utils import create_ae_rtf_table
26
26
 
27
27
 
28
28
  def study_plan_to_ae_summary(
@@ -258,6 +258,8 @@ def ae_summary_ard(
258
258
  observation_filter=observation_filter,
259
259
  )
260
260
 
261
+ assert observation_to_filter is not None
262
+
261
263
  # Filter observation data to include only subjects in the filtered population
262
264
  # Process all variables in the list
263
265
  observation_filtered_list = []
@@ -388,7 +390,7 @@ def ae_summary_rtf(
388
390
  else:
389
391
  col_widths = col_rel_width
390
392
 
391
- return create_ae_rtf_table(
393
+ return create_rtf_table_n_pct(
392
394
  df=df_rtf,
393
395
  col_header_1=col_header_1,
394
396
  col_header_2=col_header_2,
csrlite/ae/ae_utils.py CHANGED
@@ -1,9 +1,5 @@
1
- # pyre-strict
2
1
  from typing import Any
3
2
 
4
- import polars as pl
5
- from rtflite import RTFBody, RTFColumnHeader, RTFDocument, RTFFootnote, RTFPage, RTFSource, RTFTitle
6
-
7
3
 
8
4
  def get_ae_parameter_title(param: Any, prefix: str = "Participants With") -> str:
9
5
  """
@@ -64,69 +60,3 @@ def get_ae_parameter_row_labels(param: Any) -> tuple[str, str]:
64
60
  without_label = " " + " ".join(without_label.split())
65
61
 
66
62
  return (with_label, without_label)
67
-
68
-
69
- def create_ae_rtf_table(
70
- df: pl.DataFrame,
71
- col_header_1: list[str],
72
- col_header_2: list[str] | None,
73
- col_widths: list[float] | None,
74
- title: list[str] | str,
75
- footnote: list[str] | str | None,
76
- source: list[str] | str | None,
77
- borders_2: bool = True,
78
- orientation: str = "landscape",
79
- ) -> RTFDocument:
80
- """
81
- Create a standardized RTF table document with 1 or 2 header rows.
82
- """
83
- n_cols = len(df.columns)
84
-
85
- # Calculate column widths if None - simple default
86
- if col_widths is None:
87
- col_widths = [1] * n_cols
88
-
89
- # Normalize metadata
90
- title_list = [title] if isinstance(title, str) else title
91
- footnote_list = [footnote] if isinstance(footnote, str) else (footnote or [])
92
- source_list = [source] if isinstance(source, str) else (source or [])
93
-
94
- headers = [
95
- RTFColumnHeader(
96
- text=col_header_1,
97
- col_rel_width=col_widths,
98
- text_justification=["l"] + ["c"] * (n_cols - 1),
99
- )
100
- ]
101
-
102
- if col_header_2:
103
- h2_kwargs = {
104
- "text": col_header_2,
105
- "col_rel_width": col_widths,
106
- "text_justification": ["l"] + ["c"] * (n_cols - 1),
107
- }
108
- if borders_2:
109
- h2_kwargs["border_left"] = ["single"]
110
- h2_kwargs["border_top"] = [""]
111
-
112
- headers.append(RTFColumnHeader(**h2_kwargs))
113
-
114
- rtf_components: dict[str, Any] = {
115
- "df": df,
116
- "rtf_page": RTFPage(orientation=orientation),
117
- "rtf_title": RTFTitle(text=title_list),
118
- "rtf_column_header": headers,
119
- "rtf_body": RTFBody(
120
- col_rel_width=col_widths,
121
- text_justification=["l"] + ["c"] * (n_cols - 1),
122
- border_left=["single"] * n_cols,
123
- ),
124
- }
125
-
126
- if footnote_list:
127
- rtf_components["rtf_footnote"] = RTFFootnote(text=footnote_list)
128
-
129
- if source_list:
130
- rtf_components["rtf_source"] = RTFSource(text=source_list)
131
-
132
- return RTFDocument(**rtf_components)
@@ -0,0 +1,34 @@
1
+ # pyre-strict
2
+ """
3
+ Central configuration for csrlite.
4
+ """
5
+
6
+ from typing import Literal, Optional
7
+
8
+ from pydantic import BaseModel, ConfigDict, Field
9
+
10
+
11
+ class CsrLiteConfig(BaseModel):
12
+ """
13
+ Global configuration for csrlite library.
14
+ """
15
+
16
+ # Column Name Defaults
17
+ id_col: str = Field(default="USUBJID", description="Subject Identifier Column")
18
+ group_col: Optional[str] = Field(default=None, description="Treatment Group Column")
19
+
20
+ # Missing Value Handling
21
+ missing_str: str = Field(
22
+ default="__missing__", description="String to represent missing string values"
23
+ )
24
+
25
+ # Logging
26
+ logging_level: Literal["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"] = Field(
27
+ default="INFO", description="Default logging level"
28
+ )
29
+
30
+ model_config = ConfigDict(validate_assignment=True)
31
+
32
+
33
+ # Global configuration instance
34
+ config = CsrLiteConfig()
csrlite/common/count.py CHANGED
@@ -1,6 +1,8 @@
1
1
  # pyre-strict
2
2
  import polars as pl
3
3
 
4
+ from .config import config
5
+
4
6
 
5
7
  def _to_pop(
6
8
  population: pl.DataFrame,
@@ -48,14 +50,11 @@ def count_subject(
48
50
  Counts subjects by group and optionally includes a 'Total' column.
49
51
 
50
52
  Args:
51
- population (pl.DataFrame): DataFrame containing subject population data,
52
- must include 'id' and 'group' columns.
53
- id (str): The name of the subject ID column (e.g., "USUBJID").
54
- group (str): The name of the treatment group column (e.g., "TRT01A").
55
- total (bool, optional): If True, adds a 'Total' group with counts across all groups.
56
- Defaults to True.
57
- missing_group (str, optional): How to handle missing values in the group column.
58
- "error" will raise a ValueError. Defaults to "error".
53
+ population (pl.DataFrame): DataFrame containing subject population data.
54
+ id (str): The name of the subject ID column.
55
+ group (str): The name of the treatment group column.
56
+ total (bool, optional): If True, adds a 'Total' group. Defaults to True.
57
+ missing_group (str, optional): How to handle missing values ("error", "ignore").
59
58
 
60
59
  Returns:
61
60
  pl.DataFrame: A DataFrame with subject counts ('n_subj_pop') for each group.
@@ -72,41 +71,33 @@ def count_subject(
72
71
  return pop.group_by(group).agg(pl.len().alias("n_subj_pop")).sort(group)
73
72
 
74
73
 
75
- def count_subject_with_observation(
74
+ def count_summary_data(
76
75
  population: pl.DataFrame,
77
76
  observation: pl.DataFrame,
78
77
  id: str,
79
78
  group: str,
80
- variable: str,
79
+ variable: str | list[str],
81
80
  total: bool = True,
82
81
  missing_group: str = "error",
83
- pct_digit: int = 1,
84
- max_n_width: int | None = None,
85
82
  ) -> pl.DataFrame:
86
83
  """
87
- Counts subjects and observations by group and a specified variable,
88
- calculating percentages based on population denominators.
89
-
90
- Args:
91
- population (pl.DataFrame): DataFrame containing subject population data,
92
- must include 'id' and 'group' columns.
93
- observation (pl.DataFrame): DataFrame containing observation data,
94
- must include 'id' and 'variable' columns.
95
- id (str): The name of the subject ID column (e.g., "USUBJID").
96
- group (str): The name of the treatment group column (e.g., "TRT01A").
97
- variable (str): The name of the variable to count observations for (e.g., "AESOC").
98
- total (bool, optional): Not yet implemented. Defaults to True.
99
- missing_group (str, optional): How to handle missing values in the group column.
100
- "error" will raise a ValueError. Defaults to "error".
101
- pct_digit (int, optional): Number of decimal places for percentage formatting.
102
- Defaults to 1.
103
- max_n_width (int, optional): Fixed width for subject count formatting. If None, inferred
104
- from data. Defaults to None.
84
+ Generates numeric summary data (counts and percentages) for observations.
85
+ Does NOT perform string formatting.
105
86
 
106
87
  Returns:
107
- pl.DataFrame: A DataFrame with counts and percentages of subjects and observations
108
- grouped by 'group' and 'variable'.
88
+ pl.DataFrame: DataFrame with columns:
89
+ - [group]: Group column
90
+ - [variable]: Variable columns
91
+ - n_obs: Count of observations
92
+ - n_subj: Count of unique subjects with observation
93
+ - n_subj_pop: Total subjects in group
94
+ - pct_subj: Percentage of subjects (0-100)
109
95
  """
96
+ # Normalize variable to list
97
+ if isinstance(variable, str):
98
+ variables = [variable]
99
+ else:
100
+ variables = variable
110
101
 
111
102
  # prepare data
112
103
  pop = _to_pop(
@@ -117,10 +108,14 @@ def count_subject_with_observation(
117
108
  missing_group=missing_group,
118
109
  )
119
110
 
120
- obs = observation.select(id, variable).join(pop, on=id, how="left")
111
+ # Select all required columns (id + all variables)
112
+ obs = observation.select(id, *variables).join(pop, on=id, how="left")
113
+
114
+ for var in variables:
115
+ obs = obs.with_columns(pl.col(var).cast(pl.String).fill_null(config.missing_str))
121
116
 
117
+ # Check for IDs in observation that are not in population
122
118
  if not obs[id].is_in(pop[id].to_list()).all():
123
- # Get IDs that are in obs but not in pop
124
119
  missing_ids = (
125
120
  obs.filter(~pl.col(id).is_in(pop[id].to_list()))
126
121
  .select(id)
@@ -129,8 +124,8 @@ def count_subject_with_observation(
129
124
  .to_list()
130
125
  )
131
126
  raise ValueError(
132
- f"Some '{id}' values in the observation DataFrame are not present in the population "
133
- f"DataFrame: {missing_ids}"
127
+ f"Some '{id}' values in the observation DataFrame are not present in the population: "
128
+ f"{missing_ids}"
134
129
  )
135
130
 
136
131
  df_pop = count_subject(
@@ -141,59 +136,158 @@ def count_subject_with_observation(
141
136
  missing_group=missing_group,
142
137
  )
143
138
 
144
- # Count observations and subjects by group and variable
145
- df_obs_counts = obs.group_by(group, variable).agg(
146
- pl.len().alias("n_obs"), pl.n_unique(id).alias("n_subj")
147
- )
139
+ all_levels_df = []
148
140
 
149
- # Create all combinations of groups and variables to ensure no missing groups
150
- unique_groups = df_pop.select(group)
151
- unique_variables = obs.select(variable).unique()
152
-
153
- # Cross join to get all combinations
154
- all_combinations = unique_groups.join(unique_variables, how="cross")
155
-
156
- # Left join to preserve all combinations, filling missing counts with 0
157
- df_obs = (
158
- all_combinations.join(df_obs_counts, on=[group, variable], how="left")
159
- .join(df_pop, on=group, how="left")
160
- .with_columns([pl.col("n_obs").fill_null(0), pl.col("n_subj").fill_null(0)])
161
- .with_columns(pct_subj=(pl.col("n_subj") / pl.col("n_subj_pop") * 100))
162
- .with_columns(
163
- pct_subj_fmt=(
164
- pl.when(pl.col("pct_subj").is_null() | pl.col("pct_subj").is_nan())
165
- .then(0.0)
166
- .otherwise(pl.col("pct_subj"))
167
- .round(pct_digit, mode="half_away_from_zero")
168
- .cast(pl.String)
169
- )
141
+ # Iterate through hierarchies
142
+ for i in range(1, len(variables) + 1):
143
+ current_vars = variables[:i]
144
+
145
+ # Aggregation
146
+ df_obs_counts = obs.group_by(group, *current_vars).agg(
147
+ pl.len().alias("n_obs"), pl.n_unique(id).alias("n_subj")
148
+ )
149
+
150
+ # Cross join for all combinations
151
+ unique_groups = df_pop.select(group)
152
+ unique_variables = obs.select(current_vars).unique()
153
+ all_combinations = unique_groups.join(unique_variables, how="cross")
154
+
155
+ # Join back
156
+ df_level = (
157
+ all_combinations.join(df_obs_counts, on=[group, *current_vars], how="left")
158
+ .join(df_pop, on=group, how="left")
159
+ .with_columns([pl.col("n_obs").fill_null(0), pl.col("n_subj").fill_null(0)])
160
+ )
161
+
162
+ df_level = df_level.with_columns([pl.col(c).cast(pl.String) for c in current_vars])
163
+
164
+ # Add missing columns with "__all__"
165
+ for var in variables:
166
+ if var not in df_level.columns:
167
+ df_level = df_level.with_columns(pl.lit("__all__").cast(pl.String).alias(var))
168
+
169
+ all_levels_df.append(df_level)
170
+
171
+ # Stack
172
+ df_obs = pl.concat(all_levels_df, how="diagonal")
173
+
174
+ # Calculate percentage
175
+ df_obs = df_obs.with_columns(pct_subj=(pl.col("n_subj") / pl.col("n_subj_pop") * 100))
176
+
177
+ return df_obs
178
+
179
+
180
+ def format_summary_table(
181
+ df: pl.DataFrame,
182
+ group: str,
183
+ variable: str | list[str],
184
+ pct_digit: int = 1,
185
+ max_n_width: int | None = None,
186
+ ) -> pl.DataFrame:
187
+ """
188
+ Formats numeric summary data into display strings (e.g., "n ( pct)").
189
+ Adds indentation and sorting.
190
+ """
191
+ if isinstance(variable, str):
192
+ variables = [variable]
193
+ else:
194
+ variables = variable
195
+
196
+ df_fmt = df.with_columns(
197
+ pct_subj_fmt=(
198
+ pl.when(pl.col("pct_subj").is_null() | pl.col("pct_subj").is_nan())
199
+ .then(0.0)
200
+ .otherwise(pl.col("pct_subj"))
201
+ .round(pct_digit, mode="half_away_from_zero")
202
+ .cast(pl.String)
170
203
  )
171
204
  )
172
205
 
173
- # Calculate max widths for proper alignment
174
206
  if max_n_width is None:
175
- max_n_width = df_obs.select(pl.col("n_subj").cast(pl.String).str.len_chars().max()).item()
207
+ max_n_width = df_fmt.select(pl.col("n_subj").cast(pl.String).str.len_chars().max()).item()
176
208
 
177
- # Infer max percentage width from pct_digit
178
209
  max_pct_width = 3 if pct_digit == 0 else 4 + pct_digit
179
210
 
180
- # Format with padding for alignment
181
- df_obs = (
182
- df_obs.with_columns(
183
- [
184
- pl.col("pct_subj_fmt").str.pad_start(max_pct_width, " "),
185
- pl.col("n_subj")
186
- .cast(pl.String)
187
- .str.pad_start(max_n_width, " ")
188
- .alias("n_subj_fmt"),
189
- ]
211
+ df_fmt = df_fmt.with_columns(
212
+ [
213
+ pl.col("pct_subj_fmt").str.pad_start(max_pct_width, " "),
214
+ pl.col("n_subj").cast(pl.String).str.pad_start(max_n_width, " ").alias("n_subj_fmt"),
215
+ ]
216
+ ).with_columns(
217
+ n_pct_subj_fmt=pl.concat_str(
218
+ [pl.col("n_subj_fmt"), pl.lit(" ("), pl.col("pct_subj_fmt"), pl.lit(")")]
190
219
  )
191
- .with_columns(
192
- n_pct_subj_fmt=pl.concat_str(
193
- [pl.col("n_subj_fmt"), pl.lit(" ("), pl.col("pct_subj_fmt"), pl.lit(")")]
194
- )
220
+ )
221
+
222
+ # Sorting Logic
223
+ sort_exprs = [pl.col(group)]
224
+ for var in variables:
225
+ # 0 for __all__, 1 for values, 2 for config.missing_str
226
+ sort_key_col = f"__sort_key_{var}__"
227
+ df_fmt = df_fmt.with_columns(
228
+ pl.when(pl.col(var) == "__all__")
229
+ .then(0)
230
+ .when(pl.col(var) == config.missing_str)
231
+ .then(2)
232
+ .otherwise(1)
233
+ .alias(sort_key_col)
234
+ )
235
+ sort_exprs.append(pl.col(sort_key_col))
236
+ sort_exprs.append(pl.col(var))
237
+
238
+ df_fmt = df_fmt.sort(sort_exprs).select(pl.exclude(r"^__sort_key_.*$"))
239
+
240
+ # Indentation logic
241
+ if len(variables) > 0:
242
+ var_expr = (
243
+ pl.when(pl.col(variables[0]) == config.missing_str)
244
+ .then(pl.lit("Missing"))
245
+ .otherwise(pl.col(variables[0]))
195
246
  )
196
- .sort(group, variable)
247
+
248
+ for i in range(1, len(variables)):
249
+ var_expr = (
250
+ pl.when(pl.col(variables[i]) == "__all__")
251
+ .then(var_expr)
252
+ .when(pl.col(variables[i]) == config.missing_str)
253
+ .then(pl.lit(" " * 4 * i) + pl.lit("Missing"))
254
+ .otherwise(pl.lit(" " * 4 * i) + pl.col(variables[i]))
255
+ )
256
+ df_fmt = df_fmt.with_columns(var_expr.alias("__variable__"))
257
+
258
+ df_fmt = df_fmt.with_row_index(name="__id__", offset=1)
259
+ return df_fmt
260
+
261
+
262
+ def count_subject_with_observation(
263
+ population: pl.DataFrame,
264
+ observation: pl.DataFrame,
265
+ id: str,
266
+ group: str,
267
+ variable: str | list[str],
268
+ total: bool = True,
269
+ missing_group: str = "error",
270
+ pct_digit: int = 1,
271
+ max_n_width: int | None = None,
272
+ ) -> pl.DataFrame:
273
+ """
274
+ Legacy wrapper for backward compatibility (mostly for tests that rely on the old signature),
275
+ but now strictly composing the new functions.
276
+ """
277
+ df_raw = count_summary_data(
278
+ population=population,
279
+ observation=observation,
280
+ id=id,
281
+ group=group,
282
+ variable=variable,
283
+ total=total,
284
+ missing_group=missing_group,
197
285
  )
198
286
 
199
- return df_obs
287
+ return format_summary_table(
288
+ df=df_raw,
289
+ group=group,
290
+ variable=variable,
291
+ pct_digit=pct_digit,
292
+ max_n_width=max_n_width,
293
+ )