cryptodatapy 0.2.2__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1025 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "9fea9fae",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stderr",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "fatal: bad revision 'HEAD'\n",
14
+ "Importing plotly failed. Interactive plots will not work.\n"
15
+ ]
16
+ }
17
+ ],
18
+ "source": [
19
+ "import pandas as pd\n",
20
+ "import numpy as np\n",
21
+ "\n",
22
+ "from cryptodatapy.extract.datarequest import DataRequest\n",
23
+ "from cryptodatapy.extract.getdata import GetData\n",
24
+ "from cryptodatapy.transform.od import OutlierDetection\n",
25
+ "from cryptodatapy.transform.impute import Impute\n",
26
+ "from cryptodatapy.transform.filter import Filter\n",
27
+ "from cryptodatapy.transform.clean import CleanData, stitch_dataframes\n",
28
+ "from cryptodatapy.transform.impute import Impute"
29
+ ]
30
+ },
31
+ {
32
+ "cell_type": "code",
33
+ "execution_count": 2,
34
+ "id": "3cbdeffc",
35
+ "metadata": {},
36
+ "outputs": [],
37
+ "source": [
38
+ "# get all Binance perp futures tickers\n",
39
+ "data_req = DataRequest(source='ccxt')\n",
40
+ "perp_tickers = GetData(data_req).get_meta(method='get_markets_info', exch='binanceusdm', as_list=True)"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "code",
45
+ "execution_count": 3,
46
+ "id": "3d084cf7",
47
+ "metadata": {},
48
+ "outputs": [
49
+ {
50
+ "data": {
51
+ "text/plain": [
52
+ "314"
53
+ ]
54
+ },
55
+ "execution_count": 3,
56
+ "metadata": {},
57
+ "output_type": "execute_result"
58
+ }
59
+ ],
60
+ "source": [
61
+ "len(perp_tickers)"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": 4,
67
+ "id": "fcb74458",
68
+ "metadata": {},
69
+ "outputs": [],
70
+ "source": [
71
+ "# get Binance spot tickers\n",
72
+ "data_req = DataRequest(source='ccxt')\n",
73
+ "spot_tickers = GetData(data_req).get_meta(method='get_markets_info', exch='binance', as_list=True)"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": 5,
79
+ "id": "7962f7e5",
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "# find intersecting tickers\n",
84
+ "binance_tickers = [ticker for ticker in perp_tickers if ticker in spot_tickers]"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": 6,
90
+ "id": "877811c1",
91
+ "metadata": {},
92
+ "outputs": [
93
+ {
94
+ "data": {
95
+ "text/plain": [
96
+ "314"
97
+ ]
98
+ },
99
+ "execution_count": 6,
100
+ "metadata": {},
101
+ "output_type": "execute_result"
102
+ }
103
+ ],
104
+ "source": [
105
+ "# number of tickers\n",
106
+ "len(binance_tickers)"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": 7,
112
+ "id": "fe425163",
113
+ "metadata": {},
114
+ "outputs": [],
115
+ "source": [
116
+ "## # get cryptocompare tickers\n",
117
+ "data_req = DataRequest(source='cryptocompare')\n",
118
+ "cc_tickers = GetData(data_req).get_meta(method='get_assets_info', as_list=True)"
119
+ ]
120
+ },
121
+ {
122
+ "cell_type": "code",
123
+ "execution_count": 8,
124
+ "id": "165053db",
125
+ "metadata": {},
126
+ "outputs": [],
127
+ "source": [
128
+ "# keep only USDT ticker\n",
129
+ "bin_tickers = []\n",
130
+ "for ticker in binance_tickers:\n",
131
+ " if '/' in ticker and ticker.split('/')[1] == 'USDT':\n",
132
+ " bin_tickers.append(ticker.split('/')[0])"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "code",
137
+ "execution_count": 9,
138
+ "id": "d6cf8a4c",
139
+ "metadata": {},
140
+ "outputs": [],
141
+ "source": [
142
+ "# usdt tickers\n",
143
+ "usdt_tickers = [ticker.split('/')[0] for ticker in binance_tickers if '/'in ticker and ticker.split('/')[1] == 'USDT']"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": 10,
149
+ "id": "633f7a3e",
150
+ "metadata": {},
151
+ "outputs": [],
152
+ "source": [
153
+ "# intersecting tickers\n",
154
+ "tickers = [ticker for ticker in usdt_tickers if ticker in cc_tickers]"
155
+ ]
156
+ },
157
+ {
158
+ "cell_type": "code",
159
+ "execution_count": 11,
160
+ "id": "30337a71",
161
+ "metadata": {},
162
+ "outputs": [
163
+ {
164
+ "data": {
165
+ "text/plain": [
166
+ "0"
167
+ ]
168
+ },
169
+ "execution_count": 11,
170
+ "metadata": {},
171
+ "output_type": "execute_result"
172
+ }
173
+ ],
174
+ "source": [
175
+ "len(tickers)"
176
+ ]
177
+ },
178
+ {
179
+ "cell_type": "markdown",
180
+ "id": "f80eb97d",
181
+ "metadata": {},
182
+ "source": [
183
+ "### Binance Perp Futures"
184
+ ]
185
+ },
186
+ {
187
+ "cell_type": "code",
188
+ "execution_count": 12,
189
+ "id": "49b09508",
190
+ "metadata": {},
191
+ "outputs": [],
192
+ "source": [
193
+ "# pull daily OHLC and funding rates for perp futures on Binance USDM exchange\n",
194
+ "data_req = DataRequest(source='ccxt',\n",
195
+ " tickers=tickers, \n",
196
+ " fields=['open', 'high', 'low', 'close', 'volume', 'funding_rate'], \n",
197
+ " mkt_type='perpetual_future', \n",
198
+ " freq='d')"
199
+ ]
200
+ },
201
+ {
202
+ "cell_type": "code",
203
+ "execution_count": 13,
204
+ "id": "6ac9365b",
205
+ "metadata": {},
206
+ "outputs": [],
207
+ "source": [
208
+ "# df1 = GetData(data_req).get_series()"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": 14,
214
+ "id": "98a425b2",
215
+ "metadata": {},
216
+ "outputs": [],
217
+ "source": [
218
+ "# df1.to_csv('binance_perp_futures.csv')\n",
219
+ "df1 = pd.read_csv('../../../../factorlab/notebooks/binance_perp_futures.csv', index_col=['date', 'ticker'], parse_dates=['date'])"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": 15,
225
+ "id": "0e04da4a",
226
+ "metadata": {},
227
+ "outputs": [
228
+ {
229
+ "data": {
230
+ "text/html": [
231
+ "<div>\n",
232
+ "<style scoped>\n",
233
+ " .dataframe tbody tr th:only-of-type {\n",
234
+ " vertical-align: middle;\n",
235
+ " }\n",
236
+ "\n",
237
+ " .dataframe tbody tr th {\n",
238
+ " vertical-align: top;\n",
239
+ " }\n",
240
+ "\n",
241
+ " .dataframe thead th {\n",
242
+ " text-align: right;\n",
243
+ " }\n",
244
+ "</style>\n",
245
+ "<table border=\"1\" class=\"dataframe\">\n",
246
+ " <thead>\n",
247
+ " <tr style=\"text-align: right;\">\n",
248
+ " <th></th>\n",
249
+ " <th></th>\n",
250
+ " <th>open</th>\n",
251
+ " <th>high</th>\n",
252
+ " <th>low</th>\n",
253
+ " <th>close</th>\n",
254
+ " <th>volume</th>\n",
255
+ " <th>funding_rate</th>\n",
256
+ " </tr>\n",
257
+ " <tr>\n",
258
+ " <th>date</th>\n",
259
+ " <th>ticker</th>\n",
260
+ " <th></th>\n",
261
+ " <th></th>\n",
262
+ " <th></th>\n",
263
+ " <th></th>\n",
264
+ " <th></th>\n",
265
+ " <th></th>\n",
266
+ " </tr>\n",
267
+ " </thead>\n",
268
+ " <tbody>\n",
269
+ " <tr>\n",
270
+ " <th>2019-09-08</th>\n",
271
+ " <th>BTC</th>\n",
272
+ " <td>10000.00</td>\n",
273
+ " <td>10412.65</td>\n",
274
+ " <td>10000.00</td>\n",
275
+ " <td>10391.63</td>\n",
276
+ " <td>3096.291</td>\n",
277
+ " <td>NaN</td>\n",
278
+ " </tr>\n",
279
+ " <tr>\n",
280
+ " <th>2019-09-09</th>\n",
281
+ " <th>BTC</th>\n",
282
+ " <td>10316.62</td>\n",
283
+ " <td>10475.54</td>\n",
284
+ " <td>10077.22</td>\n",
285
+ " <td>10307.00</td>\n",
286
+ " <td>14824.373</td>\n",
287
+ " <td>NaN</td>\n",
288
+ " </tr>\n",
289
+ " <tr>\n",
290
+ " <th>2019-09-10</th>\n",
291
+ " <th>BTC</th>\n",
292
+ " <td>10307.00</td>\n",
293
+ " <td>10382.97</td>\n",
294
+ " <td>9940.87</td>\n",
295
+ " <td>10102.02</td>\n",
296
+ " <td>9068.955</td>\n",
297
+ " <td>0.0002</td>\n",
298
+ " </tr>\n",
299
+ " <tr>\n",
300
+ " <th>2019-09-11</th>\n",
301
+ " <th>BTC</th>\n",
302
+ " <td>10094.27</td>\n",
303
+ " <td>10293.11</td>\n",
304
+ " <td>9884.31</td>\n",
305
+ " <td>10159.55</td>\n",
306
+ " <td>10897.922</td>\n",
307
+ " <td>0.0003</td>\n",
308
+ " </tr>\n",
309
+ " <tr>\n",
310
+ " <th>2019-09-12</th>\n",
311
+ " <th>BTC</th>\n",
312
+ " <td>10163.06</td>\n",
313
+ " <td>10450.13</td>\n",
314
+ " <td>10042.12</td>\n",
315
+ " <td>10415.13</td>\n",
316
+ " <td>15609.634</td>\n",
317
+ " <td>0.0003</td>\n",
318
+ " </tr>\n",
319
+ " </tbody>\n",
320
+ "</table>\n",
321
+ "</div>"
322
+ ],
323
+ "text/plain": [
324
+ " open high low close volume \\\n",
325
+ "date ticker \n",
326
+ "2019-09-08 BTC 10000.00 10412.65 10000.00 10391.63 3096.291 \n",
327
+ "2019-09-09 BTC 10316.62 10475.54 10077.22 10307.00 14824.373 \n",
328
+ "2019-09-10 BTC 10307.00 10382.97 9940.87 10102.02 9068.955 \n",
329
+ "2019-09-11 BTC 10094.27 10293.11 9884.31 10159.55 10897.922 \n",
330
+ "2019-09-12 BTC 10163.06 10450.13 10042.12 10415.13 15609.634 \n",
331
+ "\n",
332
+ " funding_rate \n",
333
+ "date ticker \n",
334
+ "2019-09-08 BTC NaN \n",
335
+ "2019-09-09 BTC NaN \n",
336
+ "2019-09-10 BTC 0.0002 \n",
337
+ "2019-09-11 BTC 0.0003 \n",
338
+ "2019-09-12 BTC 0.0003 "
339
+ ]
340
+ },
341
+ "execution_count": 15,
342
+ "metadata": {},
343
+ "output_type": "execute_result"
344
+ }
345
+ ],
346
+ "source": [
347
+ "df1.head()"
348
+ ]
349
+ },
350
+ {
351
+ "cell_type": "markdown",
352
+ "id": "32f15191",
353
+ "metadata": {},
354
+ "source": [
355
+ "### Binance Spot"
356
+ ]
357
+ },
358
+ {
359
+ "cell_type": "code",
360
+ "execution_count": 16,
361
+ "id": "83e9e466",
362
+ "metadata": {},
363
+ "outputs": [],
364
+ "source": [
365
+ "# pull OHLC from Binance\n",
366
+ "data_req = DataRequest(source='ccxt',\n",
367
+ " tickers=tickers, \n",
368
+ " fields=['open', 'high', 'low', 'close', 'volume'], \n",
369
+ " freq='d')"
370
+ ]
371
+ },
372
+ {
373
+ "cell_type": "code",
374
+ "execution_count": 17,
375
+ "id": "82d4bbc7",
376
+ "metadata": {},
377
+ "outputs": [],
378
+ "source": [
379
+ "# df2 = GetData(data_req).get_series()"
380
+ ]
381
+ },
382
+ {
383
+ "cell_type": "code",
384
+ "execution_count": 18,
385
+ "id": "4f63eb21",
386
+ "metadata": {},
387
+ "outputs": [],
388
+ "source": [
389
+ "# df2.to_csv('binance_spot.csv')\n",
390
+ "df2 = pd.read_csv('../../../../factorlab/notebooks/binance_spot.csv', index_col=['date', 'ticker'], parse_dates=['date'])"
391
+ ]
392
+ },
393
+ {
394
+ "cell_type": "code",
395
+ "execution_count": 19,
396
+ "id": "ce8929c1",
397
+ "metadata": {},
398
+ "outputs": [
399
+ {
400
+ "data": {
401
+ "text/html": [
402
+ "<div>\n",
403
+ "<style scoped>\n",
404
+ " .dataframe tbody tr th:only-of-type {\n",
405
+ " vertical-align: middle;\n",
406
+ " }\n",
407
+ "\n",
408
+ " .dataframe tbody tr th {\n",
409
+ " vertical-align: top;\n",
410
+ " }\n",
411
+ "\n",
412
+ " .dataframe thead th {\n",
413
+ " text-align: right;\n",
414
+ " }\n",
415
+ "</style>\n",
416
+ "<table border=\"1\" class=\"dataframe\">\n",
417
+ " <thead>\n",
418
+ " <tr style=\"text-align: right;\">\n",
419
+ " <th></th>\n",
420
+ " <th></th>\n",
421
+ " <th>open</th>\n",
422
+ " <th>high</th>\n",
423
+ " <th>low</th>\n",
424
+ " <th>close</th>\n",
425
+ " <th>volume</th>\n",
426
+ " </tr>\n",
427
+ " <tr>\n",
428
+ " <th>date</th>\n",
429
+ " <th>ticker</th>\n",
430
+ " <th></th>\n",
431
+ " <th></th>\n",
432
+ " <th></th>\n",
433
+ " <th></th>\n",
434
+ " <th></th>\n",
435
+ " </tr>\n",
436
+ " </thead>\n",
437
+ " <tbody>\n",
438
+ " <tr>\n",
439
+ " <th rowspan=\"2\" valign=\"top\">2017-08-17</th>\n",
440
+ " <th>BTC</th>\n",
441
+ " <td>4261.48</td>\n",
442
+ " <td>4485.39</td>\n",
443
+ " <td>4200.74</td>\n",
444
+ " <td>4285.08</td>\n",
445
+ " <td>795.150377</td>\n",
446
+ " </tr>\n",
447
+ " <tr>\n",
448
+ " <th>ETH</th>\n",
449
+ " <td>301.13</td>\n",
450
+ " <td>312.18</td>\n",
451
+ " <td>298.00</td>\n",
452
+ " <td>302.00</td>\n",
453
+ " <td>7030.710340</td>\n",
454
+ " </tr>\n",
455
+ " <tr>\n",
456
+ " <th rowspan=\"2\" valign=\"top\">2017-08-18</th>\n",
457
+ " <th>BTC</th>\n",
458
+ " <td>4285.08</td>\n",
459
+ " <td>4371.52</td>\n",
460
+ " <td>3938.77</td>\n",
461
+ " <td>4108.37</td>\n",
462
+ " <td>1199.888264</td>\n",
463
+ " </tr>\n",
464
+ " <tr>\n",
465
+ " <th>ETH</th>\n",
466
+ " <td>302.00</td>\n",
467
+ " <td>311.79</td>\n",
468
+ " <td>283.94</td>\n",
469
+ " <td>293.96</td>\n",
470
+ " <td>9537.846460</td>\n",
471
+ " </tr>\n",
472
+ " <tr>\n",
473
+ " <th>2017-08-19</th>\n",
474
+ " <th>BTC</th>\n",
475
+ " <td>4108.37</td>\n",
476
+ " <td>4184.69</td>\n",
477
+ " <td>3850.00</td>\n",
478
+ " <td>4139.98</td>\n",
479
+ " <td>381.309763</td>\n",
480
+ " </tr>\n",
481
+ " </tbody>\n",
482
+ "</table>\n",
483
+ "</div>"
484
+ ],
485
+ "text/plain": [
486
+ " open high low close volume\n",
487
+ "date ticker \n",
488
+ "2017-08-17 BTC 4261.48 4485.39 4200.74 4285.08 795.150377\n",
489
+ " ETH 301.13 312.18 298.00 302.00 7030.710340\n",
490
+ "2017-08-18 BTC 4285.08 4371.52 3938.77 4108.37 1199.888264\n",
491
+ " ETH 302.00 311.79 283.94 293.96 9537.846460\n",
492
+ "2017-08-19 BTC 4108.37 4184.69 3850.00 4139.98 381.309763"
493
+ ]
494
+ },
495
+ "execution_count": 19,
496
+ "metadata": {},
497
+ "output_type": "execute_result"
498
+ }
499
+ ],
500
+ "source": [
501
+ "df2.head()"
502
+ ]
503
+ },
504
+ {
505
+ "cell_type": "markdown",
506
+ "id": "05f93b91",
507
+ "metadata": {},
508
+ "source": [
509
+ "### CryptoCompare - Historical Prices"
510
+ ]
511
+ },
512
+ {
513
+ "cell_type": "code",
514
+ "execution_count": 20,
515
+ "id": "7f14d874",
516
+ "metadata": {},
517
+ "outputs": [],
518
+ "source": [
519
+ "# pull OHLC from CryptoCompare\n",
520
+ "data_req = DataRequest(source='cryptocompare',\n",
521
+ " tickers=tickers, \n",
522
+ " fields=['open', 'high', 'low', 'close', 'volume'], \n",
523
+ " freq='d')"
524
+ ]
525
+ },
526
+ {
527
+ "cell_type": "code",
528
+ "execution_count": 21,
529
+ "id": "3a8708d3",
530
+ "metadata": {},
531
+ "outputs": [],
532
+ "source": [
533
+ "# df3 = GetData(data_req).get_series()"
534
+ ]
535
+ },
536
+ {
537
+ "cell_type": "code",
538
+ "execution_count": 22,
539
+ "id": "aa265538",
540
+ "metadata": {},
541
+ "outputs": [],
542
+ "source": [
543
+ "# df3.to_csv('cc_spot.csv')\n",
544
+ "df3 = pd.read_csv('../../../../factorlab/notebooks/cc_spot.csv', index_col=['date', 'ticker'], parse_dates=['date'])"
545
+ ]
546
+ },
547
+ {
548
+ "cell_type": "markdown",
549
+ "id": "5664e968",
550
+ "metadata": {},
551
+ "source": [
552
+ "### Clean Data"
553
+ ]
554
+ },
555
+ {
556
+ "cell_type": "code",
557
+ "execution_count": 23,
558
+ "id": "f5ee4f6d",
559
+ "metadata": {},
560
+ "outputs": [],
561
+ "source": [
562
+ "df = stitch_dataframes([df1, df2, df3])\n",
563
+ "df.funding_rate = df.funding_rate.fillna(0)"
564
+ ]
565
+ },
566
+ {
567
+ "cell_type": "code",
568
+ "execution_count": 24,
569
+ "id": "cbe07c91",
570
+ "metadata": {},
571
+ "outputs": [
572
+ {
573
+ "data": {
574
+ "text/html": [
575
+ "<div>\n",
576
+ "<style scoped>\n",
577
+ " .dataframe tbody tr th:only-of-type {\n",
578
+ " vertical-align: middle;\n",
579
+ " }\n",
580
+ "\n",
581
+ " .dataframe tbody tr th {\n",
582
+ " vertical-align: top;\n",
583
+ " }\n",
584
+ "\n",
585
+ " .dataframe thead th {\n",
586
+ " text-align: right;\n",
587
+ " }\n",
588
+ "</style>\n",
589
+ "<table border=\"1\" class=\"dataframe\">\n",
590
+ " <thead>\n",
591
+ " <tr style=\"text-align: right;\">\n",
592
+ " <th></th>\n",
593
+ " <th></th>\n",
594
+ " <th>open</th>\n",
595
+ " <th>high</th>\n",
596
+ " <th>low</th>\n",
597
+ " <th>close</th>\n",
598
+ " <th>volume</th>\n",
599
+ " <th>funding_rate</th>\n",
600
+ " </tr>\n",
601
+ " <tr>\n",
602
+ " <th>date</th>\n",
603
+ " <th>ticker</th>\n",
604
+ " <th></th>\n",
605
+ " <th></th>\n",
606
+ " <th></th>\n",
607
+ " <th></th>\n",
608
+ " <th></th>\n",
609
+ " <th></th>\n",
610
+ " </tr>\n",
611
+ " </thead>\n",
612
+ " <tbody>\n",
613
+ " <tr>\n",
614
+ " <th>2010-07-17</th>\n",
615
+ " <th>BTC</th>\n",
616
+ " <td>0.04951</td>\n",
617
+ " <td>0.04951</td>\n",
618
+ " <td>0.04951</td>\n",
619
+ " <td>0.04951</td>\n",
620
+ " <td>20.00</td>\n",
621
+ " <td>0.0</td>\n",
622
+ " </tr>\n",
623
+ " <tr>\n",
624
+ " <th>2010-07-18</th>\n",
625
+ " <th>BTC</th>\n",
626
+ " <td>0.04951</td>\n",
627
+ " <td>0.08585</td>\n",
628
+ " <td>0.04951</td>\n",
629
+ " <td>0.08584</td>\n",
630
+ " <td>75.01</td>\n",
631
+ " <td>0.0</td>\n",
632
+ " </tr>\n",
633
+ " <tr>\n",
634
+ " <th>2010-07-19</th>\n",
635
+ " <th>BTC</th>\n",
636
+ " <td>0.08584</td>\n",
637
+ " <td>0.09307</td>\n",
638
+ " <td>0.07723</td>\n",
639
+ " <td>0.08080</td>\n",
640
+ " <td>574.00</td>\n",
641
+ " <td>0.0</td>\n",
642
+ " </tr>\n",
643
+ " <tr>\n",
644
+ " <th>2010-07-20</th>\n",
645
+ " <th>BTC</th>\n",
646
+ " <td>0.08080</td>\n",
647
+ " <td>0.08181</td>\n",
648
+ " <td>0.07426</td>\n",
649
+ " <td>0.07474</td>\n",
650
+ " <td>262.00</td>\n",
651
+ " <td>0.0</td>\n",
652
+ " </tr>\n",
653
+ " <tr>\n",
654
+ " <th>2010-07-21</th>\n",
655
+ " <th>BTC</th>\n",
656
+ " <td>0.07474</td>\n",
657
+ " <td>0.07921</td>\n",
658
+ " <td>0.06634</td>\n",
659
+ " <td>0.07921</td>\n",
660
+ " <td>575.00</td>\n",
661
+ " <td>0.0</td>\n",
662
+ " </tr>\n",
663
+ " </tbody>\n",
664
+ "</table>\n",
665
+ "</div>"
666
+ ],
667
+ "text/plain": [
668
+ " open high low close volume funding_rate\n",
669
+ "date ticker \n",
670
+ "2010-07-17 BTC 0.04951 0.04951 0.04951 0.04951 20.00 0.0\n",
671
+ "2010-07-18 BTC 0.04951 0.08585 0.04951 0.08584 75.01 0.0\n",
672
+ "2010-07-19 BTC 0.08584 0.09307 0.07723 0.08080 574.00 0.0\n",
673
+ "2010-07-20 BTC 0.08080 0.08181 0.07426 0.07474 262.00 0.0\n",
674
+ "2010-07-21 BTC 0.07474 0.07921 0.06634 0.07921 575.00 0.0"
675
+ ]
676
+ },
677
+ "execution_count": 24,
678
+ "metadata": {},
679
+ "output_type": "execute_result"
680
+ }
681
+ ],
682
+ "source": [
683
+ "df.head()"
684
+ ]
685
+ },
686
+ {
687
+ "cell_type": "code",
688
+ "execution_count": 25,
689
+ "id": "d4c497d1",
690
+ "metadata": {},
691
+ "outputs": [],
692
+ "source": [
693
+ "delisted_tickers = ['AGIX', 'CTK', 'CVC', 'CVX', 'DGB', 'FTT', 'GLMR', 'IDEX', 'MDT',\n",
694
+ " 'OCEAN', 'RAD', 'RAY', 'SC', 'SLP', 'SNT', 'STPT', 'STRAX', 'WAVES']"
695
+ ]
696
+ },
697
+ {
698
+ "cell_type": "code",
699
+ "execution_count": 26,
700
+ "id": "a9b1764c",
701
+ "metadata": {},
702
+ "outputs": [
703
+ {
704
+ "name": "stdout",
705
+ "output_type": "stream",
706
+ "text": [
707
+ "Index(['AGIX', 'CTK', 'CVC', 'CVX', 'DGB', 'FTT', 'GLMR', 'IDEX', 'MDT',\n",
708
+ " 'OCEAN', 'RAD', 'RAY', 'SC', 'SLP', 'SNT', 'STPT', 'STRAX', 'WAVES'],\n",
709
+ " dtype='object', name='ticker')\n"
710
+ ]
711
+ }
712
+ ],
713
+ "source": [
714
+ "# clean data\n",
715
+ "clean_df = CleanData(df).filter_delisted_tickers().\\\n",
716
+ " filter_min_nobs(ts_obs=1500, cs_obs=10).\\\n",
717
+ " filter_outliers(od_method='mad', excl_cols=['volume', 'funding_rate'], thresh_val=10).\\\n",
718
+ " repair_outliers(imp_method='fcst').\\\n",
719
+ " filter_avg_trading_val(thresh_val=1000000).\\\n",
720
+ " filter_missing_vals_gaps().\\\n",
721
+ " get(attr='df').dropna(how='all')"
722
+ ]
723
+ },
724
+ {
725
+ "cell_type": "code",
726
+ "execution_count": 27,
727
+ "id": "3d423e53",
728
+ "metadata": {},
729
+ "outputs": [
730
+ {
731
+ "ename": "KeyError",
732
+ "evalue": "'OCEAN'",
733
+ "output_type": "error",
734
+ "traceback": [
735
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
736
+ "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
737
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexes/base.py:3800\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3799\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 3800\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcasted_key\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3801\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n",
738
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/_libs/index.pyx:138\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
739
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/_libs/index.pyx:165\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
740
+ "File \u001b[0;32mpandas/_libs/hashtable_class_helper.pxi:5745\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
741
+ "File \u001b[0;32mpandas/_libs/hashtable_class_helper.pxi:5753\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
742
+ "\u001b[0;31mKeyError\u001b[0m: 'OCEAN'",
743
+ "\nThe above exception was the direct cause of the following exception:\n",
744
+ "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
745
+ "Cell \u001b[0;32mIn [27], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m clean_df\u001b[38;5;241m.\u001b[39mloc[:, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mOCEAN\u001b[39m\u001b[38;5;124m'\u001b[39m, :]\n",
746
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexing.py:1068\u001b[0m, in \u001b[0;36m_LocationIndexer.__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1066\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_is_scalar_access(key):\n\u001b[1;32m 1067\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mobj\u001b[38;5;241m.\u001b[39m_get_value(\u001b[38;5;241m*\u001b[39mkey, takeable\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_takeable)\n\u001b[0;32m-> 1068\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_getitem_tuple\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1069\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1070\u001b[0m \u001b[38;5;66;03m# we by definition only have the 0th axis\u001b[39;00m\n\u001b[1;32m 1071\u001b[0m axis \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxis \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;241m0\u001b[39m\n",
747
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexing.py:1248\u001b[0m, in \u001b[0;36m_LocIndexer._getitem_tuple\u001b[0;34m(self, tup)\u001b[0m\n\u001b[1;32m 1246\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m suppress(IndexingError):\n\u001b[1;32m 1247\u001b[0m tup \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_expand_ellipsis(tup)\n\u001b[0;32m-> 1248\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_getitem_lowerdim\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtup\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1250\u001b[0m \u001b[38;5;66;03m# no multi-index, so validate all of the indexers\u001b[39;00m\n\u001b[1;32m 1251\u001b[0m tup \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_tuple_indexer(tup)\n",
748
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexing.py:942\u001b[0m, in \u001b[0;36m_LocationIndexer._getitem_lowerdim\u001b[0;34m(self, tup)\u001b[0m\n\u001b[1;32m 940\u001b[0m \u001b[38;5;66;03m# we may have a nested tuples indexer here\u001b[39;00m\n\u001b[1;32m 941\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_is_nested_tuple_indexer(tup):\n\u001b[0;32m--> 942\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_getitem_nested_tuple\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtup\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 944\u001b[0m \u001b[38;5;66;03m# we maybe be using a tuple to represent multiple dimensions here\u001b[39;00m\n\u001b[1;32m 945\u001b[0m ax0 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mobj\u001b[38;5;241m.\u001b[39m_get_axis(\u001b[38;5;241m0\u001b[39m)\n",
749
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexing.py:1034\u001b[0m, in \u001b[0;36m_LocationIndexer._getitem_nested_tuple\u001b[0;34m(self, tup)\u001b[0m\n\u001b[1;32m 1031\u001b[0m \u001b[38;5;66;03m# this is a series with a multi-index specified a tuple of\u001b[39;00m\n\u001b[1;32m 1032\u001b[0m \u001b[38;5;66;03m# selectors\u001b[39;00m\n\u001b[1;32m 1033\u001b[0m axis \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxis \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;241m0\u001b[39m\n\u001b[0;32m-> 1034\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_getitem_axis\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtup\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1036\u001b[0m \u001b[38;5;66;03m# handle the multi-axis by taking sections and reducing\u001b[39;00m\n\u001b[1;32m 1037\u001b[0m \u001b[38;5;66;03m# this is iterative\u001b[39;00m\n\u001b[1;32m 1038\u001b[0m obj \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mobj\n",
750
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexing.py:1306\u001b[0m, in \u001b[0;36m_LocIndexer._getitem_axis\u001b[0;34m(self, key, axis)\u001b[0m\n\u001b[1;32m 1304\u001b[0m \u001b[38;5;66;03m# nested tuple slicing\u001b[39;00m\n\u001b[1;32m 1305\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_nested_tuple(key, labels):\n\u001b[0;32m-> 1306\u001b[0m locs \u001b[38;5;241m=\u001b[39m \u001b[43mlabels\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_locs\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1307\u001b[0m indexer \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28mslice\u001b[39m(\u001b[38;5;28;01mNone\u001b[39;00m)] \u001b[38;5;241m*\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mndim\n\u001b[1;32m 1308\u001b[0m indexer[axis] \u001b[38;5;241m=\u001b[39m locs\n",
751
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexes/multi.py:3422\u001b[0m, in \u001b[0;36mMultiIndex.get_locs\u001b[0;34m(self, seq)\u001b[0m\n\u001b[1;32m 3418\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m 3420\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 3421\u001b[0m \u001b[38;5;66;03m# a slice or a single label\u001b[39;00m\n\u001b[0;32m-> 3422\u001b[0m lvl_indexer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_level_indexer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mi\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindexer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindexer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3424\u001b[0m \u001b[38;5;66;03m# update indexer\u001b[39;00m\n\u001b[1;32m 3425\u001b[0m lvl_indexer \u001b[38;5;241m=\u001b[39m _to_bool_indexer(lvl_indexer)\n",
752
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexes/multi.py:3262\u001b[0m, in \u001b[0;36mMultiIndex._get_level_indexer\u001b[0;34m(self, key, level, indexer)\u001b[0m\n\u001b[1;32m 3258\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mslice\u001b[39m(i, j, step)\n\u001b[1;32m 3260\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 3262\u001b[0m idx \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_loc_single_level_index\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlevel_index\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3264\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m level \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lexsort_depth \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 3265\u001b[0m \u001b[38;5;66;03m# Desired level is not sorted\u001b[39;00m\n\u001b[1;32m 3266\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(idx, \u001b[38;5;28mslice\u001b[39m):\n\u001b[1;32m 3267\u001b[0m \u001b[38;5;66;03m# test_get_loc_partial_timestamp_multiindex\u001b[39;00m\n",
753
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexes/multi.py:2848\u001b[0m, in \u001b[0;36mMultiIndex._get_loc_single_level_index\u001b[0;34m(self, level_index, key)\u001b[0m\n\u001b[1;32m 2846\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 2847\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2848\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mlevel_index\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n",
754
+ "File \u001b[0;32m~/opt/anaconda3/envs/cryptodatapy/lib/python3.9/site-packages/pandas/core/indexes/base.py:3802\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3800\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine\u001b[38;5;241m.\u001b[39mget_loc(casted_key)\n\u001b[1;32m 3801\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m-> 3802\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(key) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01merr\u001b[39;00m\n\u001b[1;32m 3803\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 3804\u001b[0m \u001b[38;5;66;03m# If we have a listlike key, _check_indexing_error will raise\u001b[39;00m\n\u001b[1;32m 3805\u001b[0m \u001b[38;5;66;03m# InvalidIndexError. Otherwise we fall through and re-raise\u001b[39;00m\n\u001b[1;32m 3806\u001b[0m \u001b[38;5;66;03m# the TypeError.\u001b[39;00m\n\u001b[1;32m 3807\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_indexing_error(key)\n",
755
+ "\u001b[0;31mKeyError\u001b[0m: 'OCEAN'"
756
+ ]
757
+ }
758
+ ],
759
+ "source": [
760
+ "clean_df.loc[:, 'OCEAN', :]"
761
+ ]
762
+ },
763
+ {
764
+ "cell_type": "code",
765
+ "execution_count": 28,
766
+ "id": "ad5a885c",
767
+ "metadata": {},
768
+ "outputs": [
769
+ {
770
+ "data": {
771
+ "text/html": [
772
+ "<div>\n",
773
+ "<style scoped>\n",
774
+ " .dataframe tbody tr th:only-of-type {\n",
775
+ " vertical-align: middle;\n",
776
+ " }\n",
777
+ "\n",
778
+ " .dataframe tbody tr th {\n",
779
+ " vertical-align: top;\n",
780
+ " }\n",
781
+ "\n",
782
+ " .dataframe thead th {\n",
783
+ " text-align: right;\n",
784
+ " }\n",
785
+ "</style>\n",
786
+ "<table border=\"1\" class=\"dataframe\">\n",
787
+ " <thead>\n",
788
+ " <tr style=\"text-align: right;\">\n",
789
+ " <th></th>\n",
790
+ " <th>open</th>\n",
791
+ " <th>high</th>\n",
792
+ " <th>low</th>\n",
793
+ " <th>close</th>\n",
794
+ " <th>volume</th>\n",
795
+ " <th>funding_rate</th>\n",
796
+ " </tr>\n",
797
+ " <tr>\n",
798
+ " <th>date</th>\n",
799
+ " <th></th>\n",
800
+ " <th></th>\n",
801
+ " <th></th>\n",
802
+ " <th></th>\n",
803
+ " <th></th>\n",
804
+ " <th></th>\n",
805
+ " </tr>\n",
806
+ " </thead>\n",
807
+ " <tbody>\n",
808
+ " <tr>\n",
809
+ " <th>2015-06-12</th>\n",
810
+ " <td>229.88</td>\n",
811
+ " <td>231.58</td>\n",
812
+ " <td>229.29</td>\n",
813
+ " <td>230.46</td>\n",
814
+ " <td>40744.820</td>\n",
815
+ " <td>0.000000</td>\n",
816
+ " </tr>\n",
817
+ " <tr>\n",
818
+ " <th>2015-06-13</th>\n",
819
+ " <td>230.46</td>\n",
820
+ " <td>233.14</td>\n",
821
+ " <td>229.01</td>\n",
822
+ " <td>232.48</td>\n",
823
+ " <td>38008.730</td>\n",
824
+ " <td>0.000000</td>\n",
825
+ " </tr>\n",
826
+ " <tr>\n",
827
+ " <th>2015-06-14</th>\n",
828
+ " <td>232.48</td>\n",
829
+ " <td>235.51</td>\n",
830
+ " <td>232.09</td>\n",
831
+ " <td>233.75</td>\n",
832
+ " <td>32894.870</td>\n",
833
+ " <td>0.000000</td>\n",
834
+ " </tr>\n",
835
+ " <tr>\n",
836
+ " <th>2015-06-15</th>\n",
837
+ " <td>233.75</td>\n",
838
+ " <td>238.55</td>\n",
839
+ " <td>233.29</td>\n",
840
+ " <td>237.0</td>\n",
841
+ " <td>63467.090</td>\n",
842
+ " <td>0.000000</td>\n",
843
+ " </tr>\n",
844
+ " <tr>\n",
845
+ " <th>2015-06-16</th>\n",
846
+ " <td>237.0</td>\n",
847
+ " <td>254.15</td>\n",
848
+ " <td>235.7</td>\n",
849
+ " <td>249.82</td>\n",
850
+ " <td>122473.610</td>\n",
851
+ " <td>0.000000</td>\n",
852
+ " </tr>\n",
853
+ " <tr>\n",
854
+ " <th>...</th>\n",
855
+ " <td>...</td>\n",
856
+ " <td>...</td>\n",
857
+ " <td>...</td>\n",
858
+ " <td>...</td>\n",
859
+ " <td>...</td>\n",
860
+ " <td>...</td>\n",
861
+ " </tr>\n",
862
+ " <tr>\n",
863
+ " <th>2024-07-31</th>\n",
864
+ " <td>66159.3</td>\n",
865
+ " <td>66826.3</td>\n",
866
+ " <td>64500.4</td>\n",
867
+ " <td>64601.8</td>\n",
868
+ " <td>246389.446</td>\n",
869
+ " <td>0.000141</td>\n",
870
+ " </tr>\n",
871
+ " <tr>\n",
872
+ " <th>2024-08-01</th>\n",
873
+ " <td>64601.8</td>\n",
874
+ " <td>65650.0</td>\n",
875
+ " <td>62271.2</td>\n",
876
+ " <td>65328.9</td>\n",
877
+ " <td>372654.590</td>\n",
878
+ " <td>0.000282</td>\n",
879
+ " </tr>\n",
880
+ " <tr>\n",
881
+ " <th>2024-08-02</th>\n",
882
+ " <td>65329.0</td>\n",
883
+ " <td>65577.0</td>\n",
884
+ " <td>61200.2</td>\n",
885
+ " <td>61483.7</td>\n",
886
+ " <td>421628.420</td>\n",
887
+ " <td>0.000300</td>\n",
888
+ " </tr>\n",
889
+ " <tr>\n",
890
+ " <th>2024-08-03</th>\n",
891
+ " <td>61483.7</td>\n",
892
+ " <td>63871.5</td>\n",
893
+ " <td>59800.0</td>\n",
894
+ " <td>60684.6</td>\n",
895
+ " <td>290469.956</td>\n",
896
+ " <td>0.000240</td>\n",
897
+ " </tr>\n",
898
+ " <tr>\n",
899
+ " <th>2024-08-04</th>\n",
900
+ " <td>60684.5</td>\n",
901
+ " <td>61089.5</td>\n",
902
+ " <td>60080.5</td>\n",
903
+ " <td>60357.6</td>\n",
904
+ " <td>85220.266</td>\n",
905
+ " <td>0.000153</td>\n",
906
+ " </tr>\n",
907
+ " </tbody>\n",
908
+ "</table>\n",
909
+ "<p>3342 rows × 6 columns</p>\n",
910
+ "</div>"
911
+ ],
912
+ "text/plain": [
913
+ " open high low close volume funding_rate\n",
914
+ "date \n",
915
+ "2015-06-12 229.88 231.58 229.29 230.46 40744.820 0.000000\n",
916
+ "2015-06-13 230.46 233.14 229.01 232.48 38008.730 0.000000\n",
917
+ "2015-06-14 232.48 235.51 232.09 233.75 32894.870 0.000000\n",
918
+ "2015-06-15 233.75 238.55 233.29 237.0 63467.090 0.000000\n",
919
+ "2015-06-16 237.0 254.15 235.7 249.82 122473.610 0.000000\n",
920
+ "... ... ... ... ... ... ...\n",
921
+ "2024-07-31 66159.3 66826.3 64500.4 64601.8 246389.446 0.000141\n",
922
+ "2024-08-01 64601.8 65650.0 62271.2 65328.9 372654.590 0.000282\n",
923
+ "2024-08-02 65329.0 65577.0 61200.2 61483.7 421628.420 0.000300\n",
924
+ "2024-08-03 61483.7 63871.5 59800.0 60684.6 290469.956 0.000240\n",
925
+ "2024-08-04 60684.5 61089.5 60080.5 60357.6 85220.266 0.000153\n",
926
+ "\n",
927
+ "[3342 rows x 6 columns]"
928
+ ]
929
+ },
930
+ "execution_count": 28,
931
+ "metadata": {},
932
+ "output_type": "execute_result"
933
+ }
934
+ ],
935
+ "source": [
936
+ "clean_df.loc[:, 'BTC', :]"
937
+ ]
938
+ },
939
+ {
940
+ "cell_type": "code",
941
+ "execution_count": 29,
942
+ "id": "a9c262fc",
943
+ "metadata": {},
944
+ "outputs": [],
945
+ "source": [
946
+ "clean_df.to_parquet('s3://factorlab-data/binance_historical_ohlcv_daily.parquet')"
947
+ ]
948
+ },
949
+ {
950
+ "cell_type": "code",
951
+ "execution_count": 30,
952
+ "id": "893e3e38",
953
+ "metadata": {},
954
+ "outputs": [],
955
+ "source": [
956
+ "clean_df.to_parquet('../../../../factorlab/notebooks/binance_historical_ohlcv_daily.parquet')"
957
+ ]
958
+ },
959
+ {
960
+ "cell_type": "code",
961
+ "execution_count": null,
962
+ "id": "8a962fa7",
963
+ "metadata": {},
964
+ "outputs": [],
965
+ "source": []
966
+ },
967
+ {
968
+ "cell_type": "code",
969
+ "execution_count": 31,
970
+ "id": "54b818cd",
971
+ "metadata": {},
972
+ "outputs": [],
973
+ "source": [
974
+ "clean_df.to_csv('../../../../factorlab/notebooks/binance_historical_ohlcv_daily.csv')"
975
+ ]
976
+ },
977
+ {
978
+ "cell_type": "code",
979
+ "execution_count": 32,
980
+ "id": "a1c49f01",
981
+ "metadata": {},
982
+ "outputs": [],
983
+ "source": [
984
+ "clean_df.to_csv('s3://factorlab-data/binance_historical_ohlcv_daily.csv')"
985
+ ]
986
+ },
987
+ {
988
+ "cell_type": "code",
989
+ "execution_count": null,
990
+ "id": "b8fa525d",
991
+ "metadata": {},
992
+ "outputs": [],
993
+ "source": []
994
+ },
995
+ {
996
+ "cell_type": "code",
997
+ "execution_count": null,
998
+ "id": "f9488eba",
999
+ "metadata": {},
1000
+ "outputs": [],
1001
+ "source": []
1002
+ }
1003
+ ],
1004
+ "metadata": {
1005
+ "kernelspec": {
1006
+ "display_name": "cryptodatapy",
1007
+ "language": "python",
1008
+ "name": "cryptodatapy"
1009
+ },
1010
+ "language_info": {
1011
+ "codemirror_mode": {
1012
+ "name": "ipython",
1013
+ "version": 3
1014
+ },
1015
+ "file_extension": ".py",
1016
+ "mimetype": "text/x-python",
1017
+ "name": "python",
1018
+ "nbconvert_exporter": "python",
1019
+ "pygments_lexer": "ipython3",
1020
+ "version": "3.9.12"
1021
+ }
1022
+ },
1023
+ "nbformat": 4,
1024
+ "nbformat_minor": 5
1025
+ }