crfm-helm 0.5.6__py3-none-any.whl → 0.5.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of crfm-helm might be problematic. Click here for more details.

Files changed (103) hide show
  1. {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.7.dist-info}/METADATA +56 -49
  2. {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.7.dist-info}/RECORD +99 -66
  3. helm/benchmark/annotation/air_bench_annotator.py +1 -1
  4. helm/benchmark/annotation/live_qa_annotator.py +1 -1
  5. helm/benchmark/metrics/codeinsights_code_efficiency_metrics.py +186 -0
  6. helm/benchmark/metrics/codeinsights_code_evaluation_metrics.py +477 -0
  7. helm/benchmark/metrics/codeinsights_correct_code_metrics.py +366 -0
  8. helm/benchmark/metrics/codeinsights_edge_case_metrics.py +92 -0
  9. helm/benchmark/metrics/codeinsights_metric_specs.py +51 -0
  10. helm/benchmark/metrics/comet_metric.py +1 -1
  11. helm/benchmark/metrics/copyright_metrics.py +1 -1
  12. helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +1 -1
  13. helm/benchmark/metrics/evaluate_reference_metrics.py +1 -1
  14. helm/benchmark/metrics/image_generation/clip_score_metrics.py +13 -2
  15. helm/benchmark/metrics/image_generation/fractal_dimension/fractal_dimension_util.py +1 -1
  16. helm/benchmark/metrics/lmkt_metric_specs.py +12 -0
  17. helm/benchmark/metrics/lmkt_metrics.py +47 -0
  18. helm/benchmark/metrics/melt_toxicity_metric.py +1 -1
  19. helm/benchmark/metrics/summac/model_summac.py +1 -1
  20. helm/benchmark/model_deployment_registry.py +11 -19
  21. helm/benchmark/presentation/create_plots.py +11 -2
  22. helm/benchmark/presentation/schema.py +5 -0
  23. helm/benchmark/presentation/summarize.py +9 -3
  24. helm/benchmark/presentation/test_create_plots.py +4 -1
  25. helm/benchmark/run.py +7 -1
  26. helm/benchmark/run_specs/arabic_run_specs.py +73 -0
  27. helm/benchmark/run_specs/bluex_run_specs.py +40 -0
  28. helm/benchmark/run_specs/classic_run_specs.py +0 -53
  29. helm/benchmark/run_specs/codeinsights_run_specs.py +192 -0
  30. helm/benchmark/run_specs/healthqa_br_run_specs.py +40 -0
  31. helm/benchmark/run_specs/heim_run_specs.py +3 -1
  32. helm/benchmark/run_specs/lmkt_run_specs.py +144 -0
  33. helm/benchmark/run_specs/long_context_run_specs.py +48 -1
  34. helm/benchmark/run_specs/multilingual_run_specs.py +50 -0
  35. helm/benchmark/run_specs/speech_disorder_audio_run_specs.py +5 -11
  36. helm/benchmark/scenarios/alghafa_scenario.py +126 -0
  37. helm/benchmark/scenarios/arabic_mmlu_scenario.py +78 -0
  38. helm/benchmark/scenarios/aratrust_scenario.py +76 -0
  39. helm/benchmark/scenarios/audio_language/casual_conversations2_scenario.py +1 -1
  40. helm/benchmark/scenarios/audio_language/mustard_scenario.py +1 -1
  41. helm/benchmark/scenarios/audio_language/{ultra_suite_asr_classification.py → ultra_suite_asr_classification_scenario.py} +9 -8
  42. helm/benchmark/scenarios/audio_language/ultra_suite_asr_transcription_scenario.py +99 -0
  43. helm/benchmark/scenarios/audio_language/ultra_suite_classification_scenario.py +13 -5
  44. helm/benchmark/scenarios/audio_language/ultra_suite_disorder_breakdown_scenario.py +13 -5
  45. helm/benchmark/scenarios/audio_language/ultra_suite_disorder_symptoms_scenario.py +13 -5
  46. helm/benchmark/scenarios/bluex_scenario.py +66 -0
  47. helm/benchmark/scenarios/cleva_scenario.py +1 -1
  48. helm/benchmark/scenarios/codeinsights_code_efficiency_scenario.py +197 -0
  49. helm/benchmark/scenarios/codeinsights_correct_code_scenario.py +78 -0
  50. helm/benchmark/scenarios/codeinsights_edge_case_scenario.py +192 -0
  51. helm/benchmark/scenarios/codeinsights_student_coding_scenario.py +162 -0
  52. helm/benchmark/scenarios/codeinsights_student_mistake_scenario.py +188 -0
  53. helm/benchmark/scenarios/exams_multilingual_scenario.py +115 -0
  54. helm/benchmark/scenarios/healthqa_br_scenario.py +80 -0
  55. helm/benchmark/scenarios/infinite_bench_en_mc_scenario.py +90 -0
  56. helm/benchmark/scenarios/infinite_bench_en_qa_scenario.py +1 -1
  57. helm/benchmark/scenarios/lmkt_scenarios.py +288 -0
  58. helm/benchmark/scenarios/math_scenario.py +21 -20
  59. helm/benchmark/scenarios/medalign_scenario_helper.py +19 -125
  60. helm/benchmark/scenarios/melt_scenarios.py +2 -2
  61. helm/benchmark/scenarios/mimic_bhc_scenario.py +1 -1
  62. helm/benchmark/scenarios/mmmlu_scenario.py +85 -0
  63. helm/benchmark/scenarios/seahelm_scenario.py +2 -2
  64. helm/benchmark/scenarios/test_alghafa_scenario.py +29 -0
  65. helm/benchmark/scenarios/test_aratrust_scenario.py +21 -0
  66. helm/benchmark/scenarios/test_bluex_scenario.py +59 -0
  67. helm/benchmark/scenarios/test_exams_multilingual_scenario.py +29 -0
  68. helm/benchmark/scenarios/test_healtha_br_scenario.py +57 -0
  69. helm/benchmark/slurm_jobs.py +1 -2
  70. helm/benchmark/slurm_runner.py +8 -1
  71. helm/benchmark/static/schema_arabic.yaml +228 -0
  72. helm/benchmark/static/schema_classic.yaml +0 -17
  73. helm/benchmark/static/schema_long_context.yaml +19 -1
  74. helm/benchmark/static_build/assets/index-e439d5e1.js +10 -0
  75. helm/benchmark/static_build/index.html +1 -1
  76. helm/benchmark/window_services/image_generation/clip_window_service.py +1 -3
  77. helm/clients/audio_language/qwen2_5_omni_client.py +19 -7
  78. helm/clients/huggingface_client.py +2 -2
  79. helm/clients/openai_client.py +2 -1
  80. helm/clients/openai_responses_client.py +6 -4
  81. helm/clients/test_huggingface_client.py +3 -3
  82. helm/clients/together_client.py +0 -2
  83. helm/clients/vertexai_client.py +11 -9
  84. helm/clients/vllm_client.py +43 -7
  85. helm/clients/vllm_granite_thinking_client.py +56 -0
  86. helm/common/critique_request.py +0 -1
  87. helm/common/hierarchical_logger.py +83 -34
  88. helm/common/object_spec.py +23 -8
  89. helm/common/test_logging.py +94 -0
  90. helm/config/model_deployments.yaml +454 -175
  91. helm/config/model_metadata.yaml +117 -10
  92. helm/config/tokenizer_configs.yaml +81 -1
  93. helm/proxy/cli.py +1 -1
  94. helm/proxy/retry.py +5 -0
  95. helm/tokenizers/grok_tokenizer.py +2 -0
  96. helm/benchmark/metrics/numeracy_metrics.py +0 -72
  97. helm/benchmark/metrics/test_numeracy_metrics.py +0 -95
  98. helm/benchmark/scenarios/numeracy_scenario.py +0 -794
  99. helm/benchmark/static_build/assets/index-94295e78.js +0 -10
  100. {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.7.dist-info}/WHEEL +0 -0
  101. {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.7.dist-info}/entry_points.txt +0 -0
  102. {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.7.dist-info}/licenses/LICENSE +0 -0
  103. {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,99 @@
1
+ from typing import List, Tuple
2
+ import os
3
+ import json
4
+
5
+ from tqdm import tqdm
6
+
7
+ from helm.benchmark.scenarios.scenario import (
8
+ Scenario,
9
+ Instance,
10
+ Reference,
11
+ TEST_SPLIT,
12
+ CORRECT_TAG,
13
+ Input,
14
+ Output,
15
+ )
16
+ from helm.common.media_object import MediaObject, MultimediaObject
17
+ from huggingface_hub import snapshot_download
18
+
19
+
20
+ def find_audio_json_pairs(directory: str) -> List[Tuple[str, str]]:
21
+ """
22
+ Find all pairs of MP3 and JSON files in the given directory and its subdirectories.
23
+ Each pair consists of an MP3 file and its corresponding JSON file with the same base name.
24
+
25
+ Args:
26
+ directory: Path to the directory containing the files
27
+
28
+ Returns:
29
+ List of tuples where each tuple contains (mp3_path, json_path)
30
+ """
31
+ pairs = []
32
+
33
+ # Walk through all directories and subdirectories
34
+ for root, _, files in os.walk(directory):
35
+ # Get all MP3 files in current directory
36
+ mp3_files = [f for f in files if f.endswith(".mp3")]
37
+
38
+ for mp3_file in mp3_files:
39
+ base_name = os.path.splitext(mp3_file)[0]
40
+ json_file = f"{base_name}.json"
41
+
42
+ # Check if corresponding JSON file exists in the same directory
43
+ if json_file in files:
44
+ mp3_path = os.path.join(root, mp3_file)
45
+ json_path = os.path.join(root, json_file)
46
+ pairs.append((mp3_path, json_path))
47
+
48
+ return pairs
49
+
50
+
51
+ class UltraSuiteASRTranscriptionScenario(Scenario):
52
+ """
53
+ A scenario for evaluating the transcription capabilities of ASR systems.
54
+ The audio files contain speech from children, potentially with an adult present.
55
+ The task is to classify whether the child speaker is typically developing or has a speech disorder.
56
+ """
57
+
58
+ name = "speech_disorder"
59
+ description = "A scenario for evaluating speech disorders in children"
60
+ tags = ["audio", "transcription", "speech_disorder", "asr"]
61
+
62
+ def get_instances(self, output_path: str) -> List[Instance]:
63
+ """
64
+ Create instances from the audio files and their corresponding JSON annotations.
65
+ The data directory should contain:
66
+ - Audio files (e.g., .mp3)
67
+ - A JSON file with annotations containing 'answer' field
68
+ """
69
+ print("Downloading SAA-Lab/SLPHelmManualLabels dataset...")
70
+ data_path = snapshot_download(
71
+ repo_id="SAA-Lab/SLPHelmManualLabels",
72
+ repo_type="dataset",
73
+ revision="38c2d7dab831acf8ccff0ca6f6463d6a8a0184ed",
74
+ )
75
+
76
+ instances: List[Instance] = []
77
+ split: str = TEST_SPLIT
78
+
79
+ # Find all pairs of audio and JSON files
80
+ pairs = find_audio_json_pairs(data_path)
81
+
82
+ for audio_path, json_path in tqdm(pairs):
83
+
84
+ # Load the annotation
85
+ with open(json_path, "r") as f:
86
+ annotation = json.load(f)
87
+
88
+ # Create references for the transcription
89
+ references: List[Reference] = [Reference(Output(text=annotation["transcription"]), tags=[CORRECT_TAG])]
90
+
91
+ # Create the input with audio and instruction
92
+ content = [
93
+ MediaObject(content_type="audio/mpeg", location=audio_path),
94
+ ]
95
+
96
+ input = Input(multimedia_content=MultimediaObject(content))
97
+ instances.append(Instance(input=input, references=references, split=split))
98
+
99
+ return instances
@@ -14,7 +14,7 @@ from helm.benchmark.scenarios.scenario import (
14
14
  Output,
15
15
  )
16
16
  from helm.common.media_object import MediaObject, MultimediaObject
17
- from helm.common.general import ensure_file_downloaded
17
+ from huggingface_hub import snapshot_download
18
18
 
19
19
 
20
20
  def find_audio_json_pairs(directory: str) -> List[Tuple[str, str]]:
@@ -61,7 +61,6 @@ class UltraSuiteClassificationScenario(Scenario):
61
61
  name = "speech_disorder"
62
62
  description = "A scenario for evaluating speech disorders in children"
63
63
  tags = ["audio", "classification", "speech_disorder"]
64
- HF_MAPPING_URL = "https://https://huggingface.co/datasets/SAA-Lab/SLPHelmUltraSuite"
65
64
 
66
65
  def get_instruction(self, words: str) -> str:
67
66
  return f"""You are a highly experienced Speech-Language Pathologist (SLP). An audio recording will be provided, typically consisting of a speech prompt from a pathologist followed by a child's repetition. The prompt the child is trying to repeat is as follows: {words}. Based on your professional expertise: 1. Assess the child's speech in the recording for signs of typical development or potential speech-language disorder. 2. Conclude your analysis with one of the following labels only: 'typically_developing' or 'speech_disorder'. 3. Provide your response as a single letter without any additional explanation, commentary, or unnecessary text.""" # noqa: E501
@@ -74,14 +73,18 @@ class UltraSuiteClassificationScenario(Scenario):
74
73
  - A JSON file with annotations containing 'answer' field
75
74
  """
76
75
 
77
- print(f"Downloading dataset from {UltraSuiteClassificationScenario.HF_MAPPING_URL} to {output_path}")
78
- ensure_file_downloaded(source_url=UltraSuiteClassificationScenario.HF_MAPPING_URL, target_path=output_path)
76
+ print("Downloading SAA-Lab/SLPHelmManualLabels dataset...")
77
+ data_path = snapshot_download(
78
+ repo_id="SAA-Lab/SLPHelmManualLabels",
79
+ repo_type="dataset",
80
+ revision="38c2d7dab831acf8ccff0ca6f6463d6a8a0184ed",
81
+ )
79
82
 
80
83
  instances: List[Instance] = []
81
84
  split: str = TEST_SPLIT
82
85
 
83
86
  # Find all pairs of audio and JSON files
84
- pairs = find_audio_json_pairs(output_path)
87
+ pairs = find_audio_json_pairs(data_path)
85
88
  print(f"Num pairs: {len(pairs)}")
86
89
 
87
90
  for audio_path, json_path in tqdm(pairs):
@@ -94,9 +97,14 @@ class UltraSuiteClassificationScenario(Scenario):
94
97
  words = annotation["transcription"]
95
98
  # Create references for each option
96
99
  references: List[Reference] = []
100
+ correct_label = 0
97
101
  for option in ["typically_developing", "speech_disorder"]:
98
102
  reference = Reference(Output(text=option), tags=[CORRECT_TAG] if option == answer else [])
99
103
  references.append(reference)
104
+ if option == answer:
105
+ correct_label += 1
106
+ if correct_label == 0:
107
+ continue
100
108
 
101
109
  # Create the input with audio and instruction
102
110
  content = [
@@ -13,7 +13,7 @@ from helm.benchmark.scenarios.scenario import (
13
13
  Output,
14
14
  )
15
15
  from helm.common.media_object import MediaObject, MultimediaObject
16
- from helm.common.general import ensure_file_downloaded
16
+ from huggingface_hub import snapshot_download
17
17
  from .ultra_suite_classification_scenario import find_audio_json_pairs
18
18
 
19
19
 
@@ -27,7 +27,6 @@ class UltraSuiteDisorderBreakdownScenario(Scenario):
27
27
  name = "speech_disorder"
28
28
  description = "A scenario for evaluating and classifying specific types of speech disorders in children"
29
29
  tags = ["audio", "classification", "speech_disorder", "disorder_breakdown"]
30
- HF_MAPPING_URL = "https://https://huggingface.co/datasets/SAA-Lab/SLPHelmManualLabels"
31
30
 
32
31
  def get_instruction(self, words: str) -> str:
33
32
  return f"""You are a highly experienced Speech-Language Pathologist (SLP). An audio recording will be provided, typically consisting of a speech prompt from a pathologist followed by a child's repetition. The prompt text the child is trying to repeat is as follows: {words}. Based on your professional expertise: 1. Assess the child's speech in the recording for signs of typical development or potential speech-language disorder. 2. Conclude your analysis with one of the following labels only: A - 'typically developing' (child's speech patterns and development are within normal age-appropriate ranges), B - 'articulation' (difficulty producing specific speech sounds correctly, such as substituting, omitting, or distorting sounds), C - 'phonological' (difficulty understanding and using the sound system of language, affecting sounds of a particular type). 3. Provide your response as a single letter without any additional explanation, commentary, or unnecessary text.""" # noqa: E501
@@ -39,14 +38,18 @@ class UltraSuiteDisorderBreakdownScenario(Scenario):
39
38
  - Audio files (e.g., .mp3)
40
39
  - A JSON file with annotations containing 'disorder_class' field
41
40
  """
42
- print(f"Downloading dataset from {UltraSuiteDisorderBreakdownScenario.HF_MAPPING_URL} to {output_path}")
43
- ensure_file_downloaded(source_url=UltraSuiteDisorderBreakdownScenario.HF_MAPPING_URL, target_path=output_path)
41
+ print("Downloading SAA-Lab/SLPHelmManualLabels dataset...")
42
+ data_path = snapshot_download(
43
+ repo_id="SAA-Lab/SLPHelmManualLabels",
44
+ repo_type="dataset",
45
+ revision="38c2d7dab831acf8ccff0ca6f6463d6a8a0184ed",
46
+ )
44
47
 
45
48
  instances: List[Instance] = []
46
49
  split: str = TEST_SPLIT
47
50
 
48
51
  # Find all pairs of audio and JSON files
49
- pairs = find_audio_json_pairs(output_path)
52
+ pairs = find_audio_json_pairs(data_path)
50
53
  print(f"Num pairs: {len(pairs)}")
51
54
 
52
55
  for audio_path, json_path in tqdm(pairs):
@@ -62,9 +65,14 @@ class UltraSuiteDisorderBreakdownScenario(Scenario):
62
65
 
63
66
  # Create references for each option
64
67
  references: List[Reference] = []
68
+ correct_label = 0
65
69
  for option in ["typically_developing", "articulation", "phonological"]:
66
70
  reference = Reference(Output(text=option), tags=[CORRECT_TAG] if option == label else [])
67
71
  references.append(reference)
72
+ if option == label:
73
+ correct_label += 1
74
+ if correct_label == 0:
75
+ continue
68
76
 
69
77
  # Create the input with audio and instruction
70
78
  content = [
@@ -14,7 +14,7 @@ from helm.benchmark.scenarios.scenario import (
14
14
  Output,
15
15
  )
16
16
  from helm.common.media_object import MediaObject, MultimediaObject
17
- from helm.common.general import ensure_file_downloaded
17
+ from huggingface_hub import snapshot_download
18
18
 
19
19
 
20
20
  def find_audio_json_pairs(directory: str) -> List[Tuple[str, str]]:
@@ -57,7 +57,6 @@ class UltraSuiteDisorderSymptomsScenario(Scenario):
57
57
  name = "speech_disorder"
58
58
  description = "A scenario for evaluating speech disorders in children"
59
59
  tags = ["audio", "classification", "speech_disorder"]
60
- HF_MAPPING_URL = "https://https://huggingface.co/datasets/SAA-Lab/SLPHelmManualLabels"
61
60
 
62
61
  def get_instruction(self, words: str) -> str:
63
62
  prompt = f"""You are a highly experienced Speech-Language Pathologist (SLP). An audio recording will be provided, typically consisting of a speech prompt from a pathologist followed by a child's repetition. The prompt the child is trying to repeat is as follows: {words}. Based on your professional expertise: 1. Assess the child's speech in the recording and recognize any abnormal features in the child's speech. 2. These features can be on of the following: A - 'substitution', B - 'omission', C - 'addition', D - 'typically_developing', or E - 'stuttering'. Here, 'substitution' is when the child substitutes one word/phrase/syllable for another. 'omission' is when the child omits one word/phrase/syllable. 'addition' is when the child adds one word/phrase/syllable. 'typically_developing' is when the child's speech is typical of a child of their age. 'stuttering' is when the child stutters, has difficulty speaking, repeats sounds/words or prolongs sounds/words. 3. Provide your response as a single letter without any additional explanation, commentary, or unnecessary text.""" # noqa: E501
@@ -71,14 +70,18 @@ class UltraSuiteDisorderSymptomsScenario(Scenario):
71
70
  - Audio files (e.g., .mp3)
72
71
  - A JSON file with annotations containing 'answer' field
73
72
  """
74
- print(f"Downloading dataset from {UltraSuiteDisorderSymptomsScenario.HF_MAPPING_URL} to {output_path}")
75
- ensure_file_downloaded(source_url=UltraSuiteDisorderSymptomsScenario.HF_MAPPING_URL, target_path=output_path)
73
+ print("Downloading SAA-Lab/SLPHelmManualLabels dataset...")
74
+ data_path = snapshot_download(
75
+ repo_id="SAA-Lab/SLPHelmManualLabels",
76
+ repo_type="dataset",
77
+ revision="38c2d7dab831acf8ccff0ca6f6463d6a8a0184ed",
78
+ )
76
79
 
77
80
  instances: List[Instance] = []
78
81
  split: str = TEST_SPLIT
79
82
 
80
83
  # Find all pairs of audio and JSON files
81
- pairs = find_audio_json_pairs(output_path)
84
+ pairs = find_audio_json_pairs(data_path)
82
85
 
83
86
  for audio_path, json_path in tqdm(pairs):
84
87
 
@@ -93,9 +96,14 @@ class UltraSuiteDisorderSymptomsScenario(Scenario):
93
96
  prompt = annotation["transcription"]
94
97
  # Create references for each option
95
98
  references: List[Reference] = []
99
+ correct_label = 0
96
100
  for option in ["substitution", "omission", "addition", "typically_developing", "stuttering"]:
97
101
  reference = Reference(Output(text=option), tags=[CORRECT_TAG] if option == label else [])
98
102
  references.append(reference)
103
+ if option == label:
104
+ correct_label += 1
105
+ if correct_label == 0:
106
+ continue
99
107
 
100
108
  # Create the input with audio and instruction
101
109
  content = [
@@ -0,0 +1,66 @@
1
+ from typing import Any, List
2
+ from pathlib import Path
3
+ from datasets import load_dataset
4
+ from helm.benchmark.scenarios.scenario import (
5
+ Scenario,
6
+ Instance,
7
+ Reference,
8
+ TEST_SPLIT,
9
+ CORRECT_TAG,
10
+ Input,
11
+ Output,
12
+ )
13
+
14
+
15
+ class BLUEX_Scenario(Scenario):
16
+ """
17
+ The BLUEX dataset is a benchmark used for evaluating natural language processing models in Brazilian Portuguese.
18
+ It consists of multiple-choice questions taken from official entrance exams of Unicamp (Convest) and USP (Fuvest),
19
+ covering various high school subjects. The questions include both textual prompts and visual elements. This dataset
20
+ was developed to assess the performance of models on tasks involving comprehension and reasoning, with a specific
21
+ focus on texts and exams originally written in Portuguese.
22
+ """
23
+
24
+ name = "bluex"
25
+ description = "MQA benchmark with questions from Brazilian entrance exams"
26
+ tags = ["knowledge", "multiple_choice", "pt-br"]
27
+
28
+ def get_instances(self, output_path: str) -> List[Instance]:
29
+ # Download the raw data and read all the dialogues
30
+ dataset: Any
31
+ # Read all the instances
32
+ instances: List[Instance] = []
33
+ cache_dir = str(Path(output_path) / "data")
34
+
35
+ dataset = load_dataset("portuguese-benchmark-datasets/BLUEX", cache_dir=cache_dir)
36
+ for example in dataset["questions"]:
37
+ # This scenario disregards issues with images
38
+ if example["has_associated_images"]:
39
+ continue
40
+ question = example["question"]
41
+ choices = example["alternatives"]
42
+ answer = example["answer"]
43
+
44
+ answers_dict = {}
45
+ for alt in choices:
46
+ if ")" in alt:
47
+ label, text = alt.split(")", 1)
48
+ label = label.strip().upper()
49
+ text = text.strip()
50
+ answers_dict[label] = text
51
+
52
+ if answer not in answers_dict:
53
+ continue
54
+
55
+ correct_answer = answers_dict[answer]
56
+
57
+ def answer_to_reference(answer: str) -> Reference:
58
+ return Reference(Output(text=answer), tags=[CORRECT_TAG] if answer == correct_answer else [])
59
+
60
+ instance = Instance(
61
+ input=Input(text=question),
62
+ split=TEST_SPLIT,
63
+ references=[answer_to_reference(text) for text in answers_dict.values()],
64
+ )
65
+ instances.append(instance)
66
+ return instances
@@ -1549,7 +1549,7 @@ class CLEVALanguageModelingScenario(CLEVAScenario):
1549
1549
 
1550
1550
 
1551
1551
  class CLEVACodeSynthesisScenario(CLEVAScenario):
1552
- """
1552
+ r"""
1553
1553
  The code synthesis task of CLEVA benchmark.
1554
1554
 
1555
1555
  An example is:
@@ -0,0 +1,197 @@
1
+ from helm.benchmark.scenarios.scenario import Scenario, Instance, Input, Output, Reference, VALID_SPLIT, CORRECT_TAG
2
+ import pandas as pd
3
+ import requests
4
+
5
+
6
+ class CodeInsightsCodeEfficiencyScenario(Scenario):
7
+ name = "codeinsights_code_efficiency"
8
+ description = "Evaluate runtime efficiency alignment between LLM-generated code and student code"
9
+ tags = ["codeinsights", "c++", "code_efficiency"]
10
+
11
+ def __init__(self, num_testcases: int = 1):
12
+ super().__init__()
13
+ self.num_testcases = num_testcases
14
+
15
+ def get_instances(self, output_path: str):
16
+ df = pd.read_csv("https://huggingface.co/datasets/Kazchoko/my_dataset/resolve/main/Scenario4_data.csv")
17
+
18
+ # Load test cases (unit tests)
19
+ test_cases = self._load_test_cases()
20
+
21
+ # Get available question IDs with test cases
22
+ available_question_ids = set()
23
+ if test_cases:
24
+ available_question_ids = set(test_cases.keys())
25
+ print(f"Loaded test cases for {len(available_question_ids)} questions")
26
+ else:
27
+ print("WARNING: No test cases loaded!")
28
+ return []
29
+
30
+ instances = []
31
+ skipped_no_tests = 0
32
+ skipped_insufficient_data = 0
33
+
34
+ for student_id, student_df in df.groupby("student_id"):
35
+ student_df = student_df.sort_values("timestamp")
36
+ if len(student_df) < 4:
37
+ skipped_insufficient_data += 1
38
+ continue
39
+
40
+ first = student_df.iloc[0]
41
+ second = student_df.iloc[1]
42
+ third = student_df.iloc[2]
43
+ target = student_df.iloc[3]
44
+
45
+ # Check if target question has test cases BEFORE processing
46
+ target_question_id = target.get("question_unittest_id", None)
47
+ if not target_question_id or str(target_question_id) not in available_question_ids:
48
+ skipped_no_tests += 1
49
+ print(f"SKIPPING Student {student_id}, Question {target_question_id}: No test cases available")
50
+ continue
51
+
52
+ # Get test cases for this question (we know they exist now)
53
+ question_test_cases = []
54
+ tc_parsing_success = True
55
+
56
+ for testcase_str in target["question_unittests"].split("Unittest")[1:]:
57
+ testcase_str = testcase_str[testcase_str.find(":") + 1 :]
58
+ input_idx = testcase_str.find("Input:")
59
+ std_in_idx = testcase_str.find("STD input:")
60
+ output_idx = testcase_str.find("Output:")
61
+ if input_idx == -1 or std_in_idx == -1 or output_idx == -1:
62
+ tc_parsing_success = False
63
+ break
64
+
65
+ testcase = {
66
+ "input": testcase_str[input_idx + 6 : std_in_idx].strip(),
67
+ "std_in": testcase_str[std_in_idx + 10 : output_idx].strip(),
68
+ "output": testcase_str[output_idx + 7 :].strip(),
69
+ }
70
+ question_test_cases.append(testcase)
71
+
72
+ if not tc_parsing_success:
73
+ print(f"SKIPPING Student {student_id}, Question {target_question_id}: Empty test cases")
74
+ continue
75
+
76
+ if len(question_test_cases) < self.num_testcases:
77
+ # If not enough test cases, skip this question
78
+ continue
79
+ if self.num_testcases >= 0:
80
+ # If more than one test case is requested, only take the first ones
81
+ question_test_cases = question_test_cases[: self.num_testcases]
82
+
83
+ # Get student pass pattern for the target question
84
+ student_correctness_pattern = target.get("pass", None)
85
+ if student_correctness_pattern is not None:
86
+ main_part = int(student_correctness_pattern)
87
+ # Convert each character to an int
88
+ student_correctness_list = [int(ch) for ch in str(main_part)]
89
+ else:
90
+ student_correctness_list = []
91
+
92
+ print(f"\n=== ACCEPTED INSTANCE: Student {student_id}, Question {target_question_id} ===")
93
+ print(f"Test cases loaded: {len(question_test_cases)}")
94
+ print(f"Student correctness pattern: {student_correctness_list}")
95
+ print(f"Question name: {target.get('question_name', 'MISSING')}")
96
+
97
+ prompt = (
98
+ f"Week: {target['week']}\n"
99
+ f"Topic: {target['topic']}\n\n"
100
+ "Example 1:\n"
101
+ f"Question: {first['question_name']} — {first['question_text']}\n"
102
+ "Template:\n"
103
+ f"{first['question_template']}\n"
104
+ "Your Code:\n"
105
+ f"{first['response']}\n\n"
106
+ "Example 2:\n"
107
+ f"Question: {second['question_name']} — {second['question_text']}\n"
108
+ "Template:\n"
109
+ f"{second['question_template']}\n"
110
+ "Your Code:\n"
111
+ f"{second['response']}\n\n"
112
+ "Example 3:\n"
113
+ f"Question: {third['question_name']} — {third['question_text']}\n"
114
+ "Template:\n"
115
+ f"{third['question_template']}\n"
116
+ "Your Code:\n"
117
+ f"{third['response']}\n\n"
118
+ "Now, using that same student's coding style, attempt this:\n"
119
+ "Ensure that the code works perfectly, but its efficiency should be based on students' past examples.\n"
120
+ "If a student has a tendency to write correct but inefficient code, imitate the inefficiency "
121
+ "but if they write efficiently, write efficiently too.\n"
122
+ f"Question: {target['question_name']} — {target['question_text']}\n\n"
123
+ f"Unit Test Input: {question_test_cases}\n\n"
124
+ if question_test_cases
125
+ else ""
126
+ "Template:\n"
127
+ f"{target['question_template']}\n\n"
128
+ "Provide ONLY your C++ implementation following the given template, where the answer will replace the {{ STUDENT_ANSWER }} block in the template. "
129
+ "DO NOT reproduce the template part as the generated code would be inserted to the template, "
130
+ "and make sure the code is compatible with the Unit Test Input. "
131
+ "int main() is always declared already so DO NOT produce that initialization on the code. "
132
+ "Ensure your code is correct, includes any class definition when needed, and handles all edge cases properly. "
133
+ "Return the code in C++ code block format, and nothing else, and produce only one set of code."
134
+ )
135
+
136
+ instances.append(
137
+ Instance(
138
+ id=f"{student_id}_{target['question_unittest_id']}",
139
+ input=Input(text=prompt),
140
+ references=[Reference(output=Output(text=target["response"]), tags=[CORRECT_TAG])],
141
+ extra_data={
142
+ "question_template": target["question_template"],
143
+ "test_cases": question_test_cases,
144
+ "question_id": str(target_question_id),
145
+ "question_name": target.get("question_name", ""),
146
+ "student_id": str(student_id),
147
+ "student_correctness_pattern": student_correctness_list,
148
+ },
149
+ split=VALID_SPLIT,
150
+ )
151
+ )
152
+
153
+ # Print summary statistics
154
+ print("\n=== INSTANCE CREATION SUMMARY ===")
155
+ print(f"Total instances created: {len(instances)}")
156
+ print(f"Skipped (insufficient data): {skipped_insufficient_data}")
157
+ print(f"Skipped (no test cases): {skipped_no_tests}")
158
+ print(f"Available test case question IDs: {len(available_question_ids)}")
159
+
160
+ if instances:
161
+ print("Sample created instances:")
162
+ for i, inst in enumerate(instances[:5]):
163
+ if inst.extra_data is None:
164
+ test_count = 0
165
+ else:
166
+ test_count = len(inst.extra_data.get("test_cases", []))
167
+ print(f" {inst.id}: {test_count} test cases")
168
+
169
+ return instances
170
+
171
+ def _load_test_cases(self):
172
+ """
173
+ Load test cases from external source or return None if not available.
174
+ This method should be implemented based on where your test cases are stored.
175
+
176
+ Expected format:
177
+ {
178
+ "question_id": [
179
+ {
180
+ "unittest": "test_id",
181
+ "input": "test input code",
182
+ "output": "expected output"
183
+ },
184
+ ...
185
+ ],
186
+ ...
187
+ }
188
+ """
189
+ try:
190
+ response = requests.get(
191
+ "https://huggingface.co/datasets/Kazchoko/my_dataset/resolve/main/test_cases_by_qid.json"
192
+ )
193
+ if response.status_code == 200:
194
+ return response.json()
195
+ except Exception as e:
196
+ print(f"Failed to load test cases from URL: {e}")
197
+ return {}
@@ -0,0 +1,78 @@
1
+ from helm.benchmark.scenarios.scenario import Scenario, Instance, Input, VALID_SPLIT
2
+ import pandas as pd
3
+
4
+
5
+ class CodeInsightsCorrectCodeScenario(Scenario):
6
+ name = "codeinsights_correct_code"
7
+ description = "Generate correct response code for C++ programming questions"
8
+ tags = ["codeinsights", "c++", "correct_code"]
9
+
10
+ def __init__(self, num_testcases: int = 1):
11
+ super().__init__()
12
+ self.num_testcases = num_testcases
13
+
14
+ def get_instances(self, output_path: str):
15
+ df = pd.read_csv("https://huggingface.co/datasets/Kazchoko/my_dataset/resolve/main/Scenario1_2_data.csv")
16
+
17
+ # Load test cases (unit tests)
18
+ instances = []
19
+ for question_id, question_df in df.groupby("question_unittest_id"):
20
+ target = question_df.iloc[0]
21
+ question_test_cases = []
22
+ tc_parsing_success = True
23
+
24
+ for testcase_str in target["question_unittests"].split("Unittest")[1:]:
25
+ testcase_str = testcase_str[testcase_str.find(":") + 1 :]
26
+ input_idx = testcase_str.find("Input:")
27
+ std_in_idx = testcase_str.find("STD input:")
28
+ output_idx = testcase_str.find("Output:")
29
+ if input_idx == -1 or std_in_idx == -1 or output_idx == -1:
30
+ tc_parsing_success = False
31
+ break
32
+
33
+ testcase = {
34
+ "input": testcase_str[input_idx + 6 : std_in_idx].strip(),
35
+ "std_in": testcase_str[std_in_idx + 10 : output_idx].strip(),
36
+ "output": testcase_str[output_idx + 7 :].strip(),
37
+ }
38
+ question_test_cases.append(testcase)
39
+
40
+ if not tc_parsing_success:
41
+ continue
42
+
43
+ if len(question_test_cases) < self.num_testcases:
44
+ # If not enough test cases, skip this question
45
+ continue
46
+ if self.num_testcases >= 0:
47
+ # If more than one test case is requested, only take the first ones
48
+ question_test_cases = question_test_cases[: self.num_testcases]
49
+
50
+ prompt = (
51
+ f"Question: {target['question_name']} — {target['question_text']}\n\n"
52
+ f"Unit Test Input: {question_test_cases}\n\n"
53
+ if question_test_cases
54
+ else ""
55
+ "Template:\n"
56
+ f"{target['question_template']}\n\n"
57
+ "Provide ONLY your C++ implementation following the given template, where the answer will replace the {{ STUDENT_ANSWER }} block in the template. "
58
+ "DO NOT reproduce the template part as the generated code would be inserted to the template, "
59
+ "and make sure the code is compatible with the Unit Test Input. "
60
+ "int main() is always declared already so DO NOT produce that initialization on the code. "
61
+ "Ensure your code is correct, efficient, includes any class definition when needed, and handles all edge cases properly. "
62
+ "Return the code in C++ code block format, and nothing else."
63
+ )
64
+ instances.append(
65
+ Instance(
66
+ id=f"{question_id}",
67
+ input=Input(text=prompt),
68
+ references=[],
69
+ extra_data={
70
+ "question_template": target["question_template"],
71
+ "test_cases": question_test_cases,
72
+ "question_id": str(question_id) if question_id else None,
73
+ "question_name": target.get("question_name", ""),
74
+ },
75
+ split=VALID_SPLIT,
76
+ )
77
+ )
78
+ return instances