crfm-helm 0.5.6__py3-none-any.whl → 0.5.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of crfm-helm might be problematic. Click here for more details.
- {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.10.dist-info}/METADATA +72 -130
- {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.10.dist-info}/RECORD +372 -305
- helm/benchmark/adaptation/adapter_spec.py +10 -0
- helm/benchmark/adaptation/adapters/multimodal/multiple_choice_joint_multimodal_adapter.py +11 -3
- helm/benchmark/adaptation/adapters/multiple_choice_joint_adapter.py +11 -8
- helm/benchmark/annotation/aci_bench_annotator.py +11 -22
- helm/benchmark/annotation/air_bench_annotator.py +1 -1
- helm/benchmark/annotation/alrage_annotator.py +90 -0
- helm/benchmark/annotation/chw_care_plan_annotator.py +10 -21
- helm/benchmark/annotation/dischargeme_annotator.py +11 -22
- helm/benchmark/annotation/live_qa_annotator.py +1 -1
- helm/benchmark/annotation/med_dialog_annotator.py +11 -22
- helm/benchmark/annotation/medalign_annotator.py +11 -22
- helm/benchmark/annotation/medi_qa_annotator.py +11 -22
- helm/benchmark/annotation/medication_qa_annotator.py +11 -22
- helm/benchmark/annotation/mental_health_annotator.py +11 -22
- helm/benchmark/annotation/mimic_bhc_annotator.py +11 -22
- helm/benchmark/annotation/mimic_rrs_annotator.py +11 -22
- helm/benchmark/annotation/model_as_judge.py +23 -18
- helm/benchmark/annotation/mtsamples_procedures_annotator.py +11 -22
- helm/benchmark/annotation/mtsamples_replicate_annotator.py +11 -22
- helm/benchmark/annotation/starr_patient_instructions_annotator.py +11 -22
- helm/benchmark/metrics/air_bench_metrics.py +3157 -1
- helm/benchmark/metrics/alrage_metric.py +35 -0
- helm/benchmark/metrics/basic_metrics.py +267 -2
- helm/benchmark/metrics/bbq_metrics.py +12 -0
- helm/benchmark/metrics/classification_metrics.py +19 -1
- helm/benchmark/metrics/codeinsights_code_efficiency_metrics.py +186 -0
- helm/benchmark/metrics/codeinsights_code_evaluation_metrics.py +477 -0
- helm/benchmark/metrics/codeinsights_correct_code_metrics.py +366 -0
- helm/benchmark/metrics/codeinsights_edge_case_metrics.py +92 -0
- helm/benchmark/metrics/codeinsights_metric_specs.py +51 -0
- helm/benchmark/metrics/comet_metric.py +1 -1
- helm/benchmark/metrics/conv_fin_qa_calc_metrics.py +12 -1
- helm/benchmark/metrics/copyright_metrics.py +1 -1
- helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +1 -1
- helm/benchmark/metrics/dry_run_metrics.py +30 -1
- helm/benchmark/metrics/efficiency_metrics.py +74 -0
- helm/benchmark/metrics/ehr_sql_metrics.py +57 -1
- helm/benchmark/metrics/evaluate_reference_metrics.py +312 -1
- helm/benchmark/metrics/gpqa_chain_of_thought_metric.py +13 -1
- helm/benchmark/metrics/helpdesk_call_summarization_metrics.py +13 -1
- helm/benchmark/metrics/ifeval_metrics.py +13 -1
- helm/benchmark/metrics/image_generation/clip_score_metrics.py +13 -2
- helm/benchmark/metrics/image_generation/fractal_dimension/fractal_dimension_util.py +1 -1
- helm/benchmark/metrics/instruction_following_critique_metrics.py +41 -1
- helm/benchmark/metrics/kpi_edgar_metrics.py +21 -0
- helm/benchmark/metrics/language_modeling_metrics.py +13 -1
- helm/benchmark/metrics/live_qa_metrics.py +13 -1
- helm/benchmark/metrics/llm_jury_metrics.py +13 -1
- helm/benchmark/metrics/lmkt_metric_specs.py +12 -0
- helm/benchmark/metrics/lmkt_metrics.py +47 -0
- helm/benchmark/metrics/medcalc_bench_metrics.py +14 -1
- helm/benchmark/metrics/medec_metrics.py +25 -2
- helm/benchmark/metrics/melt_toxicity_metric.py +1 -1
- helm/benchmark/metrics/metric.py +25 -0
- helm/benchmark/metrics/mimiciv_billing_code_metrics.py +32 -1
- helm/benchmark/metrics/omni_math_metrics.py +13 -1
- helm/benchmark/metrics/safety_metrics.py +13 -1
- helm/benchmark/metrics/seahelm_metrics.py +14 -1
- helm/benchmark/metrics/summac/model_summac.py +3 -3
- helm/benchmark/metrics/summarization_metrics.py +129 -1
- helm/benchmark/metrics/toxicity_metrics.py +31 -1
- helm/benchmark/metrics/ultra_suite_asr_classification_metrics.py +52 -0
- helm/benchmark/metrics/wildbench_metrics.py +21 -1
- helm/benchmark/model_deployment_registry.py +11 -19
- helm/benchmark/presentation/create_plots.py +11 -2
- helm/benchmark/presentation/run_display.py +13 -3
- helm/benchmark/presentation/run_entry.py +2 -2
- helm/benchmark/presentation/schema.py +10 -22
- helm/benchmark/presentation/summarize.py +189 -14
- helm/benchmark/presentation/taxonomy_info.py +20 -0
- helm/benchmark/presentation/test_create_plots.py +4 -1
- helm/benchmark/run.py +15 -4
- helm/benchmark/run_expander.py +4 -0
- helm/benchmark/run_specs/arabic_run_specs.py +197 -0
- helm/benchmark/run_specs/bluex_run_specs.py +40 -0
- helm/benchmark/run_specs/classic_run_specs.py +2 -55
- helm/benchmark/run_specs/codeinsights_run_specs.py +192 -0
- helm/benchmark/run_specs/healthqa_br_run_specs.py +40 -0
- helm/benchmark/run_specs/heim_run_specs.py +3 -1
- helm/benchmark/run_specs/lmkt_run_specs.py +144 -0
- helm/benchmark/run_specs/long_context_run_specs.py +48 -1
- helm/benchmark/run_specs/medhelm/__init__.py +0 -0
- helm/benchmark/run_specs/medhelm/benchmark_config.py +219 -0
- helm/benchmark/run_specs/medhelm_run_specs.py +363 -53
- helm/benchmark/run_specs/multilingual_run_specs.py +50 -0
- helm/benchmark/run_specs/speech_disorder_audio_run_specs.py +11 -13
- helm/benchmark/runner.py +7 -0
- helm/benchmark/scenarios/aci_bench_scenario.py +23 -0
- helm/benchmark/scenarios/air_bench_scenario.py +21 -0
- helm/benchmark/scenarios/alghafa_scenario.py +126 -0
- helm/benchmark/scenarios/alrage_scenario.py +54 -0
- helm/benchmark/scenarios/anthropic_hh_rlhf_scenario.py +23 -1
- helm/benchmark/scenarios/anthropic_red_team_scenario.py +12 -1
- helm/benchmark/scenarios/arabic_exams_scenario.py +114 -0
- helm/benchmark/scenarios/arabic_mmlu_scenario.py +82 -0
- helm/benchmark/scenarios/aratrust_scenario.py +95 -0
- helm/benchmark/scenarios/audio_language/casual_conversations2_scenario.py +1 -1
- helm/benchmark/scenarios/audio_language/mustard_scenario.py +1 -1
- helm/benchmark/scenarios/audio_language/ultra_suite_asr_classification_scenario.py +74 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_asr_transcription_scenario.py +70 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_classification_scenario.py +22 -53
- helm/benchmark/scenarios/audio_language/ultra_suite_disorder_breakdown_scenario.py +21 -21
- helm/benchmark/scenarios/audio_language/ultra_suite_disorder_symptoms_scenario.py +21 -52
- helm/benchmark/scenarios/babi_qa_scenario.py +15 -0
- helm/benchmark/scenarios/banking77_scenario.py +21 -0
- helm/benchmark/scenarios/bbq_scenario.py +15 -0
- helm/benchmark/scenarios/best_chatgpt_prompts.yaml +473 -0
- helm/benchmark/scenarios/bird_sql_scenario.py +18 -0
- helm/benchmark/scenarios/bluex_scenario.py +70 -0
- helm/benchmark/scenarios/bold_scenario.py +15 -0
- helm/benchmark/scenarios/boolq_scenario.py +20 -0
- helm/benchmark/scenarios/chw_care_plan_scenario.py +23 -0
- helm/benchmark/scenarios/civil_comments_scenario.py +13 -0
- helm/benchmark/scenarios/clear_scenario.py +23 -0
- helm/benchmark/scenarios/cleva_scenario.py +480 -1
- helm/benchmark/scenarios/code_scenario.py +28 -0
- helm/benchmark/scenarios/codeinsights_code_efficiency_scenario.py +197 -0
- helm/benchmark/scenarios/codeinsights_correct_code_scenario.py +78 -0
- helm/benchmark/scenarios/codeinsights_edge_case_scenario.py +192 -0
- helm/benchmark/scenarios/codeinsights_student_coding_scenario.py +162 -0
- helm/benchmark/scenarios/codeinsights_student_mistake_scenario.py +188 -0
- helm/benchmark/scenarios/commonsense_scenario.py +32 -0
- helm/benchmark/scenarios/compositional_instructions.yaml +70 -0
- helm/benchmark/scenarios/conv_fin_qa_calc_scenario.py +21 -0
- helm/benchmark/scenarios/copyright_scenario.py +35 -1
- helm/benchmark/scenarios/cti_to_mitre_scenario.py +21 -0
- helm/benchmark/scenarios/czech_bank_qa_scenario.py +18 -0
- helm/benchmark/scenarios/decodingtrust_adv_demonstration_scenario.py +22 -1
- helm/benchmark/scenarios/decodingtrust_adv_robustness_scenario.py +23 -1
- helm/benchmark/scenarios/decodingtrust_fairness_scenario.py +22 -1
- helm/benchmark/scenarios/decodingtrust_machine_ethics_scenario.py +21 -1
- helm/benchmark/scenarios/decodingtrust_ood_robustness_scenario.py +13 -0
- helm/benchmark/scenarios/decodingtrust_privacy_scenario.py +13 -1
- helm/benchmark/scenarios/decodingtrust_stereotype_bias_scenario.py +13 -1
- helm/benchmark/scenarios/decodingtrust_toxicity_prompts_scenario.py +13 -1
- helm/benchmark/scenarios/dischargeme_scenario.py +24 -0
- helm/benchmark/scenarios/disinformation_scenario.py +22 -0
- helm/benchmark/scenarios/dyck_language_scenario.py +15 -0
- helm/benchmark/scenarios/ehrshot_scenario.py +22 -0
- helm/benchmark/scenarios/enem_challenge_scenario.py +19 -0
- helm/benchmark/scenarios/entity_data_imputation_scenario.py +14 -0
- helm/benchmark/scenarios/entity_matching_scenario.py +14 -0
- helm/benchmark/scenarios/exams_multilingual_scenario.py +115 -0
- helm/benchmark/scenarios/fin_qa_scenario.py +20 -0
- helm/benchmark/scenarios/financebench_scenario.py +21 -0
- helm/benchmark/scenarios/financial_phrasebank_scenario.py +21 -0
- helm/benchmark/scenarios/gold_commodity_news_scenario.py +21 -0
- helm/benchmark/scenarios/gpqa_scenario.py +18 -0
- helm/benchmark/scenarios/grammar_scenario.py +20 -1
- helm/benchmark/scenarios/gsm_scenario.py +21 -0
- helm/benchmark/scenarios/harm_bench_gcg_transfer_scenario.py +12 -1
- helm/benchmark/scenarios/harm_bench_scenario.py +12 -1
- helm/benchmark/scenarios/headqa_scenario.py +22 -0
- helm/benchmark/scenarios/healthqa_br_scenario.py +80 -0
- helm/benchmark/scenarios/helpdesk_call_summarization_scenario.py +13 -0
- helm/benchmark/scenarios/ice_scenario.py +21 -1
- helm/benchmark/scenarios/ifeval_scenario.py +18 -0
- helm/benchmark/scenarios/imdb_scenario.py +15 -0
- helm/benchmark/scenarios/infinite_bench_en_mc_scenario.py +111 -0
- helm/benchmark/scenarios/infinite_bench_en_qa_scenario.py +1 -1
- helm/benchmark/scenarios/infinite_bench_en_sum_scenario.py +19 -0
- helm/benchmark/scenarios/koala_scenario.py +21 -1
- helm/benchmark/scenarios/kpi_edgar_scenario.py +21 -0
- helm/benchmark/scenarios/legal_contract_summarization_scenario.py +20 -0
- helm/benchmark/scenarios/legal_summarization_scenario.py +50 -0
- helm/benchmark/scenarios/legal_support_scenario.py +13 -0
- helm/benchmark/scenarios/legalbench_scenario.py +19 -0
- helm/benchmark/scenarios/lex_glue_scenario.py +11 -0
- helm/benchmark/scenarios/lextreme_scenario.py +11 -0
- helm/benchmark/scenarios/lmkt_scenarios.py +288 -0
- helm/benchmark/scenarios/lsat_qa_scenario.py +14 -0
- helm/benchmark/scenarios/madinah_qa_scenario.py +73 -0
- helm/benchmark/scenarios/math_scenario.py +54 -20
- helm/benchmark/scenarios/mbzuai_human_translated_arabic_mmlu.py +68 -0
- helm/benchmark/scenarios/med_dialog_scenario.py +32 -1
- helm/benchmark/scenarios/med_mcqa_scenario.py +14 -0
- helm/benchmark/scenarios/med_qa_scenario.py +20 -0
- helm/benchmark/scenarios/medalign_scenario.py +23 -0
- helm/benchmark/scenarios/medalign_scenario_helper.py +19 -125
- helm/benchmark/scenarios/medbullets_scenario.py +22 -0
- helm/benchmark/scenarios/medcalc_bench_scenario.py +22 -0
- helm/benchmark/scenarios/medec_scenario.py +23 -0
- helm/benchmark/scenarios/medhallu_scenario.py +23 -0
- helm/benchmark/scenarios/medhelm/__init__.py +0 -0
- helm/benchmark/scenarios/medhelm/judges.yaml +14 -0
- helm/benchmark/scenarios/medhelm_configurable_scenario.py +101 -0
- helm/benchmark/scenarios/medi_qa_scenario.py +24 -1
- helm/benchmark/scenarios/medication_qa_scenario.py +31 -1
- helm/benchmark/scenarios/melt_scenarios.py +2 -2
- helm/benchmark/scenarios/mental_health_scenario.py +23 -0
- helm/benchmark/scenarios/mimic_bhc_scenario.py +25 -1
- helm/benchmark/scenarios/mimic_rrs_scenario.py +23 -0
- helm/benchmark/scenarios/mimiciv_billing_code_scenario.py +22 -0
- helm/benchmark/scenarios/mmlu_pro_scenario.py +18 -0
- helm/benchmark/scenarios/mmlu_scenario.py +21 -0
- helm/benchmark/scenarios/mmmlu_scenario.py +85 -0
- helm/benchmark/scenarios/msmarco_scenario.py +30 -0
- helm/benchmark/scenarios/mtsamples_procedures_scenario.py +22 -0
- helm/benchmark/scenarios/mtsamples_replicate_scenario.py +22 -0
- helm/benchmark/scenarios/n2c2_ct_matching_scenario.py +20 -0
- helm/benchmark/scenarios/narrativeqa_scenario.py +19 -0
- helm/benchmark/scenarios/natural_qa_scenario.py +32 -0
- helm/benchmark/scenarios/omni_math_scenario.py +18 -0
- helm/benchmark/scenarios/open_assistant_scenario.py +22 -0
- helm/benchmark/scenarios/openai_mrcr_scenario.py +15 -0
- helm/benchmark/scenarios/pubmed_qa_scenario.py +22 -0
- helm/benchmark/scenarios/quac_scenario.py +14 -0
- helm/benchmark/scenarios/race_based_med_scenario.py +23 -0
- helm/benchmark/scenarios/raft_scenario.py +15 -0
- helm/benchmark/scenarios/real_toxicity_prompts_scenario.py +14 -1
- helm/benchmark/scenarios/ruler_qa_scenarios.py +40 -0
- helm/benchmark/scenarios/scenario.py +31 -0
- helm/benchmark/scenarios/seahelm_scenario.py +350 -2
- helm/benchmark/scenarios/self_instruct_scenario.py +29 -1
- helm/benchmark/scenarios/shc_bmt_scenario.py +22 -0
- helm/benchmark/scenarios/shc_cdi_scenario.py +20 -0
- helm/benchmark/scenarios/shc_conf_scenario.py +23 -0
- helm/benchmark/scenarios/shc_ent_scenario.py +21 -0
- helm/benchmark/scenarios/shc_gip_scenario.py +20 -0
- helm/benchmark/scenarios/shc_privacy_scenario.py +22 -0
- helm/benchmark/scenarios/shc_proxy_scenario.py +23 -1
- helm/benchmark/scenarios/shc_ptbm_scenario.py +23 -0
- helm/benchmark/scenarios/shc_sequoia_scenario.py +21 -0
- helm/benchmark/scenarios/simple_safety_tests_scenario.py +12 -1
- helm/benchmark/scenarios/situation_prompts.yaml +49 -0
- helm/benchmark/scenarios/spider_scenario.py +18 -0
- helm/benchmark/scenarios/starr_patient_instructions_scenario.py +22 -0
- helm/benchmark/scenarios/summarization_scenario.py +37 -0
- helm/benchmark/scenarios/synthetic_efficiency_scenario.py +22 -1
- helm/benchmark/scenarios/synthetic_reasoning_natural_scenario.py +13 -0
- helm/benchmark/scenarios/test_alghafa_scenario.py +29 -0
- helm/benchmark/scenarios/test_alrage_scenario.py +23 -0
- helm/benchmark/scenarios/test_arabic_exams_scenario.py +21 -0
- helm/benchmark/scenarios/test_aratrust_scenario.py +21 -0
- helm/benchmark/scenarios/test_bluex_scenario.py +59 -0
- helm/benchmark/scenarios/test_exams_multilingual_scenario.py +29 -0
- helm/benchmark/scenarios/test_healtha_br_scenario.py +57 -0
- helm/benchmark/scenarios/thai_exam_scenario.py +95 -0
- helm/benchmark/scenarios/the_pile_scenario.py +13 -1
- helm/benchmark/scenarios/truthful_qa_scenario.py +14 -0
- helm/benchmark/scenarios/twitter_aae_scenario.py +20 -1
- helm/benchmark/scenarios/vicuna_scenario.py +21 -1
- helm/benchmark/scenarios/wikifact_scenario.py +20 -0
- helm/benchmark/scenarios/wildbench_scenario.py +18 -0
- helm/benchmark/scenarios/wmt_14_scenario.py +19 -0
- helm/benchmark/slurm_jobs.py +1 -2
- helm/benchmark/slurm_runner.py +8 -1
- helm/benchmark/static/schema_arabic.yaml +271 -0
- helm/benchmark/static/schema_classic.yaml +0 -17
- helm/benchmark/static/schema_long_context.yaml +17 -18
- helm/benchmark/static/schema_medhelm.yaml +36 -0
- helm/benchmark/static/schema_slp.yaml +219 -0
- helm/benchmark/static_build/assets/audio-table-Dn5NMMeJ.png +0 -0
- helm/benchmark/static_build/assets/index-oIeiQW2g.css +1 -0
- helm/benchmark/static_build/assets/index-qOFpOyHb.js +10 -0
- helm/benchmark/static_build/assets/react-BteFIppM.js +85 -0
- helm/benchmark/static_build/assets/recharts-DxuQtTOs.js +97 -0
- helm/benchmark/static_build/assets/tremor-DR4fE7ko.js +10 -0
- helm/benchmark/static_build/index.html +5 -6
- helm/benchmark/window_services/image_generation/clip_window_service.py +1 -3
- helm/clients/ai21_client.py +2 -0
- helm/clients/aleph_alpha_client.py +2 -0
- helm/clients/anthropic_client.py +7 -1
- helm/clients/audio_language/diva_llama_client.py +2 -0
- helm/clients/audio_language/llama_omni/arguments.py +61 -0
- helm/clients/audio_language/llama_omni/constants.py +9 -0
- helm/clients/audio_language/llama_omni/conversation.py +213 -0
- helm/clients/audio_language/llama_omni/model/__init__.py +0 -0
- helm/clients/audio_language/llama_omni/model/builder.py +88 -0
- helm/clients/audio_language/llama_omni/model/language_model/omni_speech2s_llama.py +190 -0
- helm/clients/audio_language/llama_omni/model/language_model/omni_speech_llama.py +118 -0
- helm/clients/audio_language/llama_omni/model/omni_speech_arch.py +249 -0
- helm/clients/audio_language/llama_omni/model/speech_encoder/builder.py +9 -0
- helm/clients/audio_language/llama_omni/model/speech_encoder/speech_encoder.py +27 -0
- helm/clients/audio_language/llama_omni/model/speech_generator/builder.py +9 -0
- helm/clients/audio_language/llama_omni/model/speech_generator/generation.py +622 -0
- helm/clients/audio_language/llama_omni/model/speech_generator/speech_generator.py +104 -0
- helm/clients/audio_language/llama_omni/model/speech_projector/builder.py +9 -0
- helm/clients/audio_language/llama_omni/model/speech_projector/speech_projector.py +27 -0
- helm/clients/audio_language/llama_omni/preprocess.py +295 -0
- helm/clients/audio_language/llama_omni/utils.py +202 -0
- helm/clients/audio_language/llama_omni_client.py +2 -1
- helm/clients/audio_language/qwen2_5_omni_client.py +21 -8
- helm/clients/audio_language/qwen2_audiolm_client.py +2 -1
- helm/clients/audio_language/qwen_audiolm_client.py +2 -1
- helm/clients/audio_language/qwen_omni/configuration_qwen2_5_omni.py +519 -0
- helm/clients/audio_language/qwen_omni/modeling_qwen2_5_omni.py +4308 -0
- helm/clients/audio_language/qwen_omni/processing_qwen2_5_omni.py +270 -0
- helm/clients/audio_language/qwen_omni/qwen2_5_omni_utils/__init__.py +0 -0
- helm/clients/audio_language/qwen_omni/qwen2_5_omni_utils/v2_5/__init__.py +8 -0
- helm/clients/audio_language/qwen_omni/qwen2_5_omni_utils/v2_5/audio_process.py +56 -0
- helm/clients/audio_language/qwen_omni/qwen2_5_omni_utils/v2_5/vision_process.py +380 -0
- helm/clients/bedrock_client.py +63 -6
- helm/clients/cohere_client.py +3 -0
- helm/clients/dspy_client.py +135 -0
- helm/clients/google_client.py +2 -0
- helm/clients/http_model_client.py +2 -0
- helm/clients/huggingface_client.py +4 -3
- helm/clients/ibm_client.py +3 -1
- helm/clients/image_generation/adobe_vision_client.py +2 -0
- helm/clients/image_generation/aleph_alpha_image_generation_client.py +2 -0
- helm/clients/image_generation/cogview2/sr_pipeline/dsr_model.py +1 -1
- helm/clients/image_generation/cogview2_client.py +2 -1
- helm/clients/image_generation/dalle2_client.py +2 -0
- helm/clients/image_generation/dalle_mini_client.py +2 -1
- helm/clients/image_generation/deep_floyd_client.py +2 -0
- helm/clients/image_generation/huggingface_diffusers_client.py +2 -1
- helm/clients/image_generation/lexica_client.py +2 -0
- helm/clients/image_generation/mindalle/models/stage1/layers.py +2 -2
- helm/clients/image_generation/mindalle_client.py +2 -1
- helm/clients/image_generation/together_image_generation_client.py +2 -0
- helm/clients/megatron_client.py +2 -0
- helm/clients/mistral_client.py +2 -0
- helm/clients/moderation_api_client.py +2 -0
- helm/clients/openai_client.py +38 -21
- helm/clients/openai_responses_client.py +34 -8
- helm/clients/openrouter_client.py +31 -0
- helm/clients/palmyra_client.py +2 -1
- helm/clients/reka_client.py +2 -1
- helm/clients/stanfordhealthcare_azure_openai_client.py +2 -2
- helm/clients/stanfordhealthcare_http_model_client.py +2 -0
- helm/clients/test_huggingface_client.py +3 -3
- helm/clients/test_openrouter_client.py +69 -0
- helm/clients/together_client.py +52 -13
- helm/clients/vertexai_client.py +23 -11
- helm/clients/vision_language/huggingface_vision2seq_client.py +2 -1
- helm/clients/vision_language/huggingface_vlm_client.py +2 -0
- helm/clients/vision_language/idefics_client.py +2 -1
- helm/clients/vision_language/open_flamingo_client.py +2 -1
- helm/clients/vision_language/paligemma_client.py +2 -1
- helm/clients/vision_language/palmyra_vision_client.py +2 -0
- helm/clients/vision_language/qwen2_vlm_client.py +2 -1
- helm/clients/vision_language/qwen_vlm_client.py +2 -1
- helm/clients/vllm_client.py +43 -7
- helm/clients/vllm_granite_thinking_client.py +56 -0
- helm/clients/writer_client.py +5 -2
- helm/common/critique_request.py +0 -1
- helm/common/hierarchical_logger.py +103 -34
- helm/common/object_spec.py +23 -8
- helm/common/optional_dependencies.py +1 -1
- helm/common/test_general.py +4 -0
- helm/common/test_logging.py +94 -0
- helm/config/model_deployments.yaml +1001 -187
- helm/config/model_metadata.yaml +602 -18
- helm/config/tokenizer_configs.yaml +202 -5
- helm/proxy/cli.py +1 -1
- helm/proxy/example_queries.py +8 -8
- helm/proxy/retry.py +5 -0
- helm/proxy/server.py +2 -1
- helm/proxy/static/index.css +4 -0
- helm/proxy/static/index.js +7 -1
- helm/tokenizers/auto_tokenizer.py +2 -2
- helm/tokenizers/grok_tokenizer.py +2 -0
- helm/benchmark/metrics/aci_bench_metrics.py +0 -14
- helm/benchmark/metrics/chw_care_plan_metrics.py +0 -14
- helm/benchmark/metrics/dischargeme_metrics.py +0 -14
- helm/benchmark/metrics/med_dialog_metrics.py +0 -14
- helm/benchmark/metrics/medalign_metrics.py +0 -14
- helm/benchmark/metrics/medi_qa_metrics.py +0 -14
- helm/benchmark/metrics/medication_qa_metrics.py +0 -14
- helm/benchmark/metrics/mental_health_metrics.py +0 -14
- helm/benchmark/metrics/mimic_bhc_metrics.py +0 -14
- helm/benchmark/metrics/mimic_rrs_metrics.py +0 -14
- helm/benchmark/metrics/mtsamples_procedures_metrics.py +0 -14
- helm/benchmark/metrics/mtsamples_replicate_metrics.py +0 -14
- helm/benchmark/metrics/numeracy_metrics.py +0 -72
- helm/benchmark/metrics/starr_patient_instructions_metrics.py +0 -14
- helm/benchmark/metrics/test_numeracy_metrics.py +0 -95
- helm/benchmark/scenarios/audio_language/ultra_suite_asr_classification.py +0 -103
- helm/benchmark/scenarios/numeracy_scenario.py +0 -794
- helm/benchmark/static_build/assets/index-94295e78.js +0 -10
- helm/benchmark/static_build/assets/index-b9779128.css +0 -1
- helm/benchmark/static_build/assets/react-f82877fd.js +0 -85
- helm/benchmark/static_build/assets/recharts-4037aff0.js +0 -97
- helm/benchmark/static_build/assets/tremor-38a10867.js +0 -10
- {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.10.dist-info}/WHEEL +0 -0
- {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.10.dist-info}/entry_points.txt +0 -0
- {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.10.dist-info}/licenses/LICENSE +0 -0
- {crfm_helm-0.5.6.dist-info → crfm_helm-0.5.10.dist-info}/top_level.txt +0 -0
- /helm/benchmark/static_build/assets/{air-overview-d2e6c49f.png → air-overview-DpBbyagA.png} +0 -0
- /helm/benchmark/static_build/assets/{crfm-logo-74391ab8.png → crfm-logo-Du4T1uWZ.png} +0 -0
- /helm/benchmark/static_build/assets/{heim-logo-3e5e3aa4.png → heim-logo-BJtQlEbV.png} +0 -0
- /helm/benchmark/static_build/assets/{helm-logo-simple-2ed5400b.png → helm-logo-simple-DzOhNN41.png} +0 -0
- /helm/benchmark/static_build/assets/{helm-safety-2907a7b6.png → helm-safety-COfndXuS.png} +0 -0
- /helm/benchmark/static_build/assets/{helmhero-28e90f4d.png → helmhero-D9TvmJsp.png} +0 -0
- /helm/benchmark/static_build/assets/{medhelm-overview-eac29843.png → medhelm-overview-CND0EIsy.png} +0 -0
- /helm/benchmark/static_build/assets/{medhelm-v1-overview-3ddfcd65.png → medhelm-v1-overview-Cu2tphBB.png} +0 -0
- /helm/benchmark/static_build/assets/{overview-74aea3d8.png → overview-BwypNWnk.png} +0 -0
- /helm/benchmark/static_build/assets/{process-flow-bd2eba96.png → process-flow-DWDJC733.png} +0 -0
- /helm/benchmark/static_build/assets/{vhelm-aspects-1437d673.png → vhelm-aspects-NiDQofvP.png} +0 -0
- /helm/benchmark/static_build/assets/{vhelm-framework-a1ca3f3f.png → vhelm-framework-NxJE4fdA.png} +0 -0
- /helm/benchmark/static_build/assets/{vhelm-model-8afb7616.png → vhelm-model-ypCL5Yvq.png} +0 -0
|
@@ -0,0 +1,104 @@
|
|
|
1
|
+
import copy
|
|
2
|
+
import torch
|
|
3
|
+
import torch.nn as nn
|
|
4
|
+
import torch.nn.functional as F
|
|
5
|
+
|
|
6
|
+
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
|
7
|
+
from helm.clients.audio_language.llama_omni.constants import IGNORE_INDEX
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def lengths_to_padding_mask(lens):
|
|
11
|
+
bsz, max_lens = lens.size(0), torch.max(lens).item()
|
|
12
|
+
mask = torch.arange(max_lens).to(lens.device).view([1, int(max_lens)])
|
|
13
|
+
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens)
|
|
14
|
+
return mask
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def _uniform_assignment(src_lens, tgt_lens):
|
|
18
|
+
tgt_max_len = torch.max(tgt_lens).item()
|
|
19
|
+
tgt_indices = torch.arange(tgt_max_len).expand(len(tgt_lens), -1).to(tgt_lens.device)
|
|
20
|
+
ratio = tgt_lens / src_lens
|
|
21
|
+
index_t = (tgt_indices / ratio.view(-1, 1)).long()
|
|
22
|
+
return index_t
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class SpeechGeneratorCTC(nn.Module):
|
|
26
|
+
def __init__(self, config):
|
|
27
|
+
super().__init__()
|
|
28
|
+
n_layers, n_dims, n_heads, n_inter_dims = list(map(int, config.ctc_decoder_config[1:-1].split(",")))
|
|
29
|
+
_config = copy.deepcopy(config)
|
|
30
|
+
_config.hidden_size = n_dims
|
|
31
|
+
_config.num_hidden_layers = n_layers
|
|
32
|
+
_config.num_attention_heads = n_heads
|
|
33
|
+
_config.num_key_value_heads = n_heads
|
|
34
|
+
_config.intermediate_size = n_inter_dims
|
|
35
|
+
_config._attn_implementation = "flash_attention_2"
|
|
36
|
+
self.upsample_factor = config.ctc_upsample_factor
|
|
37
|
+
self.input_proj = nn.Linear(config.hidden_size, n_dims)
|
|
38
|
+
self.layers = nn.ModuleList([LlamaDecoderLayer(_config, layer_idx) for layer_idx in range(n_layers)])
|
|
39
|
+
self.unit_vocab_size = config.unit_vocab_size
|
|
40
|
+
self.output_proj = nn.Linear(n_dims, config.unit_vocab_size + 1)
|
|
41
|
+
|
|
42
|
+
def upsample(self, reps, tgt_units=None):
|
|
43
|
+
src_lens = torch.LongTensor([len(rep) for rep in reps]).to(reps[0].device)
|
|
44
|
+
up_lens = src_lens * self.upsample_factor
|
|
45
|
+
if tgt_units is not None:
|
|
46
|
+
tgt_lens = tgt_units.ne(IGNORE_INDEX).long().sum(dim=-1)
|
|
47
|
+
up_lens = torch.max(up_lens, tgt_lens)
|
|
48
|
+
reps = torch.nn.utils.rnn.pad_sequence(reps, batch_first=True)
|
|
49
|
+
padding_mask = lengths_to_padding_mask(up_lens)
|
|
50
|
+
mapped_inputs = _uniform_assignment(src_lens, up_lens).masked_fill(padding_mask, 0)
|
|
51
|
+
copied_reps = torch.gather(
|
|
52
|
+
reps,
|
|
53
|
+
1,
|
|
54
|
+
mapped_inputs.unsqueeze(-1).expand(*mapped_inputs.size(), reps.size(-1)),
|
|
55
|
+
)
|
|
56
|
+
copied_reps = copied_reps.masked_fill(padding_mask.unsqueeze(-1), 0)
|
|
57
|
+
position_ids = torch.arange(0, max(up_lens)).unsqueeze(0).expand(len(reps), -1).to(device=copied_reps.device)
|
|
58
|
+
return copied_reps, ~padding_mask, position_ids
|
|
59
|
+
|
|
60
|
+
def forward(self, tgt_reps, labels, tgt_units):
|
|
61
|
+
tgt_label_reps = []
|
|
62
|
+
for tgt_rep, label in zip(tgt_reps, labels):
|
|
63
|
+
tgt_label_reps.append(tgt_rep[label != IGNORE_INDEX])
|
|
64
|
+
hidden_states, attention_mask, position_ids = self.upsample(tgt_label_reps, tgt_units)
|
|
65
|
+
hidden_states = self.input_proj(hidden_states)
|
|
66
|
+
for layer in self.layers:
|
|
67
|
+
layer_outputs = layer(
|
|
68
|
+
hidden_states,
|
|
69
|
+
attention_mask=attention_mask,
|
|
70
|
+
position_ids=position_ids,
|
|
71
|
+
)
|
|
72
|
+
hidden_states = layer_outputs[0]
|
|
73
|
+
ctc_logits = self.output_proj(hidden_states)
|
|
74
|
+
ctc_lprobs = F.log_softmax(ctc_logits.float(), dim=-1, dtype=torch.float32)
|
|
75
|
+
ctc_lens = attention_mask.long().sum(dim=-1)
|
|
76
|
+
ctc_tgt_lens = tgt_units.ne(IGNORE_INDEX).long().sum(dim=-1)
|
|
77
|
+
ctc_tgt_mask = ~lengths_to_padding_mask(ctc_tgt_lens)
|
|
78
|
+
ctc_tgt_flat = tgt_units.masked_select(ctc_tgt_mask)
|
|
79
|
+
ctc_loss = F.ctc_loss(
|
|
80
|
+
ctc_lprobs.transpose(0, 1),
|
|
81
|
+
ctc_tgt_flat,
|
|
82
|
+
ctc_lens,
|
|
83
|
+
ctc_tgt_lens,
|
|
84
|
+
reduction="sum",
|
|
85
|
+
zero_infinity=True,
|
|
86
|
+
blank=self.unit_vocab_size,
|
|
87
|
+
)
|
|
88
|
+
ctc_loss /= ctc_tgt_lens.sum().item()
|
|
89
|
+
return ctc_loss
|
|
90
|
+
|
|
91
|
+
def predict(self, tgt_reps):
|
|
92
|
+
hidden_states, attention_mask, position_ids = self.upsample([tgt_reps])
|
|
93
|
+
hidden_states = self.input_proj(hidden_states)
|
|
94
|
+
for layer in self.layers:
|
|
95
|
+
layer_outputs = layer(
|
|
96
|
+
hidden_states,
|
|
97
|
+
attention_mask=attention_mask,
|
|
98
|
+
position_ids=position_ids,
|
|
99
|
+
)
|
|
100
|
+
hidden_states = layer_outputs[0]
|
|
101
|
+
ctc_logits = self.output_proj(hidden_states)
|
|
102
|
+
ctc_lprobs = F.log_softmax(ctc_logits.float(), dim=-1, dtype=torch.float32)
|
|
103
|
+
ctc_pred = ctc_lprobs.argmax(dim=-1).masked_fill_(~attention_mask, self.unit_vocab_size)
|
|
104
|
+
return ctc_pred
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
from helm.clients.audio_language.llama_omni.model.speech_projector.speech_projector import EncoderProjectorConcat
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def build_speech_projector(config):
|
|
5
|
+
projector_type = getattr(config, "speech_projector_type", "linear")
|
|
6
|
+
if projector_type == "linear":
|
|
7
|
+
return EncoderProjectorConcat(config)
|
|
8
|
+
|
|
9
|
+
raise ValueError(f"Unknown projector type: {projector_type}")
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
# Adopted from https://github.com/ddlBoJack/SLAM-LLM/blob/main/src/slam_llm/models/projector.py
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class EncoderProjectorConcat(nn.Module):
|
|
6
|
+
def __init__(self, config):
|
|
7
|
+
super().__init__()
|
|
8
|
+
self.k = config.speech_encoder_ds_rate
|
|
9
|
+
self.encoder_dim = config.speech_encoder_hidden_size
|
|
10
|
+
self.llm_dim = config.hidden_size
|
|
11
|
+
self.linear1 = nn.Linear(self.encoder_dim * self.k, 2048)
|
|
12
|
+
self.relu = nn.ReLU()
|
|
13
|
+
self.linear2 = nn.Linear(2048, config.hidden_size)
|
|
14
|
+
|
|
15
|
+
def forward(self, x):
|
|
16
|
+
batch_size, seq_len, dim = x.size()
|
|
17
|
+
num_frames_to_discard = seq_len % self.k
|
|
18
|
+
if num_frames_to_discard > 0:
|
|
19
|
+
x = x[:, :-num_frames_to_discard, :]
|
|
20
|
+
seq_len = x.size(1)
|
|
21
|
+
|
|
22
|
+
x = x.contiguous()
|
|
23
|
+
x = x.view(batch_size, seq_len // self.k, dim * self.k)
|
|
24
|
+
x = self.linear1(x)
|
|
25
|
+
x = self.relu(x)
|
|
26
|
+
x = self.linear2(x)
|
|
27
|
+
return x
|
|
@@ -0,0 +1,295 @@
|
|
|
1
|
+
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
|
2
|
+
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
|
|
3
|
+
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
|
|
4
|
+
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
|
5
|
+
#
|
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
+
# you may not use this file except in compliance with the License.
|
|
8
|
+
# You may obtain a copy of the License at
|
|
9
|
+
#
|
|
10
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
11
|
+
#
|
|
12
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
13
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
14
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15
|
+
# See the License for the specific language governing permissions and
|
|
16
|
+
# limitations under the License.
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
import transformers
|
|
20
|
+
|
|
21
|
+
from typing import Dict, Sequence
|
|
22
|
+
|
|
23
|
+
from helm.clients.audio_language.llama_omni.constants import IGNORE_INDEX, SPEECH_TOKEN_INDEX
|
|
24
|
+
import helm.clients.audio_language.llama_omni.conversation as conversation_lib
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def tokenizer_speech_token(prompt, tokenizer, speech_token_index=SPEECH_TOKEN_INDEX, return_tensors=None):
|
|
28
|
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<speech>")]
|
|
29
|
+
|
|
30
|
+
def insert_separator(X, sep):
|
|
31
|
+
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
|
|
32
|
+
|
|
33
|
+
input_ids = []
|
|
34
|
+
offset = 0
|
|
35
|
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
|
36
|
+
offset = 1
|
|
37
|
+
input_ids.append(prompt_chunks[0][0])
|
|
38
|
+
|
|
39
|
+
for x in insert_separator(prompt_chunks, [speech_token_index] * (offset + 1)):
|
|
40
|
+
input_ids.extend(x[offset:])
|
|
41
|
+
|
|
42
|
+
if return_tensors is not None:
|
|
43
|
+
if return_tensors == "pt":
|
|
44
|
+
return torch.tensor(input_ids, dtype=torch.long)
|
|
45
|
+
raise ValueError(f"Unsupported tensor type: {return_tensors}")
|
|
46
|
+
return input_ids
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def preprocess_llama_2(sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False) -> Dict:
|
|
50
|
+
conv = conversation_lib.default_conversation.copy()
|
|
51
|
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
|
52
|
+
|
|
53
|
+
# Apply prompt templates
|
|
54
|
+
conversations = []
|
|
55
|
+
for i, source in enumerate(sources):
|
|
56
|
+
if roles[source[0]["from"]] != conv.roles[0]:
|
|
57
|
+
# Skip the first one if it is not from human
|
|
58
|
+
source = source[1:]
|
|
59
|
+
|
|
60
|
+
conv.messages = []
|
|
61
|
+
for j, sentence in enumerate(source):
|
|
62
|
+
role = roles[sentence["from"]]
|
|
63
|
+
assert role == conv.roles[j % 2], f"{i}"
|
|
64
|
+
conv.append_message(role, sentence["value"])
|
|
65
|
+
conversations.append(conv.get_prompt())
|
|
66
|
+
|
|
67
|
+
# Tokenize conversations
|
|
68
|
+
|
|
69
|
+
if has_speech:
|
|
70
|
+
input_ids = torch.stack(
|
|
71
|
+
[tokenizer_speech_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0
|
|
72
|
+
)
|
|
73
|
+
else:
|
|
74
|
+
input_ids = tokenizer(
|
|
75
|
+
conversations,
|
|
76
|
+
return_tensors="pt",
|
|
77
|
+
padding="longest",
|
|
78
|
+
max_length=tokenizer.model_max_length,
|
|
79
|
+
truncation=True,
|
|
80
|
+
).input_ids
|
|
81
|
+
|
|
82
|
+
targets = input_ids.clone()
|
|
83
|
+
|
|
84
|
+
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2
|
|
85
|
+
|
|
86
|
+
# Mask targets
|
|
87
|
+
sep = "[/INST] "
|
|
88
|
+
for conversation, target in zip(conversations, targets):
|
|
89
|
+
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
|
90
|
+
|
|
91
|
+
rounds = conversation.split(conv.sep2)
|
|
92
|
+
cur_len = 1
|
|
93
|
+
target[:cur_len] = IGNORE_INDEX
|
|
94
|
+
for i, rou in enumerate(rounds):
|
|
95
|
+
if rou == "":
|
|
96
|
+
break
|
|
97
|
+
|
|
98
|
+
parts = rou.split(sep)
|
|
99
|
+
if len(parts) != 2:
|
|
100
|
+
break
|
|
101
|
+
parts[0] += sep
|
|
102
|
+
|
|
103
|
+
if has_speech:
|
|
104
|
+
round_len = len(tokenizer_speech_token(rou, tokenizer))
|
|
105
|
+
instruction_len = len(tokenizer_speech_token(parts[0], tokenizer)) - 2
|
|
106
|
+
else:
|
|
107
|
+
round_len = len(tokenizer(rou).input_ids)
|
|
108
|
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
|
109
|
+
|
|
110
|
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
|
111
|
+
|
|
112
|
+
cur_len += round_len
|
|
113
|
+
target[cur_len:] = IGNORE_INDEX
|
|
114
|
+
|
|
115
|
+
if cur_len < tokenizer.model_max_length:
|
|
116
|
+
if cur_len != total_len:
|
|
117
|
+
target[:] = IGNORE_INDEX
|
|
118
|
+
print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)")
|
|
119
|
+
|
|
120
|
+
return dict(
|
|
121
|
+
input_ids=input_ids,
|
|
122
|
+
labels=targets,
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def preprocess_llama_3(sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False) -> Dict:
|
|
127
|
+
conv = conversation_lib.default_conversation.copy()
|
|
128
|
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
|
129
|
+
|
|
130
|
+
# Apply prompt templates
|
|
131
|
+
conversations = []
|
|
132
|
+
for i, source in enumerate(sources):
|
|
133
|
+
if roles[source[0]["from"]] != conv.roles[0]:
|
|
134
|
+
# Skip the first one if it is not from human
|
|
135
|
+
source = source[1:]
|
|
136
|
+
|
|
137
|
+
assert len(source) == 2, "now only support single-turn conversation"
|
|
138
|
+
|
|
139
|
+
conv.messages = []
|
|
140
|
+
for j, sentence in enumerate(source):
|
|
141
|
+
role = roles[sentence["from"]]
|
|
142
|
+
assert role == conv.roles[j % 2], f"{i}"
|
|
143
|
+
conv.append_message(role, sentence["value"])
|
|
144
|
+
conversations.append(conv.get_prompt())
|
|
145
|
+
|
|
146
|
+
# Tokenize conversations
|
|
147
|
+
|
|
148
|
+
if has_speech:
|
|
149
|
+
input_ids = torch.stack(
|
|
150
|
+
[tokenizer_speech_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0
|
|
151
|
+
)
|
|
152
|
+
else:
|
|
153
|
+
input_ids = tokenizer(
|
|
154
|
+
conversations,
|
|
155
|
+
return_tensors="pt",
|
|
156
|
+
padding="longest",
|
|
157
|
+
max_length=tokenizer.model_max_length,
|
|
158
|
+
truncation=True,
|
|
159
|
+
).input_ids
|
|
160
|
+
|
|
161
|
+
targets = input_ids.clone()
|
|
162
|
+
|
|
163
|
+
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_3
|
|
164
|
+
|
|
165
|
+
# Mask targets
|
|
166
|
+
sep = "<|start_header_id|>" + conv.roles[1] + "<|end_header_id|>\n\n"
|
|
167
|
+
for conversation, target in zip(conversations, targets):
|
|
168
|
+
|
|
169
|
+
cur_len = 1
|
|
170
|
+
target[:cur_len] = IGNORE_INDEX
|
|
171
|
+
parts = conversation.split(sep)
|
|
172
|
+
parts[0] += sep
|
|
173
|
+
|
|
174
|
+
if has_speech:
|
|
175
|
+
conversation_len = len(tokenizer_speech_token(conversation, tokenizer))
|
|
176
|
+
instruction_len = len(tokenizer_speech_token(parts[0], tokenizer)) - 1
|
|
177
|
+
else:
|
|
178
|
+
conversation_len = len(tokenizer(conversation).input_ids)
|
|
179
|
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 1
|
|
180
|
+
|
|
181
|
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
|
182
|
+
cur_len += conversation_len
|
|
183
|
+
target[cur_len:] = IGNORE_INDEX
|
|
184
|
+
|
|
185
|
+
# if cur_len < tokenizer.model_max_length:
|
|
186
|
+
# if cur_len != total_len:
|
|
187
|
+
# target[:] = IGNORE_INDEX
|
|
188
|
+
# print(
|
|
189
|
+
# f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
|
190
|
+
# f" (ignored)"
|
|
191
|
+
# )
|
|
192
|
+
|
|
193
|
+
return dict(
|
|
194
|
+
input_ids=input_ids,
|
|
195
|
+
labels=targets,
|
|
196
|
+
)
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
def preprocess_v1(sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False) -> Dict:
|
|
200
|
+
conv = conversation_lib.default_conversation.copy()
|
|
201
|
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
|
202
|
+
|
|
203
|
+
# Apply prompt templates
|
|
204
|
+
conversations = []
|
|
205
|
+
for i, source in enumerate(sources):
|
|
206
|
+
if roles[source[0]["from"]] != conv.roles[0]:
|
|
207
|
+
# Skip the first one if it is not from human
|
|
208
|
+
source = source[1:]
|
|
209
|
+
|
|
210
|
+
conv.messages = []
|
|
211
|
+
for j, sentence in enumerate(source):
|
|
212
|
+
role = roles[sentence["from"]]
|
|
213
|
+
assert role == conv.roles[j % 2], f"{i}"
|
|
214
|
+
conv.append_message(role, sentence["value"])
|
|
215
|
+
conversations.append(conv.get_prompt())
|
|
216
|
+
|
|
217
|
+
# Tokenize conversations
|
|
218
|
+
|
|
219
|
+
if has_speech:
|
|
220
|
+
input_ids = torch.stack(
|
|
221
|
+
[tokenizer_speech_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0
|
|
222
|
+
)
|
|
223
|
+
else:
|
|
224
|
+
input_ids = tokenizer(
|
|
225
|
+
conversations,
|
|
226
|
+
return_tensors="pt",
|
|
227
|
+
padding="longest",
|
|
228
|
+
max_length=tokenizer.model_max_length,
|
|
229
|
+
truncation=True,
|
|
230
|
+
).input_ids
|
|
231
|
+
|
|
232
|
+
targets = input_ids.clone()
|
|
233
|
+
|
|
234
|
+
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO
|
|
235
|
+
|
|
236
|
+
# Mask targets
|
|
237
|
+
sep = conv.sep + conv.roles[1] + ": "
|
|
238
|
+
for conversation, target in zip(conversations, targets):
|
|
239
|
+
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
|
240
|
+
|
|
241
|
+
rounds = conversation.split(conv.sep2)
|
|
242
|
+
cur_len = 1
|
|
243
|
+
target[:cur_len] = IGNORE_INDEX
|
|
244
|
+
for i, rou in enumerate(rounds):
|
|
245
|
+
if rou == "":
|
|
246
|
+
break
|
|
247
|
+
|
|
248
|
+
parts = rou.split(sep)
|
|
249
|
+
if len(parts) != 2:
|
|
250
|
+
break
|
|
251
|
+
parts[0] += sep
|
|
252
|
+
|
|
253
|
+
if has_speech:
|
|
254
|
+
round_len = len(tokenizer_speech_token(rou, tokenizer))
|
|
255
|
+
instruction_len = len(tokenizer_speech_token(parts[0], tokenizer)) - 2
|
|
256
|
+
else:
|
|
257
|
+
round_len = len(tokenizer(rou).input_ids)
|
|
258
|
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
|
259
|
+
|
|
260
|
+
# FIXME: tokenizer bug
|
|
261
|
+
if i != 0 and not tokenizer.legacy:
|
|
262
|
+
round_len -= 1
|
|
263
|
+
instruction_len -= 1
|
|
264
|
+
|
|
265
|
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
|
266
|
+
|
|
267
|
+
cur_len += round_len
|
|
268
|
+
target[cur_len:] = IGNORE_INDEX
|
|
269
|
+
|
|
270
|
+
if cur_len < tokenizer.model_max_length:
|
|
271
|
+
if cur_len != total_len:
|
|
272
|
+
target[:] = IGNORE_INDEX
|
|
273
|
+
print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)")
|
|
274
|
+
|
|
275
|
+
return dict(
|
|
276
|
+
input_ids=input_ids,
|
|
277
|
+
labels=targets,
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
def preprocess(sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False) -> Dict:
|
|
282
|
+
"""
|
|
283
|
+
Given a list of sources, each is a conversation list. This transform:
|
|
284
|
+
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
|
285
|
+
2. Concatenate conversations together;
|
|
286
|
+
3. Tokenize the concatenated conversation;
|
|
287
|
+
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
|
288
|
+
"""
|
|
289
|
+
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2:
|
|
290
|
+
return preprocess_llama_2(sources, tokenizer, has_speech=has_speech)
|
|
291
|
+
if conversation_lib.default_conversation.version.startswith("v1"):
|
|
292
|
+
return preprocess_v1(sources, tokenizer, has_speech=has_speech)
|
|
293
|
+
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_3:
|
|
294
|
+
return preprocess_llama_3(sources, tokenizer, has_speech=has_speech)
|
|
295
|
+
raise NotImplementedError
|
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
|
|
2
|
+
# Copyright 2023 Haotian Liu
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import os
|
|
17
|
+
import sys
|
|
18
|
+
import torch
|
|
19
|
+
import logging
|
|
20
|
+
import logging.handlers
|
|
21
|
+
import transformers
|
|
22
|
+
|
|
23
|
+
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
|
24
|
+
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
|
|
25
|
+
|
|
26
|
+
handler = None
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class StreamToLogger(object):
|
|
30
|
+
"""
|
|
31
|
+
Fake file-like stream object that redirects writes to a logger instance.
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
def __init__(self, logger, log_level=logging.INFO):
|
|
35
|
+
self.terminal = sys.stdout
|
|
36
|
+
self.logger = logger
|
|
37
|
+
self.log_level = log_level
|
|
38
|
+
self.linebuf = ""
|
|
39
|
+
|
|
40
|
+
def __getattr__(self, attr):
|
|
41
|
+
return getattr(self.terminal, attr)
|
|
42
|
+
|
|
43
|
+
def write(self, buf):
|
|
44
|
+
temp_linebuf = self.linebuf + buf
|
|
45
|
+
self.linebuf = ""
|
|
46
|
+
for line in temp_linebuf.splitlines(True):
|
|
47
|
+
# From the io.TextIOWrapper docs:
|
|
48
|
+
# On output, if newline is None, any '\n' characters written
|
|
49
|
+
# are translated to the system default line separator.
|
|
50
|
+
# By default sys.stdout.write() expects '\n' newlines and then
|
|
51
|
+
# translates them so this is still cross platform.
|
|
52
|
+
if line[-1] == "\n":
|
|
53
|
+
self.logger.log(self.log_level, line.rstrip())
|
|
54
|
+
else:
|
|
55
|
+
self.linebuf += line
|
|
56
|
+
|
|
57
|
+
def flush(self):
|
|
58
|
+
if self.linebuf != "":
|
|
59
|
+
self.logger.log(self.log_level, self.linebuf.rstrip())
|
|
60
|
+
self.linebuf = ""
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def maybe_zero_3(param, ignore_status=False, name=None):
|
|
64
|
+
from deepspeed import zero
|
|
65
|
+
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
|
66
|
+
|
|
67
|
+
if hasattr(param, "ds_id"):
|
|
68
|
+
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
|
69
|
+
if not ignore_status:
|
|
70
|
+
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
|
|
71
|
+
with zero.GatheredParameters([param]):
|
|
72
|
+
param = param.data.detach().cpu().clone()
|
|
73
|
+
else:
|
|
74
|
+
param = param.detach().cpu().clone()
|
|
75
|
+
return param
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
# Borrowed from peft.utils.get_peft_model_state_dict
|
|
79
|
+
def get_peft_state_maybe_zero_3(named_params, bias):
|
|
80
|
+
if bias == "none":
|
|
81
|
+
to_return = {k: t for k, t in named_params if "lora_" in k}
|
|
82
|
+
elif bias == "all":
|
|
83
|
+
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
|
84
|
+
elif bias == "lora_only":
|
|
85
|
+
to_return = {}
|
|
86
|
+
maybe_lora_bias = {}
|
|
87
|
+
lora_bias_names = set()
|
|
88
|
+
for k, t in named_params:
|
|
89
|
+
if "lora_" in k:
|
|
90
|
+
to_return[k] = t
|
|
91
|
+
bias_name = k.split("lora_")[0] + "bias"
|
|
92
|
+
lora_bias_names.add(bias_name)
|
|
93
|
+
elif "bias" in k:
|
|
94
|
+
maybe_lora_bias[k] = t
|
|
95
|
+
for k, t in maybe_lora_bias:
|
|
96
|
+
if bias_name in lora_bias_names:
|
|
97
|
+
to_return[bias_name] = t
|
|
98
|
+
else:
|
|
99
|
+
raise NotImplementedError
|
|
100
|
+
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
|
|
101
|
+
return to_return
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
|
|
105
|
+
to_return = {k: t for k, t in named_params if "lora_" not in k}
|
|
106
|
+
if require_grad_only:
|
|
107
|
+
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
|
|
108
|
+
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
|
109
|
+
return to_return
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
def get_speech_projector_state_maybe_zero_3(named_params, keys_to_match):
|
|
113
|
+
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
|
|
114
|
+
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
|
115
|
+
return to_return
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def find_all_linear_names(model):
|
|
119
|
+
cls = torch.nn.Linear
|
|
120
|
+
lora_module_names = set()
|
|
121
|
+
speech_keywords = ["speech_projector", "speech_encoder"]
|
|
122
|
+
for name, module in model.named_modules():
|
|
123
|
+
if any(speech_keyword in name for speech_keyword in speech_keywords):
|
|
124
|
+
continue
|
|
125
|
+
if isinstance(module, cls):
|
|
126
|
+
names = name.split(".")
|
|
127
|
+
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
|
128
|
+
|
|
129
|
+
if "lm_head" in lora_module_names: # needed for 16-bit
|
|
130
|
+
lora_module_names.remove("lm_head")
|
|
131
|
+
return list(lora_module_names)
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
|
|
135
|
+
"""Collects the state dict and dump to disk."""
|
|
136
|
+
|
|
137
|
+
if getattr(trainer.args, "tune_speech_projector", False):
|
|
138
|
+
# Only save projector
|
|
139
|
+
keys_to_match = ["speech_projector"]
|
|
140
|
+
if getattr(trainer.args, "use_im_start_end", False):
|
|
141
|
+
keys_to_match.extend(["embed_tokens", "embed_in"])
|
|
142
|
+
|
|
143
|
+
weight_to_save = get_speech_projector_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match)
|
|
144
|
+
trainer.model.config.save_pretrained(output_dir)
|
|
145
|
+
|
|
146
|
+
current_folder = output_dir.split("/")[-1]
|
|
147
|
+
parent_folder = os.path.dirname(output_dir)
|
|
148
|
+
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
|
|
149
|
+
if current_folder.startswith("checkpoint-"):
|
|
150
|
+
speech_projector_folder = os.path.join(parent_folder, "speech_projector")
|
|
151
|
+
os.makedirs(speech_projector_folder, exist_ok=True)
|
|
152
|
+
torch.save(weight_to_save, os.path.join(speech_projector_folder, f"{current_folder}.bin"))
|
|
153
|
+
else:
|
|
154
|
+
torch.save(weight_to_save, os.path.join(output_dir, "speech_projector.bin"))
|
|
155
|
+
return
|
|
156
|
+
|
|
157
|
+
if trainer.deepspeed:
|
|
158
|
+
torch.cuda.synchronize()
|
|
159
|
+
trainer.save_model(output_dir)
|
|
160
|
+
return
|
|
161
|
+
|
|
162
|
+
state_dict = trainer.model.state_dict()
|
|
163
|
+
if trainer.args.should_save:
|
|
164
|
+
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
|
|
165
|
+
del state_dict
|
|
166
|
+
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def lengths_to_padding_mask(lens):
|
|
170
|
+
bsz, max_lens = lens.size(0), torch.max(lens).item()
|
|
171
|
+
mask = torch.arange(max_lens).to(lens.device).view([1, int(max_lens)])
|
|
172
|
+
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens)
|
|
173
|
+
return mask
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
def lengths_to_mask(lens):
|
|
177
|
+
return ~lengths_to_padding_mask(lens)
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
def disable_torch_init():
|
|
181
|
+
"""
|
|
182
|
+
Disable the redundant torch default initialization to accelerate model creation.
|
|
183
|
+
"""
|
|
184
|
+
import torch
|
|
185
|
+
|
|
186
|
+
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
|
187
|
+
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
def get_model_name_from_path(model_path):
|
|
191
|
+
model_path = model_path.strip("/")
|
|
192
|
+
model_paths = model_path.split("/")
|
|
193
|
+
if model_paths[-1].startswith("checkpoint-"):
|
|
194
|
+
return model_paths[-2] + "_" + model_paths[-1]
|
|
195
|
+
else:
|
|
196
|
+
return model_paths[-1]
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
def pretty_print_semaphore(semaphore):
|
|
200
|
+
if semaphore is None:
|
|
201
|
+
return "None"
|
|
202
|
+
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|
|
@@ -12,7 +12,7 @@ from helm.clients.audio_language.llama_omni.preprocess import tokenizer_speech_t
|
|
|
12
12
|
|
|
13
13
|
from helm.common.cache import CacheConfig
|
|
14
14
|
from helm.common.gpu_utils import get_torch_device_name
|
|
15
|
-
from helm.common.hierarchical_logger import hlog, htrack_block
|
|
15
|
+
from helm.common.hierarchical_logger import hexception, hlog, htrack_block
|
|
16
16
|
from helm.common.media_object import TEXT_TYPE
|
|
17
17
|
from helm.common.request import Request, RequestResult, GeneratedOutput, Token
|
|
18
18
|
from helm.common.request import wrap_request_time
|
|
@@ -170,6 +170,7 @@ class LlamaOmniAudioLMClient(CachingClient):
|
|
|
170
170
|
)
|
|
171
171
|
result, cached = self.cache.get(cache_key, wrap_request_time(do_it))
|
|
172
172
|
except RuntimeError as model_error:
|
|
173
|
+
hexception(model_error)
|
|
173
174
|
return RequestResult(
|
|
174
175
|
success=False, cached=False, error=str(model_error), completions=[], embedding=[]
|
|
175
176
|
)
|