crfm-helm 0.5.5__py3-none-any.whl → 0.5.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of crfm-helm might be problematic. Click here for more details.

Files changed (268) hide show
  1. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.7.dist-info}/METADATA +74 -53
  2. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.7.dist-info}/RECORD +262 -182
  3. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.7.dist-info}/WHEEL +1 -1
  4. helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +3 -3
  5. helm/benchmark/adaptation/adapters/test_adapter.py +4 -4
  6. helm/benchmark/annotation/air_bench_annotator.py +2 -2
  7. helm/benchmark/annotation/bigcodebench_annotator.py +3 -3
  8. helm/benchmark/annotation/bird_sql_annotator.py +2 -2
  9. helm/benchmark/annotation/chw_care_plan_annotator.py +7 -12
  10. helm/benchmark/annotation/ehr_sql_annotator.py +2 -2
  11. helm/benchmark/annotation/helpdesk_call_summarization_annotator.py +7 -7
  12. helm/benchmark/annotation/live_qa_annotator.py +1 -1
  13. helm/benchmark/annotation/mimic_bhc_annotator.py +100 -0
  14. helm/benchmark/annotation/model_as_judge.py +12 -16
  15. helm/benchmark/annotation/omni_math_annotator.py +13 -14
  16. helm/benchmark/annotation/wildbench_annotator.py +9 -9
  17. helm/benchmark/executor.py +11 -12
  18. helm/benchmark/metrics/aci_bench_metrics.py +9 -29
  19. helm/benchmark/metrics/bias_word_lists.py +1 -1
  20. helm/benchmark/metrics/chw_care_plan_metrics.py +10 -30
  21. helm/benchmark/metrics/classification_metrics.py +3 -3
  22. helm/benchmark/metrics/cleva_harms_metrics.py +2 -2
  23. helm/benchmark/metrics/codeinsights_code_efficiency_metrics.py +186 -0
  24. helm/benchmark/metrics/codeinsights_code_evaluation_metrics.py +477 -0
  25. helm/benchmark/metrics/codeinsights_correct_code_metrics.py +366 -0
  26. helm/benchmark/metrics/codeinsights_edge_case_metrics.py +92 -0
  27. helm/benchmark/metrics/codeinsights_metric_specs.py +51 -0
  28. helm/benchmark/metrics/comet_metric.py +1 -1
  29. helm/benchmark/metrics/conv_fin_qa_calc_metrics.py +2 -2
  30. helm/benchmark/metrics/copyright_metrics.py +1 -1
  31. helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +1 -1
  32. helm/benchmark/metrics/dischargeme_metrics.py +9 -29
  33. helm/benchmark/metrics/efficiency_metrics.py +3 -3
  34. helm/benchmark/metrics/evaluate_reference_metrics.py +1 -1
  35. helm/benchmark/metrics/gpt4_audio_refusal_metrics.py +145 -0
  36. helm/benchmark/metrics/ifeval_metrics.py +2 -2
  37. helm/benchmark/metrics/image_generation/clip_score_metrics.py +13 -2
  38. helm/benchmark/metrics/image_generation/fractal_dimension/fractal_dimension_util.py +1 -1
  39. helm/benchmark/metrics/kpi_edgar_metrics.py +121 -0
  40. helm/benchmark/metrics/llm_jury_metrics.py +46 -0
  41. helm/benchmark/metrics/lmkt_metric_specs.py +12 -0
  42. helm/benchmark/metrics/lmkt_metrics.py +47 -0
  43. helm/benchmark/metrics/med_dialog_metrics.py +9 -29
  44. helm/benchmark/metrics/medalign_metrics.py +9 -29
  45. helm/benchmark/metrics/medi_qa_metrics.py +9 -29
  46. helm/benchmark/metrics/medication_qa_metrics.py +10 -30
  47. helm/benchmark/metrics/melt_bias_metric.py +234 -0
  48. helm/benchmark/metrics/melt_bias_word_lists.py +1367 -0
  49. helm/benchmark/metrics/melt_metric_specs.py +43 -0
  50. helm/benchmark/metrics/melt_toxicity_metric.py +107 -0
  51. helm/benchmark/metrics/mental_health_metrics.py +9 -29
  52. helm/benchmark/metrics/metric_service.py +11 -11
  53. helm/benchmark/metrics/mimic_bhc_metrics.py +14 -0
  54. helm/benchmark/metrics/mimic_rrs_metrics.py +9 -29
  55. helm/benchmark/metrics/mtsamples_procedures_metrics.py +9 -29
  56. helm/benchmark/metrics/mtsamples_replicate_metrics.py +9 -29
  57. helm/benchmark/metrics/openai_mrcr_metrics.py +52 -0
  58. helm/benchmark/metrics/ruler_qa_metrics.py +34 -0
  59. helm/benchmark/metrics/starr_patient_instructions_metrics.py +9 -29
  60. helm/benchmark/metrics/summac/model_summac.py +2 -3
  61. helm/benchmark/metrics/summarization_metrics.py +2 -1
  62. helm/benchmark/metrics/tokens/test_openai_token_cost_estimator.py +2 -2
  63. helm/benchmark/metrics/toxicity_metrics.py +2 -2
  64. helm/benchmark/metrics/unitxt_metrics.py +3 -4
  65. helm/benchmark/metrics/vision_language/emd_utils.py +4 -2
  66. helm/benchmark/metrics/vision_language/image_utils.py +2 -2
  67. helm/benchmark/model_deployment_registry.py +16 -26
  68. helm/benchmark/presentation/contamination.py +3 -3
  69. helm/benchmark/presentation/create_plots.py +43 -13
  70. helm/benchmark/presentation/run_display.py +13 -0
  71. helm/benchmark/presentation/schema.py +7 -1
  72. helm/benchmark/presentation/summarize.py +84 -61
  73. helm/benchmark/presentation/test_create_plots.py +4 -1
  74. helm/benchmark/reeval_run.py +3 -4
  75. helm/benchmark/reeval_runner.py +3 -3
  76. helm/benchmark/run.py +84 -73
  77. helm/benchmark/run_expander.py +12 -1
  78. helm/benchmark/run_spec_factory.py +7 -6
  79. helm/benchmark/run_specs/arabic_run_specs.py +73 -0
  80. helm/benchmark/run_specs/audio_run_specs.py +52 -8
  81. helm/benchmark/run_specs/bluex_run_specs.py +40 -0
  82. helm/benchmark/run_specs/classic_run_specs.py +0 -53
  83. helm/benchmark/run_specs/codeinsights_run_specs.py +192 -0
  84. helm/benchmark/run_specs/enterprise_run_specs.py +20 -0
  85. helm/benchmark/run_specs/experimental_run_specs.py +31 -1
  86. helm/benchmark/run_specs/healthqa_br_run_specs.py +40 -0
  87. helm/benchmark/run_specs/heim_run_specs.py +3 -1
  88. helm/benchmark/run_specs/lmkt_run_specs.py +144 -0
  89. helm/benchmark/run_specs/long_context_run_specs.py +114 -15
  90. helm/benchmark/run_specs/medhelm_run_specs.py +146 -41
  91. helm/benchmark/run_specs/melt_run_specs.py +783 -0
  92. helm/benchmark/run_specs/multilingual_run_specs.py +50 -0
  93. helm/benchmark/run_specs/speech_disorder_audio_run_specs.py +163 -0
  94. helm/benchmark/run_specs/vlm_run_specs.py +28 -0
  95. helm/benchmark/runner.py +5 -5
  96. helm/benchmark/scenarios/aci_bench_scenario.py +7 -1
  97. helm/benchmark/scenarios/alghafa_scenario.py +126 -0
  98. helm/benchmark/scenarios/arabic_mmlu_scenario.py +78 -0
  99. helm/benchmark/scenarios/aratrust_scenario.py +76 -0
  100. helm/benchmark/scenarios/audio_language/air_bench_chat_scenario.py +3 -1
  101. helm/benchmark/scenarios/audio_language/air_bench_foundation_scenario.py +5 -5
  102. helm/benchmark/scenarios/audio_language/casual_conversations2_scenario.py +1 -1
  103. helm/benchmark/scenarios/audio_language/corebench_scenario.py +77 -0
  104. helm/benchmark/scenarios/audio_language/mustard_scenario.py +1 -1
  105. helm/benchmark/scenarios/audio_language/ultra_suite_asr_classification_scenario.py +104 -0
  106. helm/benchmark/scenarios/audio_language/ultra_suite_asr_transcription_scenario.py +99 -0
  107. helm/benchmark/scenarios/audio_language/ultra_suite_classification_scenario.py +118 -0
  108. helm/benchmark/scenarios/audio_language/ultra_suite_disorder_breakdown_scenario.py +86 -0
  109. helm/benchmark/scenarios/audio_language/ultra_suite_disorder_symptoms_scenario.py +117 -0
  110. helm/benchmark/scenarios/audio_language/vocal_sound_scenario.py +15 -1
  111. helm/benchmark/scenarios/audio_language/voxceleb2_scenario.py +1 -2
  112. helm/benchmark/scenarios/autobencher_capabilities_scenario.py +2 -2
  113. helm/benchmark/scenarios/bluex_scenario.py +66 -0
  114. helm/benchmark/scenarios/chw_care_plan_scenario.py +14 -13
  115. helm/benchmark/scenarios/clear_scenario.py +11 -7
  116. helm/benchmark/scenarios/cleva_scenario.py +1 -1
  117. helm/benchmark/scenarios/codeinsights_code_efficiency_scenario.py +197 -0
  118. helm/benchmark/scenarios/codeinsights_correct_code_scenario.py +78 -0
  119. helm/benchmark/scenarios/codeinsights_edge_case_scenario.py +192 -0
  120. helm/benchmark/scenarios/codeinsights_student_coding_scenario.py +162 -0
  121. helm/benchmark/scenarios/codeinsights_student_mistake_scenario.py +188 -0
  122. helm/benchmark/scenarios/dischargeme_scenario.py +36 -21
  123. helm/benchmark/scenarios/ehr_sql_scenario.py +7 -1
  124. helm/benchmark/scenarios/ehrshot_scenario.py +28 -55
  125. helm/benchmark/scenarios/exams_multilingual_scenario.py +115 -0
  126. helm/benchmark/scenarios/grammar.py +2 -2
  127. helm/benchmark/scenarios/headqa_scenario.py +6 -1
  128. helm/benchmark/scenarios/healthqa_br_scenario.py +80 -0
  129. helm/benchmark/scenarios/infinite_bench_en_mc_scenario.py +90 -0
  130. helm/benchmark/scenarios/infinite_bench_en_qa_scenario.py +85 -0
  131. helm/benchmark/scenarios/{infinite_bench_sum_scenario.py → infinite_bench_en_sum_scenario.py} +10 -13
  132. helm/benchmark/scenarios/kpi_edgar_scenario.py +151 -0
  133. helm/benchmark/scenarios/lmkt_scenarios.py +288 -0
  134. helm/benchmark/scenarios/math_scenario.py +21 -20
  135. helm/benchmark/scenarios/med_dialog_scenario.py +6 -1
  136. helm/benchmark/scenarios/medalign_scenario.py +9 -3
  137. helm/benchmark/scenarios/medalign_scenario_helper.py +27 -130
  138. helm/benchmark/scenarios/medbullets_scenario.py +7 -2
  139. helm/benchmark/scenarios/medcalc_bench_scenario.py +4 -2
  140. helm/benchmark/scenarios/medec_scenario.py +6 -1
  141. helm/benchmark/scenarios/medhallu_scenario.py +7 -1
  142. helm/benchmark/scenarios/medi_qa_scenario.py +10 -4
  143. helm/benchmark/scenarios/medication_qa_scenario.py +7 -1
  144. helm/benchmark/scenarios/melt_ir_scenario.py +171 -0
  145. helm/benchmark/scenarios/melt_knowledge_scenario.py +246 -0
  146. helm/benchmark/scenarios/melt_lm_scenarios.py +252 -0
  147. helm/benchmark/scenarios/melt_scenarios.py +793 -0
  148. helm/benchmark/scenarios/melt_srn_scenario.py +342 -0
  149. helm/benchmark/scenarios/melt_synthetic_reasoning_scenario.py +222 -0
  150. helm/benchmark/scenarios/melt_translation_scenario.py +152 -0
  151. helm/benchmark/scenarios/mental_health_scenario.py +16 -5
  152. helm/benchmark/scenarios/mimic_bhc_scenario.py +13 -8
  153. helm/benchmark/scenarios/mimic_rrs_scenario.py +17 -8
  154. helm/benchmark/scenarios/mimiciv_billing_code_scenario.py +14 -8
  155. helm/benchmark/scenarios/mmlu_pro_scenario.py +1 -1
  156. helm/benchmark/scenarios/mmmlu_scenario.py +85 -0
  157. helm/benchmark/scenarios/mtsamples_procedures_scenario.py +5 -2
  158. helm/benchmark/scenarios/mtsamples_replicate_scenario.py +3 -2
  159. helm/benchmark/scenarios/n2c2_ct_matching_scenario.py +11 -5
  160. helm/benchmark/scenarios/openai_mrcr_scenario.py +79 -0
  161. helm/benchmark/scenarios/pubmed_qa_scenario.py +6 -1
  162. helm/benchmark/scenarios/race_based_med_scenario.py +18 -8
  163. helm/benchmark/scenarios/ruler_qa_scenario_helper.py +2 -2
  164. helm/benchmark/scenarios/ruler_qa_scenarios.py +2 -2
  165. helm/benchmark/scenarios/seahelm_scenario.py +2 -2
  166. helm/benchmark/scenarios/shc_bmt_scenario.py +12 -6
  167. helm/benchmark/scenarios/shc_cdi_scenario.py +11 -6
  168. helm/benchmark/scenarios/shc_conf_scenario.py +12 -6
  169. helm/benchmark/scenarios/shc_ent_scenario.py +11 -6
  170. helm/benchmark/scenarios/shc_gip_scenario.py +13 -5
  171. helm/benchmark/scenarios/shc_privacy_scenario.py +78 -0
  172. helm/benchmark/scenarios/shc_proxy_scenario.py +76 -0
  173. helm/benchmark/scenarios/shc_ptbm_scenario.py +12 -7
  174. helm/benchmark/scenarios/shc_sei_scenario.py +12 -7
  175. helm/benchmark/scenarios/shc_sequoia_scenario.py +13 -5
  176. helm/benchmark/scenarios/starr_patient_instructions_scenario.py +15 -8
  177. helm/benchmark/scenarios/test_alghafa_scenario.py +29 -0
  178. helm/benchmark/scenarios/test_aratrust_scenario.py +21 -0
  179. helm/benchmark/scenarios/test_bluex_scenario.py +59 -0
  180. helm/benchmark/scenarios/test_exams_multilingual_scenario.py +29 -0
  181. helm/benchmark/scenarios/test_healtha_br_scenario.py +57 -0
  182. helm/benchmark/scenarios/test_infinite_bench_en_qa_scenario.py +18 -0
  183. helm/benchmark/scenarios/test_infinite_bench_en_sum_scenario.py +31 -0
  184. helm/benchmark/scenarios/truthful_qa_scenario.py +2 -1
  185. helm/benchmark/scenarios/vision_language/msr_vtt_scenario.py +75 -0
  186. helm/benchmark/server.py +2 -1
  187. helm/benchmark/slurm_jobs.py +1 -2
  188. helm/benchmark/slurm_runner.py +8 -1
  189. helm/benchmark/static/schema_arabic.yaml +228 -0
  190. helm/benchmark/static/schema_audio.yaml +60 -49
  191. helm/benchmark/static/schema_classic.yaml +0 -17
  192. helm/benchmark/static/schema_enterprise.yaml +21 -0
  193. helm/benchmark/static/schema_long_context.yaml +81 -20
  194. helm/benchmark/static/schema_medhelm.yaml +272 -213
  195. helm/benchmark/static/schema_melt.yaml +1257 -0
  196. helm/benchmark/static/schema_slphelm.yaml +162 -0
  197. helm/benchmark/static/schema_vhelm.yaml +26 -26
  198. helm/benchmark/static/schema_video.yaml +219 -0
  199. helm/benchmark/static_build/assets/index-b9779128.css +1 -0
  200. helm/benchmark/static_build/assets/index-e439d5e1.js +10 -0
  201. helm/benchmark/static_build/assets/medhelm-overview-eac29843.png +0 -0
  202. helm/benchmark/static_build/assets/{tremor-9cefc3c5.js → tremor-38a10867.js} +1 -1
  203. helm/benchmark/static_build/index.html +4 -4
  204. helm/benchmark/window_services/encoder_decoder_window_service.py +3 -3
  205. helm/benchmark/window_services/image_generation/clip_window_service.py +1 -3
  206. helm/benchmark/window_services/test_utils.py +3 -4
  207. helm/benchmark/window_services/tokenizer_service.py +7 -8
  208. helm/clients/anthropic_client.py +69 -29
  209. helm/clients/audio_language/diva_llama_client.py +4 -2
  210. helm/clients/audio_language/qwen2_5_omni_client.py +209 -0
  211. helm/clients/audio_language/qwen2_audiolm_client.py +8 -6
  212. helm/clients/audio_language/qwen_audiolm_client.py +4 -2
  213. helm/clients/audio_language/test.py +62 -0
  214. helm/clients/bedrock_client.py +3 -1
  215. helm/clients/client.py +7 -7
  216. helm/clients/grok_client.py +36 -0
  217. helm/clients/huggingface_client.py +42 -3
  218. helm/clients/huggingface_pipeline_client.py +138 -0
  219. helm/clients/image_generation/dalle_mini/model/configuration.py +1 -1
  220. helm/clients/image_generation/dalle_mini/model/modeling.py +1 -1
  221. helm/clients/image_generation/dalle_mini/model/processor.py +1 -1
  222. helm/clients/image_generation/dalle_mini/model/tokenizer.py +1 -1
  223. helm/clients/openai_client.py +102 -55
  224. helm/clients/openai_responses_client.py +176 -0
  225. helm/clients/palmyra_client.py +2 -5
  226. helm/clients/reka_client.py +2 -2
  227. helm/clients/test_huggingface_client.py +3 -3
  228. helm/clients/together_client.py +31 -6
  229. helm/clients/vertexai_client.py +17 -9
  230. helm/clients/vision_language/huggingface_vision2seq_client.py +6 -4
  231. helm/clients/vision_language/huggingface_vlm_client.py +2 -2
  232. helm/clients/vision_language/idefics_client.py +6 -2
  233. helm/clients/vision_language/paligemma_client.py +2 -2
  234. helm/clients/vision_language/qwen2_vlm_client.py +66 -53
  235. helm/clients/vision_language/qwen_vlm_client.py +7 -5
  236. helm/clients/vllm_client.py +43 -7
  237. helm/clients/vllm_granite_thinking_client.py +56 -0
  238. helm/clients/writer_client.py +102 -0
  239. helm/common/context.py +80 -0
  240. helm/common/credentials_utils.py +5 -5
  241. helm/common/critique_request.py +0 -1
  242. helm/common/general.py +9 -2
  243. helm/common/hierarchical_logger.py +104 -12
  244. helm/common/local_context.py +140 -0
  245. helm/common/object_spec.py +23 -8
  246. helm/common/remote_context.py +61 -0
  247. helm/common/request.py +8 -0
  248. helm/common/test_logging.py +94 -0
  249. helm/config/model_deployments.yaml +995 -45
  250. helm/config/model_metadata.yaml +780 -59
  251. helm/config/tokenizer_configs.yaml +224 -3
  252. helm/proxy/cli.py +4 -2
  253. helm/proxy/critique/mechanical_turk_utils.py +1 -1
  254. helm/proxy/retry.py +5 -0
  255. helm/proxy/services/server_service.py +21 -85
  256. helm/tokenizers/grok_tokenizer.py +55 -0
  257. helm/tokenizers/huggingface_tokenizer.py +1 -1
  258. helm/tokenizers/test_grok_tokenizer.py +33 -0
  259. helm/benchmark/metrics/numeracy_metrics.py +0 -72
  260. helm/benchmark/metrics/test_numeracy_metrics.py +0 -95
  261. helm/benchmark/scenarios/numeracy_scenario.py +0 -793
  262. helm/benchmark/scenarios/test_infinite_bench_sum_scenario.py +0 -46
  263. helm/benchmark/static_build/assets/index-262903c1.js +0 -10
  264. helm/benchmark/static_build/assets/index-42060d71.css +0 -1
  265. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.7.dist-info}/entry_points.txt +0 -0
  266. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.7.dist-info}/licenses/LICENSE +0 -0
  267. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.7.dist-info}/top_level.txt +0 -0
  268. /helm/benchmark/static_build/assets/{medhelm-overview-3ddfcd65.png → medhelm-v1-overview-3ddfcd65.png} +0 -0
@@ -276,6 +276,14 @@ models:
276
276
  # Amazon Nova models
277
277
  # References for Amazon Nova models:
278
278
  # https://aws.amazon.com/ai/generative-ai/nova/
279
+ - name: amazon/nova-premier-v1:0
280
+ display_name: Amazon Nova Premier
281
+ description: Amazon Nova Premier is the most capable model in the Nova family of foundation models. ([blog](https://aws.amazon.com/blogs/aws/amazon-nova-premier-our-most-capable-model-for-complex-tasks-and-teacher-for-model-distillation/))
282
+ creator_organization_name: Amazon
283
+ access: limited
284
+ release_date: 2025-04-30
285
+ tags: [NOVA_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
286
+
279
287
  - name: amazon/nova-pro-v1:0
280
288
  display_name: Amazon Nova Pro
281
289
  description: Amazon Nova Pro Model
@@ -507,6 +515,46 @@ models:
507
515
  release_date: 2025-02-24
508
516
  tags: [ANTHROPIC_CLAUDE_3_MODEL_TAG, TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
509
517
 
518
+ - name: anthropic/claude-3-7-sonnet-20250219-thinking-10k
519
+ display_name: Claude 3.7 Sonnet (20250219, extended thinking)
520
+ description: Claude 3.7 Sonnet is a Claude 3 family hybrid reasoning model that can produce near-instant responses or extended, step-by-step thinking that is made visible to the user ([blog](https://www.anthropic.com/news/claude-3-7-sonnet)). Extended thinking is enabled with 10k budget tokens.
521
+ creator_organization_name: Anthropic
522
+ access: limited
523
+ release_date: 2025-02-24
524
+ tags: [ANTHROPIC_CLAUDE_3_MODEL_TAG, TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
525
+
526
+ - name: anthropic/claude-sonnet-4-20250514
527
+ display_name: Claude 4 Sonnet (20250514)
528
+ description: Claude 4 Sonnet is a hybrid model offering two modes - near-instant responses and extended thinking for deeper reasoning ([blog](https://www.anthropic.com/news/claude-4)).
529
+ creator_organization_name: Anthropic
530
+ access: limited
531
+ release_date: 2025-05-14
532
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
533
+
534
+ - name: anthropic/claude-sonnet-4-20250514-thinking-10k
535
+ display_name: Claude 4 Sonnet (20250514, extended thinking)
536
+ description: Claude 4 Sonnet is a hybrid model offering two modes - near-instant responses and extended thinking for deeper reasoning ([blog](https://www.anthropic.com/news/claude-4)). Extended thinking is enabled with 10k budget tokens.
537
+ creator_organization_name: Anthropic
538
+ access: limited
539
+ release_date: 2025-05-14
540
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
541
+
542
+ - name: anthropic/claude-opus-4-20250514
543
+ display_name: Claude 4 Opus (20250514)
544
+ description: Claude 4 Opus is a hybrid model offering two modes - near-instant responses and extended thinking for deeper reasoning ([blog](https://www.anthropic.com/news/claude-4)).
545
+ creator_organization_name: Anthropic
546
+ access: limited
547
+ release_date: 2025-05-14
548
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
549
+
550
+ - name: anthropic/claude-opus-4-20250514-thinking-10k
551
+ display_name: Claude 4 Opus (20250514, extended thinking)
552
+ description: Claude 4 Opus is a hybrid model offering two modes - near-instant responses and extended thinking for deeper reasoning ([blog](https://www.anthropic.com/news/claude-4)). Extended thinking is enabled with 10k budget tokens.
553
+ creator_organization_name: Anthropic
554
+ access: limited
555
+ release_date: 2025-05-14
556
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
557
+
510
558
  - name: anthropic/stanford-online-all-v4-s3
511
559
  display_name: Anthropic-LM v4-s3 (52B)
512
560
  description: A 52B parameter language model, trained using reinforcement learning from human feedback [paper](https://arxiv.org/pdf/2204.05862.pdf).
@@ -868,7 +916,7 @@ models:
868
916
  # NOTE: The total size of DeepSeek-R3 model1 on HuggingFace is 685B
869
917
  num_parameters: 685000000000
870
918
  release_date: 2025-01-20
871
- tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
919
+ tags: [DEPRECATED_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
872
920
 
873
921
  - name: deepseek-ai/deepseek-r1-hide-reasoning
874
922
  display_name: DeepSeek R1 (hide reasoning)
@@ -878,8 +926,35 @@ models:
878
926
  # NOTE: The total size of DeepSeek-R3 model1 on HuggingFace is 685B
879
927
  num_parameters: 685000000000
880
928
  release_date: 2025-01-20
881
- tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
929
+ tags: [DEPRECATED_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
882
930
 
931
+ - name: deepseek-ai/deepseek-r1-0528
932
+ display_name: DeepSeek-R1-0528
933
+ description: DeepSeek-R1-0528 is a minor version upgrade from DeepSeek R1 that has improved its depth of reasoning and inference capabilities by leveraging increased computational resources and introducing algorithmic optimization mechanisms during post-training. ([paper](https://arxiv.org/abs/2501.12948))
934
+ creator_organization_name: DeepSeek
935
+ access: open
936
+ num_parameters: 685000000000
937
+ release_date: 2025-05-28
938
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
939
+
940
+ - name: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
941
+ display_name: DeepSeek-R1-Distill-Llama-8b
942
+ description: DeepSeek-R1-Distill-Llama-8b is a model that is distilled from LLaMA 8B model for the DeepSeek-R1 task.
943
+ creator_organization_name: DeepSeek
944
+ access: open
945
+ num_parameters: 8000000000
946
+ release_date: 2025-01-20
947
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
948
+
949
+ - name: deepseek-ai/deepseek-coder-6.7b-instruct
950
+ display_name: DeepSeek-Coder-6.7b-Instruct
951
+ description: DeepSeek-Coder-6.7b-Instruct is a model that is fine-tuned from the LLaMA 6.7B model for the DeepSeek-Coder task.
952
+ creator_organization_name: DeepSeek
953
+ access: open
954
+ num_parameters: 6740000000
955
+ release_date: 2025-01-20
956
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
957
+
883
958
  # EleutherAI
884
959
  - name: eleutherai/gpt-j-6b # Served by GooseAi, HuggingFace and Together.
885
960
  display_name: GPT-J (6B)
@@ -1146,6 +1221,14 @@ models:
1146
1221
  release_date: 2025-02-05
1147
1222
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1148
1223
 
1224
+ - name: google/gemini-2.0-flash-lite-001
1225
+ display_name: Gemini 2.0 Flash Lite
1226
+ description: Gemini 2.0 Flash Lite ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1227
+ creator_organization_name: Google
1228
+ access: limited
1229
+ release_date: 2025-03-25
1230
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1231
+
1149
1232
  - name: google/gemini-2.0-flash-thinking-exp-01-21
1150
1233
  display_name: Gemini 2.0 Flash Thinking (01-21 preview)
1151
1234
  description: Gemini 2.0 Flash Thinking (01-21 preview) ([documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/thinking))
@@ -1162,6 +1245,70 @@ models:
1162
1245
  release_date: 2025-02-05
1163
1246
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1164
1247
 
1248
+ - name: google/gemini-2.5-flash-lite-preview-06-17
1249
+ display_name: Gemini 2.5 Flash-Lite (06-17 preview)
1250
+ description: Gemini 2.5 Flash-Lite (06-17 preview) ([blog](https://blog.google/products/gemini/gemini-2-5-model-family-expands/))
1251
+ creator_organization_name: Google
1252
+ access: limited
1253
+ release_date: 2025-06-17
1254
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1255
+
1256
+ - name: google/gemini-2.5-flash-preview-04-17
1257
+ display_name: Gemini 2.5 Flash (04-17 preview)
1258
+ description: Gemini 2.5 Flash (04-17 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1259
+ creator_organization_name: Google
1260
+ access: limited
1261
+ release_date: 2025-04-17
1262
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1263
+
1264
+ - name: google/gemini-2.5-flash-preview-05-20
1265
+ display_name: Gemini 2.5 Flash (05-20 preview)
1266
+ description: Gemini 2.5 Flash (05-20 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1267
+ creator_organization_name: Google
1268
+ access: limited
1269
+ release_date: 2025-04-17
1270
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1271
+
1272
+ - name: google/gemini-2.5-flash
1273
+ display_name: Gemini 2.5 Flash
1274
+ description: Gemini 2.5 Flash ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1275
+ creator_organization_name: Google
1276
+ access: limited
1277
+ release_date: 2025-06-17
1278
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1279
+
1280
+ - name: google/gemini-2.5-pro-exp-03-25
1281
+ display_name: Gemini 2.5 Pro (03-25 experimental)
1282
+ description: Gemini 2.5 Pro (03-25 experimental) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1283
+ creator_organization_name: Google
1284
+ access: limited
1285
+ release_date: 2025-03-25
1286
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1287
+
1288
+ - name: google/gemini-2.5-pro-preview-03-25
1289
+ display_name: Gemini 2.5 Pro (03-25 preview)
1290
+ description: Gemini 2.5 Pro (03-25 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1291
+ creator_organization_name: Google
1292
+ access: limited
1293
+ release_date: 2025-04-09 # source: https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
1294
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1295
+
1296
+ - name: google/gemini-2.5-pro-preview-05-06
1297
+ display_name: Gemini 2.5 Pro (05-06 preview)
1298
+ description: Gemini 2.5 Pro (05-06 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1299
+ creator_organization_name: Google
1300
+ access: limited
1301
+ release_date: 2025-05-06 # source: https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
1302
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1303
+
1304
+ - name: google/gemini-2.5-pro
1305
+ display_name: Gemini 2.5 Pro
1306
+ description: Gemini 2.5 Pro ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1307
+ creator_organization_name: Google
1308
+ access: limited
1309
+ release_date: 2025-06-17
1310
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1311
+
1165
1312
  - name: google/gemma-2b
1166
1313
  display_name: Gemma (2B)
1167
1314
  description: Gemma is a family of lightweight, open models built from the research and technology that Google used to create the Gemini models. ([model card](https://www.kaggle.com/models/google/gemma), [blog post](https://blog.google/technology/developers/gemma-open-models/))
@@ -1360,6 +1507,60 @@ models:
1360
1507
  release_date: 2023-08-22
1361
1508
  tags: [VISION_LANGUAGE_MODEL_TAG, IDEFICS_MODEL_TAG, IDEFICS_INSTRUCT_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
1362
1509
 
1510
+ - name: huggingface/smollm2-135m
1511
+ display_name: SmolLM2 (135M)
1512
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1513
+ creator_organization_name: HuggingFace
1514
+ access: open
1515
+ num_parameters: 135000000
1516
+ release_date: 2024-10-31
1517
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1518
+
1519
+ - name: huggingface/smollm2-360m
1520
+ display_name: SmolLM2 (360M)
1521
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1522
+ creator_organization_name: HuggingFace
1523
+ access: open
1524
+ num_parameters: 362000000
1525
+ release_date: 2024-10-31
1526
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1527
+
1528
+ - name: huggingface/smollm2-1.7b
1529
+ display_name: SmolLM2 (1.7B)
1530
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1531
+ creator_organization_name: HuggingFace
1532
+ access: open
1533
+ num_parameters: 1710000000
1534
+ release_date: 2024-10-31
1535
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1536
+
1537
+ - name: huggingface/smollm2-135m-instruct
1538
+ display_name: SmolLM2 Instruct (135M)
1539
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1540
+ creator_organization_name: HuggingFace
1541
+ access: open
1542
+ num_parameters: 135000000
1543
+ release_date: 2024-10-31
1544
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1545
+
1546
+ - name: huggingface/smollm2-360m-instruct
1547
+ display_name: SmolLM2 Instruct (360M)
1548
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1549
+ creator_organization_name: HuggingFace
1550
+ access: open
1551
+ num_parameters: 362000000
1552
+ release_date: 2024-10-31
1553
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1554
+
1555
+ - name: huggingface/smollm2-1.7b-instruct
1556
+ display_name: SmolLM2 Instruct (1.7B)
1557
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1558
+ creator_organization_name: HuggingFace
1559
+ access: open
1560
+ num_parameters: 1710000000
1561
+ release_date: 2024-10-31
1562
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1563
+
1363
1564
  ## Text-to-Image Diffusion Models
1364
1565
  - name: huggingface/dreamlike-diffusion-v1-0
1365
1566
  display_name: Dreamlike Diffusion v1.0 (1B)
@@ -1573,6 +1774,16 @@ models:
1573
1774
  release_date: 2023-06-22
1574
1775
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1575
1776
 
1777
+ # Marin Community
1778
+ - name: marin-community/marin-8b-instruct
1779
+ display_name: Marin 8B Instruct
1780
+ description: Marin 8B Instruct is an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
1781
+ creator_organization_name: Marin Community
1782
+ access: open
1783
+ num_parameters: 8030000000
1784
+ release_date: 2025-05-15
1785
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1786
+
1576
1787
  # Meta
1577
1788
  - name: meta/opt-iml-175b # NOT SUPPORTED
1578
1789
  display_name: OPT-IML (175B)
@@ -1875,6 +2086,24 @@ models:
1875
2086
  release_date: 2024-12-06
1876
2087
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1877
2088
 
2089
+ - name: meta/llama-4-scout-17b-16e-instruct
2090
+ display_name: Llama 4 Scout (17Bx16E) Instruct
2091
+ description: Llama 4 Scout (17Bx16E) Instruct is part of the Llama 4 collection of models are natively multimodal AI models that enable text and multimodal experiences using a mixture-of-experts architecture. ([blog](https://ai.meta.com/blog/llama-4-multimodal-intelligence/))
2092
+ creator_organization_name: Meta
2093
+ access: open
2094
+ num_parameters: 109000000000
2095
+ release_date: 2025-04-05
2096
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2097
+
2098
+ - name: meta/llama-4-maverick-17b-128e-instruct-fp8
2099
+ display_name: Llama 4 Maverick (17Bx128E) Instruct FP8
2100
+ description: Llama 4 Maverick (17Bx128E) Instruct FP8 is part of the Llama 4 collection of models are natively multimodal AI models that enable text and multimodal experiences using a mixture-of-experts architecture. ([blog](https://ai.meta.com/blog/llama-4-multimodal-intelligence/))
2101
+ creator_organization_name: Meta
2102
+ access: open
2103
+ num_parameters: 402000000000
2104
+ release_date: 2025-04-05
2105
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2106
+
1878
2107
  - name: meta/llama-3-8b-chat
1879
2108
  display_name: Llama 3 Instruct (8B)
1880
2109
  description: Llama 3 is a family of language models that have been trained on more than 15 trillion tokens, and use Grouped-Query Attention (GQA) for improved inference scalability. It used SFT, rejection sampling, PPO and DPO for post-training. ([paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/)
@@ -2150,6 +2379,42 @@ models:
2150
2379
  release_date: 2024-04-17
2151
2380
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
2152
2381
 
2382
+ - name: allenai/olmo-2-1124-7b-instruct
2383
+ display_name: OLMo 2 7B Instruct November 2024
2384
+ description: OLMo 2 is a family of 7B and 13B models trained on up to 5T tokens. ([blog](https://allenai.org/blog/olmo2))
2385
+ creator_organization_name: Allen Institute for AI
2386
+ access: open
2387
+ num_parameters: 7300000000
2388
+ release_date: 2024-11-26
2389
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2390
+
2391
+ - name: allenai/olmo-2-1124-13b-instruct
2392
+ display_name: OLMo 2 13B Instruct November 2024
2393
+ description: OLMo 2 is a family of 7B and 13B models trained on up to 5T tokens. ([blog](https://allenai.org/blog/olmo2))
2394
+ creator_organization_name: Allen Institute for AI
2395
+ access: open
2396
+ num_parameters: 13700000000
2397
+ release_date: 2024-11-26
2398
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2399
+
2400
+ - name: allenai/olmo-2-0325-32b-instruct
2401
+ display_name: OLMo 2 32B Instruct March 2025
2402
+ description: OLMo 2 32B Instruct March 2025 is trained up to 6T tokens and post-trained using Tulu 3.1. ([blog](https://allenai.org/blog/olmo2-32B))
2403
+ creator_organization_name: Allen Institute for AI
2404
+ access: open
2405
+ num_parameters: 32200000000
2406
+ release_date: 2025-03-13
2407
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2408
+
2409
+ - name: allenai/olmoe-1b-7b-0125-instruct
2410
+ display_name: OLMoE 1B-7B Instruct January 2025
2411
+ description: OLMoE 1B-7B Instruct January 2025 is a fully open language model leveraging sparse Mixture-of-Experts (MoE). It has 7B parameters but uses only 1B per input token. It was pretrained on 5T tokens. ([blog](https://allenai.org/blog/olmoe-an-open-small-and-state-of-the-art-mixture-of-experts-model-c258432d0514), [paper](https://arxiv.org/abs/2409.02060))
2412
+ creator_organization_name: Allen Institute for AI
2413
+ access: open
2414
+ num_parameters: 32200000000
2415
+ release_date: 2025-03-13
2416
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2417
+
2153
2418
  # Mistral AI
2154
2419
  - name: mistralai/mistral-7b-v0.1
2155
2420
  display_name: Mistral v0.1 (7B)
@@ -2300,6 +2565,14 @@ models:
2300
2565
  release_date: 2023-12-11
2301
2566
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2302
2567
 
2568
+ - name: mistralai/mistral-medium-2505
2569
+ display_name: Mistral Medium 3 (2505)
2570
+ description: Mistral Medium 3 (2505) is a language model that is intended to to deliver state-of-the-art performance at lower cost. ([blog](https://mistral.ai/news/mistral-medium-3))
2571
+ creator_organization_name: Mistral AI
2572
+ access: limited
2573
+ release_date: 2025-05-07
2574
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2575
+
2303
2576
  - name: mistralai/mistral-large-2402
2304
2577
  display_name: Mistral Large (2402)
2305
2578
  description: Mistral Large is a multilingual model with a 32K tokens context window and function-calling capabilities. ([blog](https://mistral.ai/news/mistral-large/))
@@ -2351,6 +2624,15 @@ models:
2351
2624
  release_date: 2024-11-18
2352
2625
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2353
2626
 
2627
+ # Moonshot AI
2628
+ - name: moonshotai/kimi-k2-instruct
2629
+ display_name: Kimi K2 Instruct
2630
+ description: Kimi K2 Instruct is a mixture-of-experts (MoE) language model with 32 billion activated parameters and 1 trillion total parameters trained with the Muon optimizer on 15.5T tokens. ([blog](https://moonshotai.github.io/Kimi-K2/))
2631
+ creator_organization_name: Moonshot AI
2632
+ access: open
2633
+ num_parameters: 1029173256720
2634
+ release_date: 2024-07-14 # Blog post has no date, so use the date from this news article https://www.cnbc.com/2025/07/14/alibaba-backed-moonshot-releases-kimi-k2-ai-rivaling-chatgpt-claude.html
2635
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2354
2636
 
2355
2637
  # MosaicML
2356
2638
  - name: mosaicml/mpt-7b
@@ -2746,6 +3028,30 @@ models:
2746
3028
  release_date: 2024-07-18
2747
3029
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2748
3030
 
3031
+ - name: openai/gpt-4.1-2025-04-14
3032
+ display_name: GPT-4.1 (2025-04-14)
3033
+ description: GPT-4.1 (2025-04-14) is a multimdodal model in the GPT-4.1 family, which outperforms the GPT-4o family, with major gains in coding and instruction following. They also have larger context windows of 1 million tokens and are able to better use that context with improved long-context comprehension. ([blog](https://openai.com/index/gpt-4-1/))
3034
+ creator_organization_name: OpenAI
3035
+ access: limited
3036
+ release_date: 2025-04-14
3037
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3038
+
3039
+ - name: openai/gpt-4.1-mini-2025-04-14
3040
+ display_name: GPT-4.1 mini (2025-04-14)
3041
+ description: GPT-4.1 mini (2025-04-14) is a multimdodal model in the GPT-4.1 family, which outperforms the GPT-4o family, with major gains in coding and instruction following. They also have larger context windows of 1 million tokens and are able to better use that context with improved long-context comprehension. ([blog](https://openai.com/index/gpt-4-1/))
3042
+ creator_organization_name: OpenAI
3043
+ access: limited
3044
+ release_date: 2025-04-14
3045
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3046
+
3047
+ - name: openai/gpt-4.1-nano-2025-04-14
3048
+ display_name: GPT-4.1 nano (2025-04-14)
3049
+ description: GPT-4.1 nano (2025-04-14) is a multimdodal model in the GPT-4.1 family, which outperforms the GPT-4o family, with major gains in coding and instruction following. They also have larger context windows of 1 million tokens and are able to better use that context with improved long-context comprehension. ([blog](https://openai.com/index/gpt-4-1/))
3050
+ creator_organization_name: OpenAI
3051
+ access: limited
3052
+ release_date: 2025-04-14
3053
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3054
+
2749
3055
  - name: openai/whisper-1_gpt-4o-2024-11-20
2750
3056
  display_name: Whisper-1 + GPT-4o (2024-11-20)
2751
3057
  description: Transcribes the text with Whisper-1 and then uses GPT-4o to generate a response.
@@ -2754,6 +3060,22 @@ models:
2754
3060
  release_date: 2024-11-20
2755
3061
  tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG]
2756
3062
 
3063
+ - name: openai/gpt-4o-transcribe_gpt-4o-2024-11-20
3064
+ display_name: GPT-4o Transcribe + GPT-4o (2024-11-20)
3065
+ description: Transcribes the text with GPT-4o Transcribe and then uses GPT-4o to generate a response.
3066
+ creator_organization_name: OpenAI
3067
+ access: limited
3068
+ release_date: 2025-03-20
3069
+ tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG]
3070
+
3071
+ - name: openai/gpt-4o-mini-transcribe_gpt-4o-2024-11-20
3072
+ display_name: GPT-4o mini Transcribe + GPT-4o (2024-11-20)
3073
+ description: Transcribes the text with GPT-4o mini Transcribe and then uses GPT-4o to generate a response.
3074
+ creator_organization_name: OpenAI
3075
+ access: limited
3076
+ release_date: 2025-03-20
3077
+ tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG]
3078
+
2757
3079
  - name: openai/gpt-4o-audio-preview-2024-10-01
2758
3080
  display_name: GPT-4o Audio (Preview 2024-10-01)
2759
3081
  description: GPT-4o Audio (Preview 2024-10-01) is a preview model that allows using use audio inputs to prompt the model ([documentation](https://platform.openai.com/docs/guides/audio)).
@@ -2807,6 +3129,30 @@ models:
2807
3129
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2808
3130
 
2809
3131
  ## o1 Models
3132
+ - name: openai/o1-pro-2025-03-19
3133
+ display_name: o1 pro (2025-03-19)
3134
+ description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/))
3135
+ creator_organization_name: OpenAI
3136
+ access: limited
3137
+ release_date: 2025-03-19
3138
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3139
+
3140
+ - name: openai/o1-pro-2025-03-19-low-reasoning-effort
3141
+ display_name: o1 pro (2025-03-19, low reasoning effort)
3142
+ description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/)) The requests' reasoning effort parameter in is set to low.
3143
+ creator_organization_name: OpenAI
3144
+ access: limited
3145
+ release_date: 2025-03-19
3146
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3147
+
3148
+ - name: openai/o1-pro-2025-03-19-high-reasoning-effort
3149
+ display_name: o1 pro (2025-03-19, high reasoning effort)
3150
+ description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/)) The requests' reasoning effort parameter in is set to high.
3151
+ creator_organization_name: OpenAI
3152
+ access: limited
3153
+ release_date: 2025-03-19
3154
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3155
+
2810
3156
  - name: openai/o1-2024-12-17
2811
3157
  display_name: o1 (2024-12-17)
2812
3158
  description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/))
@@ -2871,6 +3217,62 @@ models:
2871
3217
  release_date: 2025-01-31
2872
3218
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2873
3219
 
3220
+ - name: openai/o3-2025-04-16
3221
+ display_name: o3 (2025-04-16)
3222
+ description: o3 is a reasoning model for math, science, coding, and visual reasoning tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3223
+ creator_organization_name: OpenAI
3224
+ access: limited
3225
+ release_date: 2025-04-16
3226
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3227
+
3228
+ - name: openai/o3-2025-04-16-low-reasoning-effort
3229
+ display_name: o3 (2025-04-16, low reasoning effort)
3230
+ description: o3 is a reasoning model for math, science, coding, and visual reasoning tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3231
+ creator_organization_name: OpenAI
3232
+ access: limited
3233
+ release_date: 2025-04-16
3234
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3235
+
3236
+ - name: openai/o3-2025-04-16-high-reasoning-effort
3237
+ display_name: o3 (2025-04-16, high reasoning effort)
3238
+ description: o3 is a reasoning model for math, science, coding, and visual reasoning tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3239
+ creator_organization_name: OpenAI
3240
+ access: limited
3241
+ release_date: 2025-04-16
3242
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3243
+
3244
+ - name: openai/o4-mini-2025-04-16
3245
+ display_name: o4-mini (2025-04-16)
3246
+ description: o4-mini is an o-series model optimized for fast, effective reasoning with exceptionally efficient performance in coding and visual tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3247
+ creator_organization_name: OpenAI
3248
+ access: limited
3249
+ release_date: 2025-04-16
3250
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3251
+
3252
+ - name: openai/o4-mini-2025-04-16-low-reasoning-effort
3253
+ display_name: o4-mini (2025-04-16, low reasoning effort)
3254
+ description: o4-mini is an o-series model optimized for fast, effective reasoning with exceptionally efficient performance in coding and visual tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3255
+ creator_organization_name: OpenAI
3256
+ access: limited
3257
+ release_date: 2025-04-16
3258
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3259
+
3260
+ - name: openai/o4-mini-2025-04-16-high-reasoning-effort
3261
+ display_name: o4-mini (2025-04-16, high reasoning effort)
3262
+ description: o4-mini is an o-series model optimized for fast, effective reasoning with exceptionally efficient performance in coding and visual tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3263
+ creator_organization_name: OpenAI
3264
+ access: limited
3265
+ release_date: 2025-04-16
3266
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3267
+
3268
+ - name: openai/o3-pro-2025-06-10-high-reasoning-effort
3269
+ display_name: o3-pro (2025-06-10, high reasoning effort)
3270
+ description: o3-pro is an o-series model designed to think longer and provide the most reliable responses. ([blog post](https://help.openai.com/en/articles/9624314-model-release-notes))
3271
+ creator_organization_name: OpenAI
3272
+ access: limited
3273
+ release_date: 2025-06-10
3274
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3275
+
2874
3276
  ## Codex Models
2875
3277
  # DEPRECATED: Codex models have been shut down on March 23 2023.
2876
3278
 
@@ -3139,6 +3541,14 @@ models:
3139
3541
  release_date: 2024-09-19
3140
3542
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3141
3543
 
3544
+ - name: qwen/qwen3-235b-a22b-fp8-tput
3545
+ display_name: Qwen3 235B A22B FP8 Throughput
3546
+ description: Qwen3 235B A22B FP8 Throughput is a hybrid instruct and reasoning mixture-of-experts model ([blog](https://qwenlm.github.io/blog/qwen3/)).
3547
+ creator_organization_name: Qwen
3548
+ access: open
3549
+ release_date: 2025-04-29
3550
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3551
+
3142
3552
  - name: qwen/qwq-32b-preview
3143
3553
  display_name: QwQ (32B Preview)
3144
3554
  description: QwQ-32B-Preview is an experimental research model developed by the Qwen Team, focused on advancing AI reasoning capabilities. ([blog post](https://qwenlm.github.io/blog/qwq-32b-preview/)).
@@ -3180,6 +3590,38 @@ models:
3180
3590
  release_date: 2024-08-29
3181
3591
  tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3182
3592
 
3593
+ - name: qwen/qwen2.5-vl-3b-instruct
3594
+ display_name: Qwen2.5-VL Instruct (3B)
3595
+ description: The second generation of Qwen2.5-VL models ([blog](https://qwenlm.github.io/blog/qwen2.5-vl/)).
3596
+ creator_organization_name: Alibaba Group
3597
+ access: open
3598
+ release_date: 2025-01-26
3599
+ tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3600
+
3601
+ - name: qwen/qwen2.5-vl-7b-instruct
3602
+ display_name: Qwen2.5-VL Instruct (7B)
3603
+ description: The second generation of Qwen2.5-VL models ([blog](https://qwenlm.github.io/blog/qwen2.5-vl/)).
3604
+ creator_organization_name: Alibaba Group
3605
+ access: open
3606
+ release_date: 2025-01-26
3607
+ tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3608
+
3609
+ - name: qwen/qwen2.5-vl-32b-instruct
3610
+ display_name: Qwen2.5-VL Instruct (32B)
3611
+ description: The second generation of Qwen2.5-VL models ([blog](https://qwenlm.github.io/blog/qwen2.5-vl/)).
3612
+ creator_organization_name: Alibaba Group
3613
+ access: open
3614
+ release_date: 2025-01-26
3615
+ tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3616
+
3617
+ - name: qwen/qwen2.5-vl-72b-instruct
3618
+ display_name: Qwen2.5-VL Instruct (72B)
3619
+ description: The second generation of Qwen2.5-VL models ([blog](https://qwenlm.github.io/blog/qwen2.5-vl/)).
3620
+ creator_organization_name: Alibaba Group
3621
+ access: open
3622
+ release_date: 2025-01-26
3623
+ tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3624
+
3183
3625
  - name: qwen/qwen-audio-chat
3184
3626
  display_name: Qwen-Audio Chat
3185
3627
  description: Auditory multimodal version of the Qwen large language model series ([paper](https://arxiv.org/abs/2311.07919)).
@@ -3196,6 +3638,14 @@ models:
3196
3638
  release_date: 2024-07-15
3197
3639
  tags: [AUDIO_LANGUAGE_MODEL_TAG]
3198
3640
 
3641
+ - name: qwen/qwen2.5-omni-7b
3642
+ display_name: Qwen2.5-Omni (7B)
3643
+ description: The new flagship end-to-end multimodal model in the Qwen series that can process inputs including text, images, audio, and video ([paper](https://arxiv.org/abs/2503.20215)).
3644
+ creator_organization_name: Alibaba Cloud
3645
+ access: open
3646
+ release_date: 2025-03-27
3647
+ tags: [AUDIO_LANGUAGE_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3648
+
3199
3649
  # SAIL (Sea AI Lab)
3200
3650
  - name: sail/sailor-7b
3201
3651
  display_name: Sailor (7B)
@@ -3670,6 +4120,14 @@ models:
3670
4120
  release_date: 2024-09-12
3671
4121
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3672
4122
 
4123
+ - name: writer/palmyra-x5
4124
+ display_name: Palmyra X5
4125
+ description: Palmyra X5 is a language model for enterprise that uses a Mixture of Experts (MoE) architecture and a hybrid attention mechanism that blends linear and softmax attention. ([blog](https://writer.com/engineering/long-context-palmyra-x5/))
4126
+ creator_organization_name: Writer
4127
+ access: limited
4128
+ release_date: 2024-04-28
4129
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4130
+
3673
4131
  - name: writer/palmyra-med-32k
3674
4132
  display_name: Palmyra-Med 32K (70B)
3675
4133
  description: Palmyra-Med 32K (70B) is a model finetuned from Palmyra-X-003 intended for medical applications.
@@ -3680,11 +4138,10 @@ models:
3680
4138
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3681
4139
 
3682
4140
  - name: writer/palmyra-med
3683
- display_name: Palmyra-Med (70B)
3684
- description: Palmyra-Med (70B) is a model finetuned from Palmyra-X-003 intended for medical applications.
4141
+ display_name: Palmyra Med
4142
+ description: Palmyra Med is a model intended for medical applications.
3685
4143
  creator_organization_name: Writer
3686
4144
  access: open
3687
- num_parameters: 70600000000
3688
4145
  release_date: 2024-07-31
3689
4146
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3690
4147
 
@@ -3707,12 +4164,28 @@ models:
3707
4164
 
3708
4165
  # xAI
3709
4166
 
3710
- - name: xai/grok-beta
3711
- display_name: Grok Beta
3712
- description: Grok Beta is a model from xAI.
4167
+ - name: xai/grok-3-beta
4168
+ display_name: Grok 3 Beta
4169
+ description: Grok 3 Beta is a model trained on xAI's Colossus supercluster with significant improvements in reasoning, mathematics, coding, world knowledge, and instruction-following tasks. ([blog](https://x.ai/news/grok-3))
3713
4170
  creator_organization_name: xAI
3714
- access: closed
3715
- release_date: 2024-08-13
4171
+ access: limited
4172
+ release_date: 2025-04-03 # https://docs.x.ai/docs/release-notes#april-2025
4173
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4174
+
4175
+ - name: xai/grok-3-mini-beta
4176
+ display_name: Grok 3 mini Beta
4177
+ description: Grok 3 mini Beta is a model trained on xAI's Colossus supercluster with significant improvements in reasoning, mathematics, coding, world knowledge, and instruction-following tasks. ([blog](https://x.ai/news/grok-3))
4178
+ creator_organization_name: xAI
4179
+ access: limited
4180
+ release_date: 2025-04-03 # https://docs.x.ai/docs/release-notes#april-2025
4181
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4182
+
4183
+ - name: xai/grok-4-0709
4184
+ display_name: Grok 4 (0709)
4185
+ description: Grok 4 (0709) is a model that includes native tool use and real-time search integration. ([blog](https://x.ai/news/grok-4))
4186
+ creator_organization_name: xAI
4187
+ access: limited
4188
+ release_date: 2025-07-09
3716
4189
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3717
4190
 
3718
4191
  # Yandex
@@ -3807,6 +4280,42 @@ models:
3807
4280
  release_date: 2024-09-10
3808
4281
  tags: [AUDIO_LANGUAGE_MODEL_TAG]
3809
4282
 
4283
+
4284
+ # Maritaca AI
4285
+ - name: maritaca-ai/sabia-7b
4286
+ display_name: Sabia 7B
4287
+ description: Sabia 7B
4288
+ creator_organization_name: MARITACA-AI
4289
+ access: open
4290
+ num_parameters: 6740000000
4291
+ release_date: 2023-11-08
4292
+ tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4293
+
4294
+ - name: maritaca-ai/sabiazinho-3
4295
+ display_name: Sabiazinho 3
4296
+ description: Sabiazinho-3 is a decoder-only language model designed for Portuguese text generation and understanding tasks. It supports a long context window of up to 128,000 tokens and is offered via API with scalable rate limits. The model is trained on diverse Portuguese corpora with knowledge up to july 2023.
4297
+ creator_organization_name: Maritaca AI
4298
+ access: limited
4299
+ release_date: 2025-02-06
4300
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4301
+
4302
+ - name: maritaca-ai/sabia-3
4303
+ display_name: Sabía 3
4304
+ description: Sabiá-3 is a decoder-only language model designed for Portuguese text generation and understanding tasks. It supports a long context window of up to 128,000 tokens and is offered via API with scalable rate limits. The model is trained on diverse Portuguese corpora with knowledge up to july 2023.
4305
+ creator_organization_name: Maritaca AI
4306
+ access: limited
4307
+ release_date: 2024-12-11
4308
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4309
+
4310
+ - name: maritaca-ai/sabia-3.1-2025-05-08
4311
+ display_name: Sabía 3.1
4312
+ description: Sabiá-3.1 is a decoder-only language model designed for Portuguese text generation and understanding tasks. It supports a long context window of up to 128,000 tokens and is offered via API with scalable rate limits. The model is trained on diverse Portuguese corpora with knowledge up to August 2024.
4313
+ creator_organization_name: Maritaca AI
4314
+ access: limited
4315
+ release_date: 2025-05-08
4316
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4317
+
4318
+
3810
4319
  # Granite - IBM
3811
4320
  # https://www.ibm.com/granite
3812
4321
  # https://github.com/ibm-granite/granite-3.0-language-models
@@ -3882,17 +4391,7 @@ models:
3882
4391
  num_parameters: 1380000000
3883
4392
  release: 2024-10-21
3884
4393
  tags: [TEXT_MODEL_TAG]
3885
-
3886
- - name: maritaca-ai/sabia-7b
3887
- display_name: Sabia 7B
3888
- description: Sabia 7B
3889
- creator_organization_name: MARITACA-AI
3890
- access: open
3891
- num_parameters: 6740000000
3892
- release_date: 2023-11-08
3893
- tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3894
4394
 
3895
- # Granite-3.1-8b-base
3896
4395
  - name: ibm-granite/granite-3.1-8b-base
3897
4396
  display_name: Granite 3.1 - 8B - Base
3898
4397
  description: Granite-3.1-8B-Base extends the context length of Granite-3.0-8B-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
@@ -3902,7 +4401,6 @@ models:
3902
4401
  release_date: 2024-12-18
3903
4402
  tags: [TEXT_MODEL_TAG]
3904
4403
 
3905
- # Granite-3.1-8b-instruct
3906
4404
  - name: ibm-granite/granite-3.1-8b-instruct
3907
4405
  display_name: Granite 3.1 - 8B - Instruct
3908
4406
  description: Granite-3.1-8B-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-8B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -3912,7 +4410,6 @@ models:
3912
4410
  release_date: 2024-12-18
3913
4411
  tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3914
4412
 
3915
- # Granite-3.1-2b-instruct
3916
4413
  - name: ibm-granite/granite-3.1-2b-instruct
3917
4414
  display_name: Granite 3.1 - 2B - Instruct
3918
4415
  description: Granite-3.1-2B-Instruct is a 2B parameter long-context instruct model finetuned from Granite-3.1-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -3922,7 +4419,6 @@ models:
3922
4419
  release_date: 2024-12-18
3923
4420
  tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3924
4421
 
3925
- # Granite-3.1-2b-base
3926
4422
  - name: ibm-granite/granite-3.1-2b-base
3927
4423
  display_name: Granite 3.1 - 2B - Base
3928
4424
  description: Granite-3.1-2B-Base extends the context length of Granite-3.0-2B-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
@@ -3932,7 +4428,6 @@ models:
3932
4428
  release_date: 2024-12-18
3933
4429
  tags: [TEXT_MODEL_TAG]
3934
4430
 
3935
- # Granite-3.1-3b-a800m-instruct
3936
4431
  - name: ibm-granite/granite-3.1-3b-a800m-instruct
3937
4432
  display_name: Granite 3.1 - 3B - A800M - Instruct
3938
4433
  description: Granite-3.1-3B-A800M-Instruct is a 3B parameter long-context instruct model finetuned from Granite-3.1-3B-A800M-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -3942,7 +4437,6 @@ models:
3942
4437
  release_date: 2024-12-18
3943
4438
  tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3944
4439
 
3945
- # Granite-3.1-3b-a800m-base
3946
4440
  - name: ibm-granite/granite-3.1-3b-a800m-base
3947
4441
  display_name: Granite 3.1 - 3B - A800M - Base
3948
4442
  description: Granite-3.1-3B-A800M-Base extends the context length of Granite-3.0-3B-A800M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
@@ -3952,7 +4446,6 @@ models:
3952
4446
  release_date: 2024-12-18
3953
4447
  tags: [TEXT_MODEL_TAG]
3954
4448
 
3955
- # Granite-3.1-1b-a400m-instruct
3956
4449
  - name: ibm-granite/granite-3.1-1b-a400m-instruct
3957
4450
  display_name: Granite 3.1 - 1B - A400M - Instruct
3958
4451
  description: Granite-3.1-1B-A400M-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-1B-A400M-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -3962,7 +4455,6 @@ models:
3962
4455
  release_date: 2024-12-18
3963
4456
  tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3964
4457
 
3965
- # Granite-3.1-1b-a400m-base
3966
4458
  - name: ibm-granite/granite-3.1-1b-a400m-base
3967
4459
  display_name: Granite 3.1 - 1B - A400M - Base
3968
4460
  description: Granite-3.1-1B-A400M-Base extends the context length of Granite-3.0-1B-A400M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
@@ -3972,27 +4464,6 @@ models:
3972
4464
  release_date: 2024-12-18
3973
4465
  tags: [TEXT_MODEL_TAG]
3974
4466
 
3975
- # DeepSeek-R1-Distill-Llama-3.1-8b
3976
- - name: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
3977
- display_name: DeepSeek-R1-Distill-Llama-8b
3978
- description: DeepSeek-R1-Distill-Llama-8b is a model that is distilled from LLaMA 8B model for the DeepSeek-R1 task.
3979
- creator_organization_name: DeepSeek
3980
- access: open
3981
- num_parameters: 8000000000
3982
- release_date: 2025-01-20
3983
- tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3984
-
3985
- # deepseek-ai/deepseek-coder-6.7b-instruct
3986
- - name: deepseek-ai/deepseek-coder-6.7b-instruct
3987
- display_name: DeepSeek-Coder-6.7b-Instruct
3988
- description: DeepSeek-Coder-6.7b-Instruct is a model that is fine-tuned from the LLaMA 6.7B model for the DeepSeek-Coder task.
3989
- creator_organization_name: DeepSeek
3990
- access: open
3991
- num_parameters: 6740000000
3992
- release_date: 2025-01-20
3993
- tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3994
-
3995
- # WatsonX - IBM
3996
4467
  - name: ibm/granite-13b-instruct-v2
3997
4468
  display_name: Granite 13b instruct v2
3998
4469
  description: Granite Base (13B) Instruct V2.0 is a large decoder-only transformer model.The following features were used in the design of the model Decoder-only model
@@ -4039,11 +4510,6 @@ models:
4039
4510
  release: 2024-6-18
4040
4511
  tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
4041
4512
 
4042
-
4043
-
4044
-
4045
-
4046
-
4047
4513
  - name: ibm/granite-3.1-8b-instruct
4048
4514
  display_name: Granite 3.1 - 8B - Instruct
4049
4515
  description: Granite-3.1-8B-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-8B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -4062,10 +4528,265 @@ models:
4062
4528
  release_date: 2024-12-18
4063
4529
  tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
4064
4530
 
4065
- - name: mistralai/mixtral-8x7b-instruct-v0:1
4066
- display_name: Mixtral 8x7B Instruct on IBM WatsonX
4067
- description: A 7B sparse Mixture-of-Experts model with stronger capabilities than Mistral 7B. Uses 12B active parameters out of 45B total. Supports multiple languages, code and 32k context window.
4068
- creator_organization_name: Mistral
4069
- access: limited
4070
- release_date: 2023-12-11
4531
+ - name: ibm/granite-3.3-8b-instruct
4532
+ display_name: IBM Granite 3.3 8B Instruct
4533
+ description: IBM Granite 3.3 8B Instruct is a 8-billion parameter 128K context length language model fine-tuned for improved reasoning and instruction-following capabilities. ([model card](https://huggingface.co/ibm-granite/granite-3.3-8b-instruct))
4534
+ creator_organization_name: IBM
4535
+ access: open
4536
+ num_parameters: 8170000000
4537
+ release_date: 2025-04-16
4071
4538
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4539
+
4540
+ - name: ibm/granite-3.3-8b-instruct-with-guardian
4541
+ display_name: IBM Granite 3.3 8B Instruct (with guardian)
4542
+ description: IBM Granite 3.3 8B Instruct is a 8-billion parameter 128K context length language model fine-tuned for improved reasoning and instruction-following capabilities. ([model card](https://huggingface.co/ibm-granite/granite-3.3-8b-instruct)) This model was run with an additional safety filter using [Granite Guardian 3.2](https://www.ibm.com/granite/docs/models/guardian/).
4543
+ creator_organization_name: IBM
4544
+ access: open
4545
+ num_parameters: 8170000000
4546
+ release_date: 2025-04-16
4547
+ # Unfortunately this setup is not easily reproducible, so we mark it with DEPRECATED_MODEL_TAG
4548
+ tags: [DEPRECATED_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4549
+
4550
+ - name: ura-hcmut/ura-llama-2.1-8b
4551
+ display_name: URA-Llama 2.1 (8B)
4552
+ description: URA-Llama 2.1 (8B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4553
+ creator_organization_name: URA
4554
+ access: open
4555
+ num_parameters: 8000000000
4556
+ release_date: 2024-08-04
4557
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4558
+
4559
+ - name: ura-hcmut/ura-llama-2-8b
4560
+ display_name: URA-Llama 2 (8B)
4561
+ description: URA-Llama 2 (8B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4562
+ creator_organization_name: URA
4563
+ access: open
4564
+ num_parameters: 8000000000
4565
+ release_date: 2024-08-04
4566
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4567
+
4568
+ - name: ura-hcmut/ura-llama-7b
4569
+ display_name: URA-Llama 7B (7B)
4570
+ description: URA-Llama 7B (7B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4571
+ creator_organization_name: URA
4572
+ access: open
4573
+ num_parameters: 7000000000
4574
+ release_date: 2023-10-10
4575
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4576
+
4577
+ - name: ura-hcmut/ura-llama-13b
4578
+ display_name: URA-Llama 13B (13B)
4579
+ description: URA-Llama 13B (13B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4580
+ creator_organization_name: URA
4581
+ access: open
4582
+ num_parameters: 13000000000
4583
+ release_date: 2023-10-10
4584
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4585
+
4586
+ - name: ura-hcmut/ura-llama-70b
4587
+ display_name: URA-Llama 70B (70B)
4588
+ description: URA-Llama 70B (70B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4589
+ creator_organization_name: URA
4590
+ access: open
4591
+ num_parameters: 70000000000
4592
+ release_date: 2023-10-10
4593
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4594
+
4595
+ - name: ura-hcmut/GemSUra-7B
4596
+ display_name: GemSUra 7B
4597
+ description: GemSUra 7B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4598
+ creator_organization_name: URA
4599
+ access: open
4600
+ num_parameters: 7000000000
4601
+ release_date: 2024-03-12
4602
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4603
+
4604
+ - name: ura-hcmut/GemSUra-2B
4605
+ display_name: GemSUra 2B
4606
+ description: GemSUra 2B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4607
+ creator_organization_name: URA
4608
+ access: open
4609
+ num_parameters: 2000000000
4610
+ release_date: 2024-03-12
4611
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4612
+
4613
+ - name: ura-hcmut/MixSUra
4614
+ display_name: MixSUra
4615
+ description: MixSUra is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text. It is a mixture of experts model with 8 active experts.
4616
+ creator_organization_name: URA
4617
+ access: open
4618
+ num_parameters: 46700000000
4619
+ release_date: 2024-03-12
4620
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4621
+
4622
+ - name: vilm/vinallama-7b-chat
4623
+ display_name: VinaLLaMa
4624
+ description: VinaLLaMa is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4625
+ creator_organization_name: ViLM
4626
+ access: open
4627
+ num_parameters: 7000000000
4628
+ release_date: 2024-03-12
4629
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4630
+
4631
+ - name: vilm/vinallama-2.7b-chat
4632
+ display_name: VinaLLaMa 2.7B
4633
+ description: VinaLLaMa 2.7B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4634
+ creator_organization_name: ViLM
4635
+ access: open
4636
+ num_parameters: 2700000000
4637
+ release_date: 2024-03-12
4638
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4639
+
4640
+ - name: vilm/vietcuna-7b-v3
4641
+ display_name: VietCuna 7B (v3)
4642
+ description: VietCuna 7B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4643
+ creator_organization_name: ViLM
4644
+ access: open
4645
+ num_parameters: 7000000000
4646
+ release_date: 2023-08-07
4647
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4648
+
4649
+ - name: vilm/vietcuna-3b-v2
4650
+ display_name: VietCuna 3B (v2)
4651
+ description: VietCuna 3B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4652
+ creator_organization_name: ViLM
4653
+ access: open
4654
+ num_parameters: 3000000000
4655
+ release_date: 2023-07-15
4656
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4657
+
4658
+ - name: vilm/Quyen-v0.1
4659
+ display_name: Quyen (v0.1)
4660
+ description: Quyen is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4661
+ creator_organization_name: ViLM
4662
+ access: open
4663
+ num_parameters: 4000000000
4664
+ release_date: 2024-02-26
4665
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4666
+
4667
+ - name: vilm/Quyen-Plus-v0.1
4668
+ display_name: Quyen Plus (v0.1)
4669
+ description: Quyen Plus is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4670
+ creator_organization_name: ViLM
4671
+ access: open
4672
+ num_parameters: 7000000000
4673
+ release_date: 2024-02-26
4674
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4675
+
4676
+ - name: vilm/Quyen-Pro-v0.1
4677
+ display_name: Quyen Pro (v0.1)
4678
+ description: Quyen Pro is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4679
+ creator_organization_name: ViLM
4680
+ access: open
4681
+ num_parameters: 14000000000
4682
+ release_date: 2024-02-26
4683
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4684
+
4685
+ - name: vilm/Quyen-Pro-Max-v0.1
4686
+ display_name: Quyen Pro Max (v0.1)
4687
+ description: Quyen Pro Max is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4688
+ creator_organization_name: ViLM
4689
+ access: open
4690
+ num_parameters: 72000000000
4691
+ release_date: 2024-02-26
4692
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4693
+
4694
+ - name: vilm/Quyen-Mini-v0.1
4695
+ display_name: Quyen Mini (v0.1)
4696
+ description: Quyen Mini is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4697
+ creator_organization_name: ViLM
4698
+ access: open
4699
+ num_parameters: 1800000000
4700
+ release_date: 2024-02-26
4701
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4702
+
4703
+ - name: vilm/Quyen-SE-v0.1
4704
+ display_name: Quyen SE (v0.1)
4705
+ description: Quyen SE is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4706
+ creator_organization_name: ViLM
4707
+ access: open
4708
+ num_parameters: 500000000
4709
+ release_date: 2024-02-26
4710
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4711
+
4712
+ - name: Viet-Mistral/Vistral-7B-Chat
4713
+ display_name: Vistral 7B Chat
4714
+ description: Vistral 7B Chat is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4715
+ creator_organization_name: Viet-Mistral
4716
+ access: open
4717
+ num_parameters: 7000000000
4718
+ release_date: 2024-02-28
4719
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4720
+
4721
+ - name: vinai/PhoGPT-7B5-Instruct
4722
+ display_name: PhoGPT 7B5 Instruct
4723
+ description: PhoGPT 7B5 Instruct is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4724
+ creator_organization_name: VinAI
4725
+ access: open
4726
+ num_parameters: 7500000000
4727
+ release_date: 2024-02-19
4728
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4729
+
4730
+ - name: vinai/PhoGPT-4B-Chat
4731
+ display_name: PhoGPT 4B Chat
4732
+ description: PhoGPT 4B Chat is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4733
+ creator_organization_name: VinAI
4734
+ access: open
4735
+ num_parameters: 4000000000
4736
+ release_date: 2024-04-02
4737
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4738
+
4739
+ - name: CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it
4740
+ display_name: Gemma-3 Gaia PT-BR 4b Instruct
4741
+ description: Gemma-3 Gaia PT-BR 4b Instruct is a model trained by CEIA-UFG for understanding and generating Brazilian Portuguese text.
4742
+ creator_organization_name: CEIA-UFG
4743
+ access: open
4744
+ num_parameters: 4000000000
4745
+ release_date: 2025-06-01
4746
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4747
+
4748
+ - name: recogna-nlp/bode-13b-alpaca-pt-br-no-peft
4749
+ display_name: Bode 13B Alpaca PT-BR
4750
+ description: Bode is a language model (LLM) for Portuguese, based on LLaMA 2 and fine-tuned with the Alpaca dataset translated into Portuguese. Suitable for instruction, text generation, translation and tasks in Portuguese.
4751
+ creator_organization_name: Recogna NLP
4752
+ access: open
4753
+ num_parameters: 13000000000
4754
+ release_date: 2024-01-05
4755
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4756
+
4757
+ - name: 22h/cabrita_7b_pt_850000
4758
+ display_name: Cabrita PT-BR 7B
4759
+ description: Cabrita is an OpenLLaMA-based model, continuously trained in Portuguese (mC4-pt subset) for 850000 steps with efficient tokenization adapted to the language.
4760
+ creator_organization_name: 22h
4761
+ access: open
4762
+ num_parameters: 7000000000
4763
+ release_date: 2023-08-23
4764
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4765
+
4766
+ - name: PORTULAN/gervasio-7b-portuguese-ptbr-decoder
4767
+ display_name: Gervásio PT-BR/PT-PT 7B Decoder
4768
+ description: Gervásio PT* is a 7B parameter decoder model, adapted from LLaMA27B, trained for both Brazilian and European Portuguese. Fine-tuned with translated data from benchmarks such as GLUE and SuperGLUE.
4769
+ creator_organization_name: PORTULAN (University of Lisbon NLX)
4770
+ access: open
4771
+ num_parameters: 6740000000
4772
+ release_date: 2024-02-29
4773
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4774
+
4775
+ - name: TucanoBR/Tucano-2b4
4776
+ display_name: Tucano PT-BR 2b4
4777
+ description: Tucano is a series of decoder models based on LLaMA2, natively pre-trained in Portuguese using the GigaVerbo dataset (200B tokens), with the 2B model trained for 1.96M steps over 845h (515B tokens, 4 epochs).
4778
+ creator_organization_name: TucanoBR (University of Bonn)
4779
+ access: open
4780
+ num_parameters: 2444618240
4781
+ release_date: 2024-12-11
4782
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4783
+
4784
+ - name: nicholasKluge/TeenyTinyLlama-460m
4785
+ display_name: TeenyTinyLlama 460M PT-BR
4786
+ description: TeenyTinyLlama-460m is a lightweight and efficient model based on LLaMA2, trained exclusively on Brazilian Portuguese. It uses RoPE embeddings and SwiGLU activations, with a refined SentencePiece tokenizer and a low-resource optimized architecture.
4787
+ creator_organization_name: Nicholas Kluge.
4788
+ access: open
4789
+ num_parameters: 460000000
4790
+ release_date: 2024-01-30
4791
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4792
+