crfm-helm 0.5.5__py3-none-any.whl → 0.5.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of crfm-helm might be problematic. Click here for more details.

Files changed (206) hide show
  1. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.6.dist-info}/METADATA +27 -13
  2. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.6.dist-info}/RECORD +203 -156
  3. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.6.dist-info}/WHEEL +1 -1
  4. helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +3 -3
  5. helm/benchmark/adaptation/adapters/test_adapter.py +4 -4
  6. helm/benchmark/annotation/air_bench_annotator.py +1 -1
  7. helm/benchmark/annotation/bigcodebench_annotator.py +3 -3
  8. helm/benchmark/annotation/bird_sql_annotator.py +2 -2
  9. helm/benchmark/annotation/chw_care_plan_annotator.py +7 -12
  10. helm/benchmark/annotation/ehr_sql_annotator.py +2 -2
  11. helm/benchmark/annotation/helpdesk_call_summarization_annotator.py +7 -7
  12. helm/benchmark/annotation/mimic_bhc_annotator.py +100 -0
  13. helm/benchmark/annotation/model_as_judge.py +12 -16
  14. helm/benchmark/annotation/omni_math_annotator.py +13 -14
  15. helm/benchmark/annotation/wildbench_annotator.py +9 -9
  16. helm/benchmark/executor.py +11 -12
  17. helm/benchmark/metrics/aci_bench_metrics.py +9 -29
  18. helm/benchmark/metrics/bias_word_lists.py +1 -1
  19. helm/benchmark/metrics/chw_care_plan_metrics.py +10 -30
  20. helm/benchmark/metrics/classification_metrics.py +3 -3
  21. helm/benchmark/metrics/cleva_harms_metrics.py +2 -2
  22. helm/benchmark/metrics/conv_fin_qa_calc_metrics.py +2 -2
  23. helm/benchmark/metrics/dischargeme_metrics.py +9 -29
  24. helm/benchmark/metrics/efficiency_metrics.py +3 -3
  25. helm/benchmark/metrics/gpt4_audio_refusal_metrics.py +145 -0
  26. helm/benchmark/metrics/ifeval_metrics.py +2 -2
  27. helm/benchmark/metrics/kpi_edgar_metrics.py +121 -0
  28. helm/benchmark/metrics/llm_jury_metrics.py +46 -0
  29. helm/benchmark/metrics/med_dialog_metrics.py +9 -29
  30. helm/benchmark/metrics/medalign_metrics.py +9 -29
  31. helm/benchmark/metrics/medi_qa_metrics.py +9 -29
  32. helm/benchmark/metrics/medication_qa_metrics.py +10 -30
  33. helm/benchmark/metrics/melt_bias_metric.py +234 -0
  34. helm/benchmark/metrics/melt_bias_word_lists.py +1367 -0
  35. helm/benchmark/metrics/melt_metric_specs.py +43 -0
  36. helm/benchmark/metrics/melt_toxicity_metric.py +107 -0
  37. helm/benchmark/metrics/mental_health_metrics.py +9 -29
  38. helm/benchmark/metrics/metric_service.py +11 -11
  39. helm/benchmark/metrics/mimic_bhc_metrics.py +14 -0
  40. helm/benchmark/metrics/mimic_rrs_metrics.py +9 -29
  41. helm/benchmark/metrics/mtsamples_procedures_metrics.py +9 -29
  42. helm/benchmark/metrics/mtsamples_replicate_metrics.py +9 -29
  43. helm/benchmark/metrics/openai_mrcr_metrics.py +52 -0
  44. helm/benchmark/metrics/ruler_qa_metrics.py +34 -0
  45. helm/benchmark/metrics/starr_patient_instructions_metrics.py +9 -29
  46. helm/benchmark/metrics/summac/model_summac.py +1 -2
  47. helm/benchmark/metrics/summarization_metrics.py +2 -1
  48. helm/benchmark/metrics/tokens/test_openai_token_cost_estimator.py +2 -2
  49. helm/benchmark/metrics/toxicity_metrics.py +2 -2
  50. helm/benchmark/metrics/unitxt_metrics.py +3 -4
  51. helm/benchmark/metrics/vision_language/emd_utils.py +4 -2
  52. helm/benchmark/metrics/vision_language/image_utils.py +2 -2
  53. helm/benchmark/model_deployment_registry.py +6 -8
  54. helm/benchmark/presentation/contamination.py +3 -3
  55. helm/benchmark/presentation/create_plots.py +33 -12
  56. helm/benchmark/presentation/run_display.py +13 -0
  57. helm/benchmark/presentation/schema.py +2 -1
  58. helm/benchmark/presentation/summarize.py +76 -59
  59. helm/benchmark/reeval_run.py +3 -4
  60. helm/benchmark/reeval_runner.py +3 -3
  61. helm/benchmark/run.py +78 -73
  62. helm/benchmark/run_expander.py +12 -1
  63. helm/benchmark/run_spec_factory.py +7 -6
  64. helm/benchmark/run_specs/audio_run_specs.py +52 -8
  65. helm/benchmark/run_specs/enterprise_run_specs.py +20 -0
  66. helm/benchmark/run_specs/experimental_run_specs.py +31 -1
  67. helm/benchmark/run_specs/long_context_run_specs.py +67 -15
  68. helm/benchmark/run_specs/medhelm_run_specs.py +146 -41
  69. helm/benchmark/run_specs/melt_run_specs.py +783 -0
  70. helm/benchmark/run_specs/speech_disorder_audio_run_specs.py +169 -0
  71. helm/benchmark/run_specs/vlm_run_specs.py +28 -0
  72. helm/benchmark/runner.py +5 -5
  73. helm/benchmark/scenarios/aci_bench_scenario.py +7 -1
  74. helm/benchmark/scenarios/audio_language/air_bench_chat_scenario.py +3 -1
  75. helm/benchmark/scenarios/audio_language/air_bench_foundation_scenario.py +5 -5
  76. helm/benchmark/scenarios/audio_language/corebench_scenario.py +77 -0
  77. helm/benchmark/scenarios/audio_language/ultra_suite_asr_classification.py +103 -0
  78. helm/benchmark/scenarios/audio_language/ultra_suite_classification_scenario.py +110 -0
  79. helm/benchmark/scenarios/audio_language/ultra_suite_disorder_breakdown_scenario.py +78 -0
  80. helm/benchmark/scenarios/audio_language/ultra_suite_disorder_symptoms_scenario.py +109 -0
  81. helm/benchmark/scenarios/audio_language/vocal_sound_scenario.py +15 -1
  82. helm/benchmark/scenarios/audio_language/voxceleb2_scenario.py +1 -2
  83. helm/benchmark/scenarios/autobencher_capabilities_scenario.py +2 -2
  84. helm/benchmark/scenarios/chw_care_plan_scenario.py +14 -13
  85. helm/benchmark/scenarios/clear_scenario.py +11 -7
  86. helm/benchmark/scenarios/dischargeme_scenario.py +36 -21
  87. helm/benchmark/scenarios/ehr_sql_scenario.py +7 -1
  88. helm/benchmark/scenarios/ehrshot_scenario.py +28 -55
  89. helm/benchmark/scenarios/grammar.py +2 -2
  90. helm/benchmark/scenarios/headqa_scenario.py +6 -1
  91. helm/benchmark/scenarios/infinite_bench_en_qa_scenario.py +85 -0
  92. helm/benchmark/scenarios/{infinite_bench_sum_scenario.py → infinite_bench_en_sum_scenario.py} +10 -13
  93. helm/benchmark/scenarios/kpi_edgar_scenario.py +151 -0
  94. helm/benchmark/scenarios/med_dialog_scenario.py +6 -1
  95. helm/benchmark/scenarios/medalign_scenario.py +9 -3
  96. helm/benchmark/scenarios/medalign_scenario_helper.py +8 -5
  97. helm/benchmark/scenarios/medbullets_scenario.py +7 -2
  98. helm/benchmark/scenarios/medcalc_bench_scenario.py +4 -2
  99. helm/benchmark/scenarios/medec_scenario.py +6 -1
  100. helm/benchmark/scenarios/medhallu_scenario.py +7 -1
  101. helm/benchmark/scenarios/medi_qa_scenario.py +10 -4
  102. helm/benchmark/scenarios/medication_qa_scenario.py +7 -1
  103. helm/benchmark/scenarios/melt_ir_scenario.py +171 -0
  104. helm/benchmark/scenarios/melt_knowledge_scenario.py +246 -0
  105. helm/benchmark/scenarios/melt_lm_scenarios.py +252 -0
  106. helm/benchmark/scenarios/melt_scenarios.py +793 -0
  107. helm/benchmark/scenarios/melt_srn_scenario.py +342 -0
  108. helm/benchmark/scenarios/melt_synthetic_reasoning_scenario.py +222 -0
  109. helm/benchmark/scenarios/melt_translation_scenario.py +152 -0
  110. helm/benchmark/scenarios/mental_health_scenario.py +16 -5
  111. helm/benchmark/scenarios/mimic_bhc_scenario.py +12 -7
  112. helm/benchmark/scenarios/mimic_rrs_scenario.py +17 -8
  113. helm/benchmark/scenarios/mimiciv_billing_code_scenario.py +14 -8
  114. helm/benchmark/scenarios/mmlu_pro_scenario.py +1 -1
  115. helm/benchmark/scenarios/mtsamples_procedures_scenario.py +5 -2
  116. helm/benchmark/scenarios/mtsamples_replicate_scenario.py +3 -2
  117. helm/benchmark/scenarios/n2c2_ct_matching_scenario.py +11 -5
  118. helm/benchmark/scenarios/numeracy_scenario.py +2 -1
  119. helm/benchmark/scenarios/openai_mrcr_scenario.py +79 -0
  120. helm/benchmark/scenarios/pubmed_qa_scenario.py +6 -1
  121. helm/benchmark/scenarios/race_based_med_scenario.py +18 -8
  122. helm/benchmark/scenarios/ruler_qa_scenario_helper.py +2 -2
  123. helm/benchmark/scenarios/ruler_qa_scenarios.py +2 -2
  124. helm/benchmark/scenarios/shc_bmt_scenario.py +12 -6
  125. helm/benchmark/scenarios/shc_cdi_scenario.py +11 -6
  126. helm/benchmark/scenarios/shc_conf_scenario.py +12 -6
  127. helm/benchmark/scenarios/shc_ent_scenario.py +11 -6
  128. helm/benchmark/scenarios/shc_gip_scenario.py +13 -5
  129. helm/benchmark/scenarios/shc_privacy_scenario.py +78 -0
  130. helm/benchmark/scenarios/shc_proxy_scenario.py +76 -0
  131. helm/benchmark/scenarios/shc_ptbm_scenario.py +12 -7
  132. helm/benchmark/scenarios/shc_sei_scenario.py +12 -7
  133. helm/benchmark/scenarios/shc_sequoia_scenario.py +13 -5
  134. helm/benchmark/scenarios/starr_patient_instructions_scenario.py +15 -8
  135. helm/benchmark/scenarios/test_infinite_bench_en_qa_scenario.py +18 -0
  136. helm/benchmark/scenarios/test_infinite_bench_en_sum_scenario.py +31 -0
  137. helm/benchmark/scenarios/truthful_qa_scenario.py +2 -1
  138. helm/benchmark/scenarios/vision_language/msr_vtt_scenario.py +75 -0
  139. helm/benchmark/server.py +2 -1
  140. helm/benchmark/static/schema_audio.yaml +60 -49
  141. helm/benchmark/static/schema_enterprise.yaml +21 -0
  142. helm/benchmark/static/schema_long_context.yaml +63 -20
  143. helm/benchmark/static/schema_medhelm.yaml +272 -213
  144. helm/benchmark/static/schema_melt.yaml +1257 -0
  145. helm/benchmark/static/schema_slphelm.yaml +162 -0
  146. helm/benchmark/static/schema_vhelm.yaml +26 -26
  147. helm/benchmark/static/schema_video.yaml +219 -0
  148. helm/benchmark/static_build/assets/index-94295e78.js +10 -0
  149. helm/benchmark/static_build/assets/index-b9779128.css +1 -0
  150. helm/benchmark/static_build/assets/medhelm-overview-eac29843.png +0 -0
  151. helm/benchmark/static_build/assets/{tremor-9cefc3c5.js → tremor-38a10867.js} +1 -1
  152. helm/benchmark/static_build/index.html +4 -4
  153. helm/benchmark/window_services/encoder_decoder_window_service.py +3 -3
  154. helm/benchmark/window_services/test_utils.py +3 -4
  155. helm/benchmark/window_services/tokenizer_service.py +7 -8
  156. helm/clients/anthropic_client.py +69 -29
  157. helm/clients/audio_language/diva_llama_client.py +4 -2
  158. helm/clients/audio_language/qwen2_5_omni_client.py +197 -0
  159. helm/clients/audio_language/qwen2_audiolm_client.py +8 -6
  160. helm/clients/audio_language/qwen_audiolm_client.py +4 -2
  161. helm/clients/audio_language/test.py +62 -0
  162. helm/clients/bedrock_client.py +3 -1
  163. helm/clients/client.py +7 -7
  164. helm/clients/grok_client.py +36 -0
  165. helm/clients/huggingface_client.py +42 -3
  166. helm/clients/huggingface_pipeline_client.py +138 -0
  167. helm/clients/image_generation/dalle_mini/model/configuration.py +1 -1
  168. helm/clients/image_generation/dalle_mini/model/modeling.py +1 -1
  169. helm/clients/image_generation/dalle_mini/model/processor.py +1 -1
  170. helm/clients/image_generation/dalle_mini/model/tokenizer.py +1 -1
  171. helm/clients/openai_client.py +100 -54
  172. helm/clients/openai_responses_client.py +174 -0
  173. helm/clients/palmyra_client.py +2 -5
  174. helm/clients/reka_client.py +2 -2
  175. helm/clients/together_client.py +31 -4
  176. helm/clients/vertexai_client.py +6 -0
  177. helm/clients/vision_language/huggingface_vision2seq_client.py +6 -4
  178. helm/clients/vision_language/huggingface_vlm_client.py +2 -2
  179. helm/clients/vision_language/idefics_client.py +6 -2
  180. helm/clients/vision_language/paligemma_client.py +2 -2
  181. helm/clients/vision_language/qwen2_vlm_client.py +66 -53
  182. helm/clients/vision_language/qwen_vlm_client.py +7 -5
  183. helm/clients/writer_client.py +102 -0
  184. helm/common/context.py +80 -0
  185. helm/common/credentials_utils.py +5 -5
  186. helm/common/general.py +9 -2
  187. helm/common/hierarchical_logger.py +46 -3
  188. helm/common/local_context.py +140 -0
  189. helm/common/remote_context.py +61 -0
  190. helm/common/request.py +8 -0
  191. helm/config/model_deployments.yaml +864 -193
  192. helm/config/model_metadata.yaml +667 -53
  193. helm/config/tokenizer_configs.yaml +144 -3
  194. helm/proxy/cli.py +3 -1
  195. helm/proxy/critique/mechanical_turk_utils.py +1 -1
  196. helm/proxy/services/server_service.py +21 -85
  197. helm/tokenizers/grok_tokenizer.py +53 -0
  198. helm/tokenizers/huggingface_tokenizer.py +1 -1
  199. helm/tokenizers/test_grok_tokenizer.py +33 -0
  200. helm/benchmark/scenarios/test_infinite_bench_sum_scenario.py +0 -46
  201. helm/benchmark/static_build/assets/index-262903c1.js +0 -10
  202. helm/benchmark/static_build/assets/index-42060d71.css +0 -1
  203. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.6.dist-info}/entry_points.txt +0 -0
  204. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.6.dist-info}/licenses/LICENSE +0 -0
  205. {crfm_helm-0.5.5.dist-info → crfm_helm-0.5.6.dist-info}/top_level.txt +0 -0
  206. /helm/benchmark/static_build/assets/{medhelm-overview-3ddfcd65.png → medhelm-v1-overview-3ddfcd65.png} +0 -0
@@ -276,6 +276,14 @@ models:
276
276
  # Amazon Nova models
277
277
  # References for Amazon Nova models:
278
278
  # https://aws.amazon.com/ai/generative-ai/nova/
279
+ - name: amazon/nova-premier-v1:0
280
+ display_name: Amazon Nova Premier
281
+ description: Amazon Nova Premier is the most capable model in the Nova family of foundation models. ([blog](https://aws.amazon.com/blogs/aws/amazon-nova-premier-our-most-capable-model-for-complex-tasks-and-teacher-for-model-distillation/))
282
+ creator_organization_name: Amazon
283
+ access: limited
284
+ release_date: 2025-04-30
285
+ tags: [NOVA_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
286
+
279
287
  - name: amazon/nova-pro-v1:0
280
288
  display_name: Amazon Nova Pro
281
289
  description: Amazon Nova Pro Model
@@ -507,6 +515,46 @@ models:
507
515
  release_date: 2025-02-24
508
516
  tags: [ANTHROPIC_CLAUDE_3_MODEL_TAG, TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
509
517
 
518
+ - name: anthropic/claude-3-7-sonnet-20250219-thinking-10k
519
+ display_name: Claude 3.7 Sonnet (20250219, extended thinking)
520
+ description: Claude 3.7 Sonnet is a Claude 3 family hybrid reasoning model that can produce near-instant responses or extended, step-by-step thinking that is made visible to the user ([blog](https://www.anthropic.com/news/claude-3-7-sonnet)). Extended thinking is enabled with 10k budget tokens.
521
+ creator_organization_name: Anthropic
522
+ access: limited
523
+ release_date: 2025-02-24
524
+ tags: [ANTHROPIC_CLAUDE_3_MODEL_TAG, TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
525
+
526
+ - name: anthropic/claude-sonnet-4-20250514
527
+ display_name: Claude 4 Sonnet (20250514)
528
+ description: Claude 4 Sonnet is a hybrid model offering two modes - near-instant responses and extended thinking for deeper reasoning ([blog](https://www.anthropic.com/news/claude-4)).
529
+ creator_organization_name: Anthropic
530
+ access: limited
531
+ release_date: 2025-05-14
532
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
533
+
534
+ - name: anthropic/claude-sonnet-4-20250514-thinking-10k
535
+ display_name: Claude 4 Sonnet (20250514, extended thinking)
536
+ description: Claude 4 Sonnet is a hybrid model offering two modes - near-instant responses and extended thinking for deeper reasoning ([blog](https://www.anthropic.com/news/claude-4)). Extended thinking is enabled with 10k budget tokens.
537
+ creator_organization_name: Anthropic
538
+ access: limited
539
+ release_date: 2025-05-14
540
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
541
+
542
+ - name: anthropic/claude-opus-4-20250514
543
+ display_name: Claude 4 Opus (20250514)
544
+ description: Claude 4 Opus is a hybrid model offering two modes - near-instant responses and extended thinking for deeper reasoning ([blog](https://www.anthropic.com/news/claude-4)).
545
+ creator_organization_name: Anthropic
546
+ access: limited
547
+ release_date: 2025-05-14
548
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
549
+
550
+ - name: anthropic/claude-opus-4-20250514-thinking-10k
551
+ display_name: Claude 4 Opus (20250514, extended thinking)
552
+ description: Claude 4 Opus is a hybrid model offering two modes - near-instant responses and extended thinking for deeper reasoning ([blog](https://www.anthropic.com/news/claude-4)). Extended thinking is enabled with 10k budget tokens.
553
+ creator_organization_name: Anthropic
554
+ access: limited
555
+ release_date: 2025-05-14
556
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
557
+
510
558
  - name: anthropic/stanford-online-all-v4-s3
511
559
  display_name: Anthropic-LM v4-s3 (52B)
512
560
  description: A 52B parameter language model, trained using reinforcement learning from human feedback [paper](https://arxiv.org/pdf/2204.05862.pdf).
@@ -868,7 +916,7 @@ models:
868
916
  # NOTE: The total size of DeepSeek-R3 model1 on HuggingFace is 685B
869
917
  num_parameters: 685000000000
870
918
  release_date: 2025-01-20
871
- tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
919
+ tags: [DEPRECATED_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
872
920
 
873
921
  - name: deepseek-ai/deepseek-r1-hide-reasoning
874
922
  display_name: DeepSeek R1 (hide reasoning)
@@ -878,8 +926,35 @@ models:
878
926
  # NOTE: The total size of DeepSeek-R3 model1 on HuggingFace is 685B
879
927
  num_parameters: 685000000000
880
928
  release_date: 2025-01-20
881
- tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
929
+ tags: [DEPRECATED_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
882
930
 
931
+ - name: deepseek-ai/deepseek-r1-0528
932
+ display_name: DeepSeek-R1-0528
933
+ description: DeepSeek-R1-0528 is a minor version upgrade from DeepSeek R1 that has improved its depth of reasoning and inference capabilities by leveraging increased computational resources and introducing algorithmic optimization mechanisms during post-training. ([paper](https://arxiv.org/abs/2501.12948))
934
+ creator_organization_name: DeepSeek
935
+ access: open
936
+ num_parameters: 685000000000
937
+ release_date: 2025-05-28
938
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
939
+
940
+ - name: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
941
+ display_name: DeepSeek-R1-Distill-Llama-8b
942
+ description: DeepSeek-R1-Distill-Llama-8b is a model that is distilled from LLaMA 8B model for the DeepSeek-R1 task.
943
+ creator_organization_name: DeepSeek
944
+ access: open
945
+ num_parameters: 8000000000
946
+ release_date: 2025-01-20
947
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
948
+
949
+ - name: deepseek-ai/deepseek-coder-6.7b-instruct
950
+ display_name: DeepSeek-Coder-6.7b-Instruct
951
+ description: DeepSeek-Coder-6.7b-Instruct is a model that is fine-tuned from the LLaMA 6.7B model for the DeepSeek-Coder task.
952
+ creator_organization_name: DeepSeek
953
+ access: open
954
+ num_parameters: 6740000000
955
+ release_date: 2025-01-20
956
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
957
+
883
958
  # EleutherAI
884
959
  - name: eleutherai/gpt-j-6b # Served by GooseAi, HuggingFace and Together.
885
960
  display_name: GPT-J (6B)
@@ -1146,6 +1221,14 @@ models:
1146
1221
  release_date: 2025-02-05
1147
1222
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1148
1223
 
1224
+ - name: google/gemini-2.0-flash-lite-001
1225
+ display_name: Gemini 2.0 Flash Lite
1226
+ description: Gemini 2.0 Flash Lite ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1227
+ creator_organization_name: Google
1228
+ access: limited
1229
+ release_date: 2025-03-25
1230
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1231
+
1149
1232
  - name: google/gemini-2.0-flash-thinking-exp-01-21
1150
1233
  display_name: Gemini 2.0 Flash Thinking (01-21 preview)
1151
1234
  description: Gemini 2.0 Flash Thinking (01-21 preview) ([documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/thinking))
@@ -1162,6 +1245,70 @@ models:
1162
1245
  release_date: 2025-02-05
1163
1246
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1164
1247
 
1248
+ - name: google/gemini-2.5-flash-lite-preview-06-17
1249
+ display_name: Gemini 2.5 Flash-Lite (06-17 preview)
1250
+ description: Gemini 2.5 Flash-Lite (06-17 preview) ([blog](https://blog.google/products/gemini/gemini-2-5-model-family-expands/))
1251
+ creator_organization_name: Google
1252
+ access: limited
1253
+ release_date: 2025-06-17
1254
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1255
+
1256
+ - name: google/gemini-2.5-flash-preview-04-17
1257
+ display_name: Gemini 2.5 Flash (04-17 preview)
1258
+ description: Gemini 2.5 Flash (04-17 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1259
+ creator_organization_name: Google
1260
+ access: limited
1261
+ release_date: 2025-04-17
1262
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1263
+
1264
+ - name: google/gemini-2.5-flash-preview-05-20
1265
+ display_name: Gemini 2.5 Flash (05-20 preview)
1266
+ description: Gemini 2.5 Flash (05-20 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1267
+ creator_organization_name: Google
1268
+ access: limited
1269
+ release_date: 2025-04-17
1270
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1271
+
1272
+ - name: google/gemini-2.5-flash
1273
+ display_name: Gemini 2.5 Flash
1274
+ description: Gemini 2.5 Flash ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1275
+ creator_organization_name: Google
1276
+ access: limited
1277
+ release_date: 2025-06-17
1278
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1279
+
1280
+ - name: google/gemini-2.5-pro-exp-03-25
1281
+ display_name: Gemini 2.5 Pro (03-25 experimental)
1282
+ description: Gemini 2.5 Pro (03-25 experimental) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1283
+ creator_organization_name: Google
1284
+ access: limited
1285
+ release_date: 2025-03-25
1286
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1287
+
1288
+ - name: google/gemini-2.5-pro-preview-03-25
1289
+ display_name: Gemini 2.5 Pro (03-25 preview)
1290
+ description: Gemini 2.5 Pro (03-25 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1291
+ creator_organization_name: Google
1292
+ access: limited
1293
+ release_date: 2025-04-09 # source: https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
1294
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1295
+
1296
+ - name: google/gemini-2.5-pro-preview-05-06
1297
+ display_name: Gemini 2.5 Pro (05-06 preview)
1298
+ description: Gemini 2.5 Pro (05-06 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1299
+ creator_organization_name: Google
1300
+ access: limited
1301
+ release_date: 2025-05-06 # source: https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
1302
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1303
+
1304
+ - name: google/gemini-2.5-pro
1305
+ display_name: Gemini 2.5 Pro
1306
+ description: Gemini 2.5 Pro ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
1307
+ creator_organization_name: Google
1308
+ access: limited
1309
+ release_date: 2025-06-17
1310
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1311
+
1165
1312
  - name: google/gemma-2b
1166
1313
  display_name: Gemma (2B)
1167
1314
  description: Gemma is a family of lightweight, open models built from the research and technology that Google used to create the Gemini models. ([model card](https://www.kaggle.com/models/google/gemma), [blog post](https://blog.google/technology/developers/gemma-open-models/))
@@ -1360,6 +1507,60 @@ models:
1360
1507
  release_date: 2023-08-22
1361
1508
  tags: [VISION_LANGUAGE_MODEL_TAG, IDEFICS_MODEL_TAG, IDEFICS_INSTRUCT_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
1362
1509
 
1510
+ - name: huggingface/smollm2-135m
1511
+ display_name: SmolLM2 (135M)
1512
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1513
+ creator_organization_name: HuggingFace
1514
+ access: open
1515
+ num_parameters: 135000000
1516
+ release_date: 2024-10-31
1517
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1518
+
1519
+ - name: huggingface/smollm2-360m
1520
+ display_name: SmolLM2 (360M)
1521
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1522
+ creator_organization_name: HuggingFace
1523
+ access: open
1524
+ num_parameters: 362000000
1525
+ release_date: 2024-10-31
1526
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1527
+
1528
+ - name: huggingface/smollm2-1.7b
1529
+ display_name: SmolLM2 (1.7B)
1530
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1531
+ creator_organization_name: HuggingFace
1532
+ access: open
1533
+ num_parameters: 1710000000
1534
+ release_date: 2024-10-31
1535
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1536
+
1537
+ - name: huggingface/smollm2-135m-instruct
1538
+ display_name: SmolLM2 Instruct (135M)
1539
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1540
+ creator_organization_name: HuggingFace
1541
+ access: open
1542
+ num_parameters: 135000000
1543
+ release_date: 2024-10-31
1544
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1545
+
1546
+ - name: huggingface/smollm2-360m-instruct
1547
+ display_name: SmolLM2 Instruct (360M)
1548
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1549
+ creator_organization_name: HuggingFace
1550
+ access: open
1551
+ num_parameters: 362000000
1552
+ release_date: 2024-10-31
1553
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1554
+
1555
+ - name: huggingface/smollm2-1.7b-instruct
1556
+ display_name: SmolLM2 Instruct (1.7B)
1557
+ description: SmolLM2 is a family of compact language models that are capable of solving a wide range of tasks while being lightweight enough to run on-device. ([paper](https://arxiv.org/abs/2502.02737v1))
1558
+ creator_organization_name: HuggingFace
1559
+ access: open
1560
+ num_parameters: 1710000000
1561
+ release_date: 2024-10-31
1562
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1563
+
1363
1564
  ## Text-to-Image Diffusion Models
1364
1565
  - name: huggingface/dreamlike-diffusion-v1-0
1365
1566
  display_name: Dreamlike Diffusion v1.0 (1B)
@@ -1573,6 +1774,16 @@ models:
1573
1774
  release_date: 2023-06-22
1574
1775
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1575
1776
 
1777
+ # Marin Community
1778
+ - name: marin-community/marin-8b-instruct
1779
+ display_name: Marin 8B Instruct
1780
+ description: Marin 8B Instruct is an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
1781
+ creator_organization_name: Marin Community
1782
+ access: open
1783
+ num_parameters: 8030000000
1784
+ release_date: 2025-05-15
1785
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1786
+
1576
1787
  # Meta
1577
1788
  - name: meta/opt-iml-175b # NOT SUPPORTED
1578
1789
  display_name: OPT-IML (175B)
@@ -1875,6 +2086,24 @@ models:
1875
2086
  release_date: 2024-12-06
1876
2087
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1877
2088
 
2089
+ - name: meta/llama-4-scout-17b-16e-instruct
2090
+ display_name: Llama 4 Scout (17Bx16E) Instruct
2091
+ description: Llama 4 Scout (17Bx16E) Instruct is part of the Llama 4 collection of models are natively multimodal AI models that enable text and multimodal experiences using a mixture-of-experts architecture. ([blog](https://ai.meta.com/blog/llama-4-multimodal-intelligence/))
2092
+ creator_organization_name: Meta
2093
+ access: open
2094
+ num_parameters: 109000000000
2095
+ release_date: 2025-04-05
2096
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2097
+
2098
+ - name: meta/llama-4-maverick-17b-128e-instruct-fp8
2099
+ display_name: Llama 4 Maverick (17Bx128E) Instruct FP8
2100
+ description: Llama 4 Maverick (17Bx128E) Instruct FP8 is part of the Llama 4 collection of models are natively multimodal AI models that enable text and multimodal experiences using a mixture-of-experts architecture. ([blog](https://ai.meta.com/blog/llama-4-multimodal-intelligence/))
2101
+ creator_organization_name: Meta
2102
+ access: open
2103
+ num_parameters: 402000000000
2104
+ release_date: 2025-04-05
2105
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2106
+
1878
2107
  - name: meta/llama-3-8b-chat
1879
2108
  display_name: Llama 3 Instruct (8B)
1880
2109
  description: Llama 3 is a family of language models that have been trained on more than 15 trillion tokens, and use Grouped-Query Attention (GQA) for improved inference scalability. It used SFT, rejection sampling, PPO and DPO for post-training. ([paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/)
@@ -2150,6 +2379,42 @@ models:
2150
2379
  release_date: 2024-04-17
2151
2380
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
2152
2381
 
2382
+ - name: allenai/olmo-2-1124-7b-instruct
2383
+ display_name: OLMo 2 7B Instruct November 2024
2384
+ description: OLMo 2 is a family of 7B and 13B models trained on up to 5T tokens. ([blog](https://allenai.org/blog/olmo2))
2385
+ creator_organization_name: Allen Institute for AI
2386
+ access: open
2387
+ num_parameters: 7300000000
2388
+ release_date: 2024-11-26
2389
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2390
+
2391
+ - name: allenai/olmo-2-1124-13b-instruct
2392
+ display_name: OLMo 2 13B Instruct November 2024
2393
+ description: OLMo 2 is a family of 7B and 13B models trained on up to 5T tokens. ([blog](https://allenai.org/blog/olmo2))
2394
+ creator_organization_name: Allen Institute for AI
2395
+ access: open
2396
+ num_parameters: 13700000000
2397
+ release_date: 2024-11-26
2398
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2399
+
2400
+ - name: allenai/olmo-2-0325-32b-instruct
2401
+ display_name: OLMo 2 32B Instruct March 2025
2402
+ description: OLMo 2 32B Instruct March 2025 is trained up to 6T tokens and post-trained using Tulu 3.1. ([blog](https://allenai.org/blog/olmo2-32B))
2403
+ creator_organization_name: Allen Institute for AI
2404
+ access: open
2405
+ num_parameters: 32200000000
2406
+ release_date: 2025-03-13
2407
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2408
+
2409
+ - name: allenai/olmoe-1b-7b-0125-instruct
2410
+ display_name: OLMoE 1B-7B Instruct January 2025
2411
+ description: OLMoE 1B-7B Instruct January 2025 is a fully open language model leveraging sparse Mixture-of-Experts (MoE). It has 7B parameters but uses only 1B per input token. It was pretrained on 5T tokens. ([blog](https://allenai.org/blog/olmoe-an-open-small-and-state-of-the-art-mixture-of-experts-model-c258432d0514), [paper](https://arxiv.org/abs/2409.02060))
2412
+ creator_organization_name: Allen Institute for AI
2413
+ access: open
2414
+ num_parameters: 32200000000
2415
+ release_date: 2025-03-13
2416
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2417
+
2153
2418
  # Mistral AI
2154
2419
  - name: mistralai/mistral-7b-v0.1
2155
2420
  display_name: Mistral v0.1 (7B)
@@ -2300,6 +2565,14 @@ models:
2300
2565
  release_date: 2023-12-11
2301
2566
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2302
2567
 
2568
+ - name: mistralai/mistral-medium-2505
2569
+ display_name: Mistral Medium 3 (2505)
2570
+ description: Mistral Medium 3 (2505) is a language model that is intended to to deliver state-of-the-art performance at lower cost. ([blog](https://mistral.ai/news/mistral-medium-3))
2571
+ creator_organization_name: Mistral AI
2572
+ access: limited
2573
+ release_date: 2025-05-07
2574
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2575
+
2303
2576
  - name: mistralai/mistral-large-2402
2304
2577
  display_name: Mistral Large (2402)
2305
2578
  description: Mistral Large is a multilingual model with a 32K tokens context window and function-calling capabilities. ([blog](https://mistral.ai/news/mistral-large/))
@@ -2746,6 +3019,30 @@ models:
2746
3019
  release_date: 2024-07-18
2747
3020
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2748
3021
 
3022
+ - name: openai/gpt-4.1-2025-04-14
3023
+ display_name: GPT-4.1 (2025-04-14)
3024
+ description: GPT-4.1 (2025-04-14) is a multimdodal model in the GPT-4.1 family, which outperforms the GPT-4o family, with major gains in coding and instruction following. They also have larger context windows of 1 million tokens and are able to better use that context with improved long-context comprehension. ([blog](https://openai.com/index/gpt-4-1/))
3025
+ creator_organization_name: OpenAI
3026
+ access: limited
3027
+ release_date: 2025-04-14
3028
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3029
+
3030
+ - name: openai/gpt-4.1-mini-2025-04-14
3031
+ display_name: GPT-4.1 mini (2025-04-14)
3032
+ description: GPT-4.1 mini (2025-04-14) is a multimdodal model in the GPT-4.1 family, which outperforms the GPT-4o family, with major gains in coding and instruction following. They also have larger context windows of 1 million tokens and are able to better use that context with improved long-context comprehension. ([blog](https://openai.com/index/gpt-4-1/))
3033
+ creator_organization_name: OpenAI
3034
+ access: limited
3035
+ release_date: 2025-04-14
3036
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3037
+
3038
+ - name: openai/gpt-4.1-nano-2025-04-14
3039
+ display_name: GPT-4.1 nano (2025-04-14)
3040
+ description: GPT-4.1 nano (2025-04-14) is a multimdodal model in the GPT-4.1 family, which outperforms the GPT-4o family, with major gains in coding and instruction following. They also have larger context windows of 1 million tokens and are able to better use that context with improved long-context comprehension. ([blog](https://openai.com/index/gpt-4-1/))
3041
+ creator_organization_name: OpenAI
3042
+ access: limited
3043
+ release_date: 2025-04-14
3044
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3045
+
2749
3046
  - name: openai/whisper-1_gpt-4o-2024-11-20
2750
3047
  display_name: Whisper-1 + GPT-4o (2024-11-20)
2751
3048
  description: Transcribes the text with Whisper-1 and then uses GPT-4o to generate a response.
@@ -2754,6 +3051,22 @@ models:
2754
3051
  release_date: 2024-11-20
2755
3052
  tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG]
2756
3053
 
3054
+ - name: openai/gpt-4o-transcribe_gpt-4o-2024-11-20
3055
+ display_name: GPT-4o Transcribe + GPT-4o (2024-11-20)
3056
+ description: Transcribes the text with GPT-4o Transcribe and then uses GPT-4o to generate a response.
3057
+ creator_organization_name: OpenAI
3058
+ access: limited
3059
+ release_date: 2025-03-20
3060
+ tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG]
3061
+
3062
+ - name: openai/gpt-4o-mini-transcribe_gpt-4o-2024-11-20
3063
+ display_name: GPT-4o mini Transcribe + GPT-4o (2024-11-20)
3064
+ description: Transcribes the text with GPT-4o mini Transcribe and then uses GPT-4o to generate a response.
3065
+ creator_organization_name: OpenAI
3066
+ access: limited
3067
+ release_date: 2025-03-20
3068
+ tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG]
3069
+
2757
3070
  - name: openai/gpt-4o-audio-preview-2024-10-01
2758
3071
  display_name: GPT-4o Audio (Preview 2024-10-01)
2759
3072
  description: GPT-4o Audio (Preview 2024-10-01) is a preview model that allows using use audio inputs to prompt the model ([documentation](https://platform.openai.com/docs/guides/audio)).
@@ -2807,6 +3120,30 @@ models:
2807
3120
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2808
3121
 
2809
3122
  ## o1 Models
3123
+ - name: openai/o1-pro-2025-03-19
3124
+ display_name: o1 pro (2025-03-19)
3125
+ description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/))
3126
+ creator_organization_name: OpenAI
3127
+ access: limited
3128
+ release_date: 2025-03-19
3129
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3130
+
3131
+ - name: openai/o1-pro-2025-03-19-low-reasoning-effort
3132
+ display_name: o1 pro (2025-03-19, low reasoning effort)
3133
+ description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/)) The requests' reasoning effort parameter in is set to low.
3134
+ creator_organization_name: OpenAI
3135
+ access: limited
3136
+ release_date: 2025-03-19
3137
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3138
+
3139
+ - name: openai/o1-pro-2025-03-19-high-reasoning-effort
3140
+ display_name: o1 pro (2025-03-19, high reasoning effort)
3141
+ description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/)) The requests' reasoning effort parameter in is set to high.
3142
+ creator_organization_name: OpenAI
3143
+ access: limited
3144
+ release_date: 2025-03-19
3145
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3146
+
2810
3147
  - name: openai/o1-2024-12-17
2811
3148
  display_name: o1 (2024-12-17)
2812
3149
  description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/))
@@ -2871,6 +3208,54 @@ models:
2871
3208
  release_date: 2025-01-31
2872
3209
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2873
3210
 
3211
+ - name: openai/o3-2025-04-16
3212
+ display_name: o3 (2025-04-16)
3213
+ description: o3 is a reasoning model for math, science, coding, and visual reasoning tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3214
+ creator_organization_name: OpenAI
3215
+ access: limited
3216
+ release_date: 2025-04-16
3217
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3218
+
3219
+ - name: openai/o3-2025-04-16-low-reasoning-effort
3220
+ display_name: o3 (2025-04-16, low reasoning effort)
3221
+ description: o3 is a reasoning model for math, science, coding, and visual reasoning tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3222
+ creator_organization_name: OpenAI
3223
+ access: limited
3224
+ release_date: 2025-04-16
3225
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3226
+
3227
+ - name: openai/o3-2025-04-16-high-reasoning-effort
3228
+ display_name: o3 (2025-04-16, high reasoning effort)
3229
+ description: o3 is a reasoning model for math, science, coding, and visual reasoning tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3230
+ creator_organization_name: OpenAI
3231
+ access: limited
3232
+ release_date: 2025-04-16
3233
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3234
+
3235
+ - name: openai/o4-mini-2025-04-16
3236
+ display_name: o4-mini (2025-04-16)
3237
+ description: o4-mini is an o-series model optimized for fast, effective reasoning with exceptionally efficient performance in coding and visual tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3238
+ creator_organization_name: OpenAI
3239
+ access: limited
3240
+ release_date: 2025-04-16
3241
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3242
+
3243
+ - name: openai/o4-mini-2025-04-16-low-reasoning-effort
3244
+ display_name: o4-mini (2025-04-16, low reasoning effort)
3245
+ description: o4-mini is an o-series model optimized for fast, effective reasoning with exceptionally efficient performance in coding and visual tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3246
+ creator_organization_name: OpenAI
3247
+ access: limited
3248
+ release_date: 2025-04-16
3249
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3250
+
3251
+ - name: openai/o4-mini-2025-04-16-high-reasoning-effort
3252
+ display_name: o4-mini (2025-04-16, high reasoning effort)
3253
+ description: o4-mini is an o-series model optimized for fast, effective reasoning with exceptionally efficient performance in coding and visual tasks. ([blog post](https://openai.com/index/introducing-o3-and-o4-mini/))
3254
+ creator_organization_name: OpenAI
3255
+ access: limited
3256
+ release_date: 2025-04-16
3257
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3258
+
2874
3259
  ## Codex Models
2875
3260
  # DEPRECATED: Codex models have been shut down on March 23 2023.
2876
3261
 
@@ -3139,6 +3524,14 @@ models:
3139
3524
  release_date: 2024-09-19
3140
3525
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3141
3526
 
3527
+ - name: qwen/qwen3-235b-a22b-fp8-tput
3528
+ display_name: Qwen3 235B A22B FP8 Throughput
3529
+ description: Qwen3 235B A22B FP8 Throughput is a hybrid instruct and reasoning mixture-of-experts model ([blog](https://qwenlm.github.io/blog/qwen3/)).
3530
+ creator_organization_name: Qwen
3531
+ access: open
3532
+ release_date: 2025-04-29
3533
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3534
+
3142
3535
  - name: qwen/qwq-32b-preview
3143
3536
  display_name: QwQ (32B Preview)
3144
3537
  description: QwQ-32B-Preview is an experimental research model developed by the Qwen Team, focused on advancing AI reasoning capabilities. ([blog post](https://qwenlm.github.io/blog/qwq-32b-preview/)).
@@ -3180,6 +3573,38 @@ models:
3180
3573
  release_date: 2024-08-29
3181
3574
  tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3182
3575
 
3576
+ - name: qwen/qwen2.5-vl-3b-instruct
3577
+ display_name: Qwen2.5-VL Instruct (3B)
3578
+ description: The second generation of Qwen2.5-VL models ([blog](https://qwenlm.github.io/blog/qwen2.5-vl/)).
3579
+ creator_organization_name: Alibaba Group
3580
+ access: open
3581
+ release_date: 2025-01-26
3582
+ tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3583
+
3584
+ - name: qwen/qwen2.5-vl-7b-instruct
3585
+ display_name: Qwen2.5-VL Instruct (7B)
3586
+ description: The second generation of Qwen2.5-VL models ([blog](https://qwenlm.github.io/blog/qwen2.5-vl/)).
3587
+ creator_organization_name: Alibaba Group
3588
+ access: open
3589
+ release_date: 2025-01-26
3590
+ tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3591
+
3592
+ - name: qwen/qwen2.5-vl-32b-instruct
3593
+ display_name: Qwen2.5-VL Instruct (32B)
3594
+ description: The second generation of Qwen2.5-VL models ([blog](https://qwenlm.github.io/blog/qwen2.5-vl/)).
3595
+ creator_organization_name: Alibaba Group
3596
+ access: open
3597
+ release_date: 2025-01-26
3598
+ tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3599
+
3600
+ - name: qwen/qwen2.5-vl-72b-instruct
3601
+ display_name: Qwen2.5-VL Instruct (72B)
3602
+ description: The second generation of Qwen2.5-VL models ([blog](https://qwenlm.github.io/blog/qwen2.5-vl/)).
3603
+ creator_organization_name: Alibaba Group
3604
+ access: open
3605
+ release_date: 2025-01-26
3606
+ tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3607
+
3183
3608
  - name: qwen/qwen-audio-chat
3184
3609
  display_name: Qwen-Audio Chat
3185
3610
  description: Auditory multimodal version of the Qwen large language model series ([paper](https://arxiv.org/abs/2311.07919)).
@@ -3196,6 +3621,14 @@ models:
3196
3621
  release_date: 2024-07-15
3197
3622
  tags: [AUDIO_LANGUAGE_MODEL_TAG]
3198
3623
 
3624
+ - name: qwen/qwen2.5-omni-7b
3625
+ display_name: Qwen2.5-Omni (7B)
3626
+ description: The new flagship end-to-end multimodal model in the Qwen series that can process inputs including text, images, audio, and video ([paper](https://arxiv.org/abs/2503.20215)).
3627
+ creator_organization_name: Alibaba Cloud
3628
+ access: open
3629
+ release_date: 2025-03-27
3630
+ tags: [AUDIO_LANGUAGE_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
3631
+
3199
3632
  # SAIL (Sea AI Lab)
3200
3633
  - name: sail/sailor-7b
3201
3634
  display_name: Sailor (7B)
@@ -3670,6 +4103,14 @@ models:
3670
4103
  release_date: 2024-09-12
3671
4104
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3672
4105
 
4106
+ - name: writer/palmyra-x5
4107
+ display_name: Palmyra X5
4108
+ description: Palmyra X5 is a language model for enterprise that uses a Mixture of Experts (MoE) architecture and a hybrid attention mechanism that blends linear and softmax attention. ([blog](https://writer.com/engineering/long-context-palmyra-x5/))
4109
+ creator_organization_name: Writer
4110
+ access: limited
4111
+ release_date: 2024-04-28
4112
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4113
+
3673
4114
  - name: writer/palmyra-med-32k
3674
4115
  display_name: Palmyra-Med 32K (70B)
3675
4116
  description: Palmyra-Med 32K (70B) is a model finetuned from Palmyra-X-003 intended for medical applications.
@@ -3680,11 +4121,10 @@ models:
3680
4121
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3681
4122
 
3682
4123
  - name: writer/palmyra-med
3683
- display_name: Palmyra-Med (70B)
3684
- description: Palmyra-Med (70B) is a model finetuned from Palmyra-X-003 intended for medical applications.
4124
+ display_name: Palmyra Med
4125
+ description: Palmyra Med is a model intended for medical applications.
3685
4126
  creator_organization_name: Writer
3686
4127
  access: open
3687
- num_parameters: 70600000000
3688
4128
  release_date: 2024-07-31
3689
4129
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3690
4130
 
@@ -3707,12 +4147,20 @@ models:
3707
4147
 
3708
4148
  # xAI
3709
4149
 
3710
- - name: xai/grok-beta
3711
- display_name: Grok Beta
3712
- description: Grok Beta is a model from xAI.
4150
+ - name: xai/grok-3-beta
4151
+ display_name: Grok 3 Beta
4152
+ description: Grok 3 Beta is a model trained on xAI's Colossus supercluster with significant improvements in reasoning, mathematics, coding, world knowledge, and instruction-following tasks. ([blog](https://x.ai/news/grok-3))
3713
4153
  creator_organization_name: xAI
3714
- access: closed
3715
- release_date: 2024-08-13
4154
+ access: limited
4155
+ release_date: 2025-04-03 # https://docs.x.ai/docs/release-notes#april-2025
4156
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4157
+
4158
+ - name: xai/grok-3-mini-beta
4159
+ display_name: Grok 3 mini Beta
4160
+ description: Grok 3 mini Beta is a model trained on xAI's Colossus supercluster with significant improvements in reasoning, mathematics, coding, world knowledge, and instruction-following tasks. ([blog](https://x.ai/news/grok-3))
4161
+ creator_organization_name: xAI
4162
+ access: limited
4163
+ release_date: 2025-04-03 # https://docs.x.ai/docs/release-notes#april-2025
3716
4164
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3717
4165
 
3718
4166
  # Yandex
@@ -3807,6 +4255,17 @@ models:
3807
4255
  release_date: 2024-09-10
3808
4256
  tags: [AUDIO_LANGUAGE_MODEL_TAG]
3809
4257
 
4258
+
4259
+ # Maritaca AI
4260
+ - name: maritaca-ai/sabia-7b
4261
+ display_name: Sabia 7B
4262
+ description: Sabia 7B
4263
+ creator_organization_name: MARITACA-AI
4264
+ access: open
4265
+ num_parameters: 6740000000
4266
+ release_date: 2023-11-08
4267
+ tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4268
+
3810
4269
  # Granite - IBM
3811
4270
  # https://www.ibm.com/granite
3812
4271
  # https://github.com/ibm-granite/granite-3.0-language-models
@@ -3882,17 +4341,7 @@ models:
3882
4341
  num_parameters: 1380000000
3883
4342
  release: 2024-10-21
3884
4343
  tags: [TEXT_MODEL_TAG]
3885
-
3886
- - name: maritaca-ai/sabia-7b
3887
- display_name: Sabia 7B
3888
- description: Sabia 7B
3889
- creator_organization_name: MARITACA-AI
3890
- access: open
3891
- num_parameters: 6740000000
3892
- release_date: 2023-11-08
3893
- tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3894
4344
 
3895
- # Granite-3.1-8b-base
3896
4345
  - name: ibm-granite/granite-3.1-8b-base
3897
4346
  display_name: Granite 3.1 - 8B - Base
3898
4347
  description: Granite-3.1-8B-Base extends the context length of Granite-3.0-8B-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
@@ -3902,7 +4351,6 @@ models:
3902
4351
  release_date: 2024-12-18
3903
4352
  tags: [TEXT_MODEL_TAG]
3904
4353
 
3905
- # Granite-3.1-8b-instruct
3906
4354
  - name: ibm-granite/granite-3.1-8b-instruct
3907
4355
  display_name: Granite 3.1 - 8B - Instruct
3908
4356
  description: Granite-3.1-8B-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-8B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -3912,7 +4360,6 @@ models:
3912
4360
  release_date: 2024-12-18
3913
4361
  tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3914
4362
 
3915
- # Granite-3.1-2b-instruct
3916
4363
  - name: ibm-granite/granite-3.1-2b-instruct
3917
4364
  display_name: Granite 3.1 - 2B - Instruct
3918
4365
  description: Granite-3.1-2B-Instruct is a 2B parameter long-context instruct model finetuned from Granite-3.1-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -3922,7 +4369,6 @@ models:
3922
4369
  release_date: 2024-12-18
3923
4370
  tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3924
4371
 
3925
- # Granite-3.1-2b-base
3926
4372
  - name: ibm-granite/granite-3.1-2b-base
3927
4373
  display_name: Granite 3.1 - 2B - Base
3928
4374
  description: Granite-3.1-2B-Base extends the context length of Granite-3.0-2B-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
@@ -3932,7 +4378,6 @@ models:
3932
4378
  release_date: 2024-12-18
3933
4379
  tags: [TEXT_MODEL_TAG]
3934
4380
 
3935
- # Granite-3.1-3b-a800m-instruct
3936
4381
  - name: ibm-granite/granite-3.1-3b-a800m-instruct
3937
4382
  display_name: Granite 3.1 - 3B - A800M - Instruct
3938
4383
  description: Granite-3.1-3B-A800M-Instruct is a 3B parameter long-context instruct model finetuned from Granite-3.1-3B-A800M-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -3942,7 +4387,6 @@ models:
3942
4387
  release_date: 2024-12-18
3943
4388
  tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3944
4389
 
3945
- # Granite-3.1-3b-a800m-base
3946
4390
  - name: ibm-granite/granite-3.1-3b-a800m-base
3947
4391
  display_name: Granite 3.1 - 3B - A800M - Base
3948
4392
  description: Granite-3.1-3B-A800M-Base extends the context length of Granite-3.0-3B-A800M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
@@ -3952,7 +4396,6 @@ models:
3952
4396
  release_date: 2024-12-18
3953
4397
  tags: [TEXT_MODEL_TAG]
3954
4398
 
3955
- # Granite-3.1-1b-a400m-instruct
3956
4399
  - name: ibm-granite/granite-3.1-1b-a400m-instruct
3957
4400
  display_name: Granite 3.1 - 1B - A400M - Instruct
3958
4401
  description: Granite-3.1-1B-A400M-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-1B-A400M-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -3962,7 +4405,6 @@ models:
3962
4405
  release_date: 2024-12-18
3963
4406
  tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3964
4407
 
3965
- # Granite-3.1-1b-a400m-base
3966
4408
  - name: ibm-granite/granite-3.1-1b-a400m-base
3967
4409
  display_name: Granite 3.1 - 1B - A400M - Base
3968
4410
  description: Granite-3.1-1B-A400M-Base extends the context length of Granite-3.0-1B-A400M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
@@ -3972,27 +4414,6 @@ models:
3972
4414
  release_date: 2024-12-18
3973
4415
  tags: [TEXT_MODEL_TAG]
3974
4416
 
3975
- # DeepSeek-R1-Distill-Llama-3.1-8b
3976
- - name: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
3977
- display_name: DeepSeek-R1-Distill-Llama-8b
3978
- description: DeepSeek-R1-Distill-Llama-8b is a model that is distilled from LLaMA 8B model for the DeepSeek-R1 task.
3979
- creator_organization_name: DeepSeek
3980
- access: open
3981
- num_parameters: 8000000000
3982
- release_date: 2025-01-20
3983
- tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3984
-
3985
- # deepseek-ai/deepseek-coder-6.7b-instruct
3986
- - name: deepseek-ai/deepseek-coder-6.7b-instruct
3987
- display_name: DeepSeek-Coder-6.7b-Instruct
3988
- description: DeepSeek-Coder-6.7b-Instruct is a model that is fine-tuned from the LLaMA 6.7B model for the DeepSeek-Coder task.
3989
- creator_organization_name: DeepSeek
3990
- access: open
3991
- num_parameters: 6740000000
3992
- release_date: 2025-01-20
3993
- tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
3994
-
3995
- # WatsonX - IBM
3996
4417
  - name: ibm/granite-13b-instruct-v2
3997
4418
  display_name: Granite 13b instruct v2
3998
4419
  description: Granite Base (13B) Instruct V2.0 is a large decoder-only transformer model.The following features were used in the design of the model Decoder-only model
@@ -4039,11 +4460,6 @@ models:
4039
4460
  release: 2024-6-18
4040
4461
  tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
4041
4462
 
4042
-
4043
-
4044
-
4045
-
4046
-
4047
4463
  - name: ibm/granite-3.1-8b-instruct
4048
4464
  display_name: Granite 3.1 - 8B - Instruct
4049
4465
  description: Granite-3.1-8B-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-8B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
@@ -4062,6 +4478,15 @@ models:
4062
4478
  release_date: 2024-12-18
4063
4479
  tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
4064
4480
 
4481
+ - name: ibm/granite-3.3-8b-instruct
4482
+ display_name: Granite 3.3 8B Instruct
4483
+ description: Granite 3.3 8B Instruct is a 8-billion parameter 128K context length language model fine-tuned for improved reasoning and instruction-following capabilities. ([model card](https://huggingface.co/ibm-granite/granite-3.3-8b-instruct))
4484
+ creator_organization_name: IBM
4485
+ access: open
4486
+ num_parameters: 8170000000
4487
+ release_date: 2025-04-16
4488
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4489
+
4065
4490
  - name: mistralai/mixtral-8x7b-instruct-v0:1
4066
4491
  display_name: Mixtral 8x7B Instruct on IBM WatsonX
4067
4492
  description: A 7B sparse Mixture-of-Experts model with stronger capabilities than Mistral 7B. Uses 12B active parameters out of 45B total. Supports multiple languages, code and 32k context window.
@@ -4069,3 +4494,192 @@ models:
4069
4494
  access: limited
4070
4495
  release_date: 2023-12-11
4071
4496
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4497
+
4498
+ - name: ura-hcmut/ura-llama-2.1-8b
4499
+ display_name: URA-Llama 2.1 (8B)
4500
+ description: URA-Llama 2.1 (8B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4501
+ creator_organization_name: URA
4502
+ access: open
4503
+ num_parameters: 8000000000
4504
+ release_date: 2024-08-04
4505
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4506
+
4507
+ - name: ura-hcmut/ura-llama-2-8b
4508
+ display_name: URA-Llama 2 (8B)
4509
+ description: URA-Llama 2 (8B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4510
+ creator_organization_name: URA
4511
+ access: open
4512
+ num_parameters: 8000000000
4513
+ release_date: 2024-08-04
4514
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4515
+
4516
+ - name: ura-hcmut/ura-llama-7b
4517
+ display_name: URA-Llama 7B (7B)
4518
+ description: URA-Llama 7B (7B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4519
+ creator_organization_name: URA
4520
+ access: open
4521
+ num_parameters: 7000000000
4522
+ release_date: 2023-10-10
4523
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4524
+
4525
+ - name: ura-hcmut/ura-llama-13b
4526
+ display_name: URA-Llama 13B (13B)
4527
+ description: URA-Llama 13B (13B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4528
+ creator_organization_name: URA
4529
+ access: open
4530
+ num_parameters: 13000000000
4531
+ release_date: 2023-10-10
4532
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4533
+
4534
+ - name: ura-hcmut/ura-llama-70b
4535
+ display_name: URA-Llama 70B (70B)
4536
+ description: URA-Llama 70B (70B) is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4537
+ creator_organization_name: URA
4538
+ access: open
4539
+ num_parameters: 70000000000
4540
+ release_date: 2023-10-10
4541
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4542
+
4543
+ - name: ura-hcmut/GemSUra-7B
4544
+ display_name: GemSUra 7B
4545
+ description: GemSUra 7B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4546
+ creator_organization_name: URA
4547
+ access: open
4548
+ num_parameters: 7000000000
4549
+ release_date: 2024-03-12
4550
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4551
+
4552
+ - name: ura-hcmut/GemSUra-2B
4553
+ display_name: GemSUra 2B
4554
+ description: GemSUra 2B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4555
+ creator_organization_name: URA
4556
+ access: open
4557
+ num_parameters: 2000000000
4558
+ release_date: 2024-03-12
4559
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4560
+
4561
+ - name: ura-hcmut/MixSUra
4562
+ display_name: MixSUra
4563
+ description: MixSUra is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text. It is a mixture of experts model with 8 active experts.
4564
+ creator_organization_name: URA
4565
+ access: open
4566
+ num_parameters: 46700000000
4567
+ release_date: 2024-03-12
4568
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4569
+
4570
+ - name: vilm/vinallama-7b-chat
4571
+ display_name: VinaLLaMa
4572
+ description: VinaLLaMa is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4573
+ creator_organization_name: ViLM
4574
+ access: open
4575
+ num_parameters: 7000000000
4576
+ release_date: 2024-03-12
4577
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4578
+
4579
+ - name: vilm/vinallama-2.7b-chat
4580
+ display_name: VinaLLaMa 2.7B
4581
+ description: VinaLLaMa 2.7B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4582
+ creator_organization_name: ViLM
4583
+ access: open
4584
+ num_parameters: 2700000000
4585
+ release_date: 2024-03-12
4586
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4587
+
4588
+ - name: vilm/vietcuna-7b-v3
4589
+ display_name: VietCuna 7B (v3)
4590
+ description: VietCuna 7B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4591
+ creator_organization_name: ViLM
4592
+ access: open
4593
+ num_parameters: 7000000000
4594
+ release_date: 2023-08-07
4595
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4596
+
4597
+ - name: vilm/vietcuna-3b-v2
4598
+ display_name: VietCuna 3B (v2)
4599
+ description: VietCuna 3B is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4600
+ creator_organization_name: ViLM
4601
+ access: open
4602
+ num_parameters: 3000000000
4603
+ release_date: 2023-07-15
4604
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4605
+
4606
+ - name: vilm/Quyen-v0.1
4607
+ display_name: Quyen (v0.1)
4608
+ description: Quyen is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4609
+ creator_organization_name: ViLM
4610
+ access: open
4611
+ num_parameters: 4000000000
4612
+ release_date: 2024-02-26
4613
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4614
+
4615
+ - name: vilm/Quyen-Plus-v0.1
4616
+ display_name: Quyen Plus (v0.1)
4617
+ description: Quyen Plus is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4618
+ creator_organization_name: ViLM
4619
+ access: open
4620
+ num_parameters: 7000000000
4621
+ release_date: 2024-02-26
4622
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4623
+
4624
+ - name: vilm/Quyen-Pro-v0.1
4625
+ display_name: Quyen Pro (v0.1)
4626
+ description: Quyen Pro is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4627
+ creator_organization_name: ViLM
4628
+ access: open
4629
+ num_parameters: 14000000000
4630
+ release_date: 2024-02-26
4631
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4632
+
4633
+ - name: vilm/Quyen-Pro-Max-v0.1
4634
+ display_name: Quyen Pro Max (v0.1)
4635
+ description: Quyen Pro Max is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4636
+ creator_organization_name: ViLM
4637
+ access: open
4638
+ num_parameters: 72000000000
4639
+ release_date: 2024-02-26
4640
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4641
+
4642
+ - name: vilm/Quyen-Mini-v0.1
4643
+ display_name: Quyen Mini (v0.1)
4644
+ description: Quyen Mini is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4645
+ creator_organization_name: ViLM
4646
+ access: open
4647
+ num_parameters: 1800000000
4648
+ release_date: 2024-02-26
4649
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4650
+
4651
+ - name: vilm/Quyen-SE-v0.1
4652
+ display_name: Quyen SE (v0.1)
4653
+ description: Quyen SE is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4654
+ creator_organization_name: ViLM
4655
+ access: open
4656
+ num_parameters: 500000000
4657
+ release_date: 2024-02-26
4658
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4659
+
4660
+ - name: Viet-Mistral/Vistral-7B-Chat
4661
+ display_name: Vistral 7B Chat
4662
+ description: Vistral 7B Chat is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4663
+ creator_organization_name: Viet-Mistral
4664
+ access: open
4665
+ num_parameters: 7000000000
4666
+ release_date: 2024-02-28
4667
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4668
+
4669
+ - name: vinai/PhoGPT-7B5-Instruct
4670
+ display_name: PhoGPT 7B5 Instruct
4671
+ description: PhoGPT 7B5 Instruct is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4672
+ creator_organization_name: VinAI
4673
+ access: open
4674
+ num_parameters: 7500000000
4675
+ release_date: 2024-02-19
4676
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
4677
+
4678
+ - name: vinai/PhoGPT-4B-Chat
4679
+ display_name: PhoGPT 4B Chat
4680
+ description: PhoGPT 4B Chat is a model trained on a large corpus of Vietnamese text data, including books, articles, and websites. It is designed to understand and generate Vietnamese text.
4681
+ creator_organization_name: VinAI
4682
+ access: open
4683
+ num_parameters: 4000000000
4684
+ release_date: 2024-04-02
4685
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]