crfm-helm 0.5.4__py3-none-any.whl → 0.5.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of crfm-helm might be problematic. Click here for more details.
- crfm_helm-0.5.6.dist-info/METADATA +427 -0
- crfm_helm-0.5.6.dist-info/RECORD +941 -0
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.6.dist-info}/WHEEL +1 -1
- helm/benchmark/adaptation/adapter_spec.py +13 -1
- helm/benchmark/adaptation/adapters/adapter_factory.py +15 -1
- helm/benchmark/adaptation/adapters/binary_ranking_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/chat_adapter.py +49 -0
- helm/benchmark/adaptation/adapters/ehr_instruction_adapter.py +108 -0
- helm/benchmark/adaptation/adapters/generation_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +4 -4
- helm/benchmark/adaptation/adapters/language_modeling_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/generation_multimodal_adapter.py +4 -2
- helm/benchmark/adaptation/adapters/multimodal/in_context_learning_multimodal_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/multiple_choice_joint_multimodal_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/test_in_context_learning_multimodal_adapter.py +4 -2
- helm/benchmark/adaptation/adapters/multimodal/test_multimodal_prompt.py +1 -1
- helm/benchmark/adaptation/adapters/multiple_choice_calibrated_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multiple_choice_joint_adapter.py +2 -2
- helm/benchmark/adaptation/adapters/multiple_choice_joint_chain_of_thought_adapter.py +87 -0
- helm/benchmark/adaptation/adapters/multiple_choice_separate_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/test_adapter.py +4 -4
- helm/benchmark/adaptation/adapters/test_generation_adapter.py +3 -3
- helm/benchmark/adaptation/adapters/test_language_modeling_adapter.py +2 -2
- helm/benchmark/adaptation/adapters/test_multiple_choice_joint_adapter.py +2 -2
- helm/benchmark/adaptation/common_adapter_specs.py +69 -4
- helm/benchmark/adaptation/prompt.py +1 -1
- helm/benchmark/annotation/aci_bench_annotator.py +95 -0
- helm/benchmark/annotation/air_bench_annotator.py +21 -6
- helm/benchmark/annotation/annotator.py +5 -0
- helm/benchmark/annotation/annotator_factory.py +3 -20
- helm/benchmark/annotation/autobencher_capabilities_annotator.py +107 -0
- helm/benchmark/annotation/autobencher_safety_annotator.py +98 -0
- helm/benchmark/annotation/bigcodebench_annotator.py +108 -0
- helm/benchmark/annotation/bird_sql_annotator.py +58 -0
- helm/benchmark/annotation/chw_care_plan_annotator.py +93 -0
- helm/benchmark/annotation/czech_bank_qa_annotator.py +78 -0
- helm/benchmark/annotation/dischargeme_annotator.py +107 -0
- helm/benchmark/annotation/ehr_sql_annotator.py +87 -0
- helm/benchmark/annotation/helpdesk_call_summarization_annotator.py +131 -0
- helm/benchmark/annotation/image2struct/image_compiler_annotator.py +6 -1
- helm/benchmark/annotation/live_qa_annotator.py +1 -1
- helm/benchmark/annotation/med_dialog_annotator.py +99 -0
- helm/benchmark/annotation/medalign_annotator.py +100 -0
- helm/benchmark/annotation/medi_qa_annotator.py +98 -0
- helm/benchmark/annotation/medication_qa_annotator.py +87 -63
- helm/benchmark/annotation/mental_health_annotator.py +98 -0
- helm/benchmark/annotation/mimic_bhc_annotator.py +100 -0
- helm/benchmark/annotation/mimic_rrs_annotator.py +100 -0
- helm/benchmark/annotation/model_as_judge.py +214 -6
- helm/benchmark/annotation/mtsamples_procedures_annotator.py +98 -0
- helm/benchmark/annotation/mtsamples_replicate_annotator.py +101 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_template.txt +152 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_zero_shot_template.txt +36 -0
- helm/benchmark/annotation/omni_math_annotator.py +131 -0
- helm/benchmark/annotation/spider_annotator.py +18 -0
- helm/benchmark/annotation/starr_patient_instructions_annotator.py +98 -0
- helm/benchmark/annotation/wildbench/eval_template.pairwise.v2.md +75 -0
- helm/benchmark/annotation/wildbench/eval_template.score.v2.md +66 -0
- helm/benchmark/annotation/wildbench_annotator.py +119 -0
- helm/benchmark/annotation_executor.py +35 -15
- helm/benchmark/augmentations/cleva_perturbation.py +9 -8
- helm/benchmark/augmentations/contraction_expansion_perturbation.py +2 -2
- helm/benchmark/augmentations/contrast_sets_perturbation.py +2 -2
- helm/benchmark/augmentations/dialect_perturbation.py +4 -5
- helm/benchmark/augmentations/extra_space_perturbation.py +2 -2
- helm/benchmark/augmentations/filler_words_perturbation.py +2 -2
- helm/benchmark/augmentations/gender_perturbation.py +2 -2
- helm/benchmark/augmentations/lowercase_perturbation.py +2 -2
- helm/benchmark/augmentations/mild_mix_perturbation.py +6 -6
- helm/benchmark/augmentations/misspelling_perturbation.py +2 -2
- helm/benchmark/augmentations/person_name_perturbation.py +4 -5
- helm/benchmark/augmentations/perturbation.py +1 -1
- helm/benchmark/augmentations/space_perturbation.py +2 -2
- helm/benchmark/augmentations/suffix_perturbation.py +2 -2
- helm/benchmark/augmentations/synonym_perturbation.py +4 -3
- helm/benchmark/augmentations/test_perturbation.py +16 -13
- helm/benchmark/augmentations/translate_perturbation.py +2 -2
- helm/benchmark/augmentations/typos_perturbation.py +2 -2
- helm/benchmark/data_preprocessor.py +2 -2
- helm/benchmark/executor.py +11 -12
- helm/benchmark/huggingface_registration.py +2 -7
- helm/benchmark/metrics/aci_bench_metrics.py +14 -0
- helm/benchmark/metrics/basic_metrics.py +6 -6
- helm/benchmark/metrics/bbq_metrics.py +2 -2
- helm/benchmark/metrics/bias_metrics.py +12 -3
- helm/benchmark/metrics/bias_word_lists.py +1 -1
- helm/benchmark/metrics/bigcodebench_metrics.py +25 -0
- helm/benchmark/metrics/bird_sql_metrics.py +28 -0
- helm/benchmark/metrics/chw_care_plan_metrics.py +14 -0
- helm/benchmark/metrics/classification_metrics.py +76 -12
- helm/benchmark/metrics/cleva_harms_metrics.py +10 -9
- helm/benchmark/metrics/code_metrics.py +5 -5
- helm/benchmark/metrics/comet_metric.py +125 -0
- helm/benchmark/metrics/common_metric_specs.py +9 -2
- helm/benchmark/metrics/conv_fin_qa_calc_metrics.py +72 -0
- helm/benchmark/metrics/copyright_metrics.py +4 -4
- helm/benchmark/metrics/czech_bank_qa_metrics.py +29 -0
- helm/benchmark/metrics/decodingtrust_fairness_metrics.py +2 -2
- helm/benchmark/metrics/decodingtrust_privacy_metrics.py +2 -2
- helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +2 -2
- helm/benchmark/metrics/dischargeme_metrics.py +14 -0
- helm/benchmark/metrics/disinformation_metrics.py +4 -4
- helm/benchmark/metrics/dry_run_metrics.py +5 -5
- helm/benchmark/metrics/efficiency_metrics.py +6 -6
- helm/benchmark/metrics/ehr_sql_metrics.py +103 -0
- helm/benchmark/metrics/evaluate_instances_metric.py +3 -3
- helm/benchmark/metrics/evaluate_reference_metrics.py +144 -16
- helm/benchmark/metrics/gpqa_chain_of_thought_metric.py +103 -0
- helm/benchmark/metrics/gpt4_audio_critique_metrics.py +167 -0
- helm/benchmark/metrics/gpt4_audio_refusal_metrics.py +145 -0
- helm/benchmark/metrics/helpdesk_call_summarization_metrics.py +36 -0
- helm/benchmark/metrics/ifeval/__init__.py +0 -0
- helm/benchmark/metrics/ifeval/instructions.py +1574 -0
- helm/benchmark/metrics/ifeval/instructions_registry.py +182 -0
- helm/benchmark/metrics/ifeval/instructions_registry.pyi +3 -0
- helm/benchmark/metrics/ifeval/instructions_util.py +153 -0
- helm/benchmark/metrics/ifeval_metrics.py +55 -0
- helm/benchmark/metrics/image_generation/aesthetics_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/detection_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/detectors/vitdet.py +1 -1
- helm/benchmark/metrics/image_generation/fractal_dimension/test_fractal_dimension_util.py +1 -1
- helm/benchmark/metrics/image_generation/fractal_dimension_metric.py +1 -1
- helm/benchmark/metrics/image_generation/nsfw_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/q16/test_q16.py +3 -1
- helm/benchmark/metrics/image_generation/q16_toxicity_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/skin_tone_metrics.py +2 -2
- helm/benchmark/metrics/image_generation/watermark/test_watermark_detector.py +1 -1
- helm/benchmark/metrics/image_generation/watermark_metrics.py +1 -1
- helm/benchmark/metrics/instruction_following_critique_metrics.py +4 -4
- helm/benchmark/metrics/kpi_edgar_metrics.py +121 -0
- helm/benchmark/metrics/language_modeling_metrics.py +4 -4
- helm/benchmark/metrics/llm_jury_metrics.py +46 -0
- helm/benchmark/metrics/machine_translation_metrics.py +2 -2
- helm/benchmark/metrics/med_dialog_metrics.py +14 -0
- helm/benchmark/metrics/medalign_metrics.py +14 -0
- helm/benchmark/metrics/medcalc_bench_metrics.py +124 -0
- helm/benchmark/metrics/medec_metrics.py +101 -0
- helm/benchmark/metrics/medi_qa_metrics.py +14 -0
- helm/benchmark/metrics/medication_qa_metrics.py +10 -19
- helm/benchmark/metrics/melt_bias_metric.py +234 -0
- helm/benchmark/metrics/melt_bias_word_lists.py +1367 -0
- helm/benchmark/metrics/melt_metric_specs.py +43 -0
- helm/benchmark/metrics/melt_toxicity_metric.py +107 -0
- helm/benchmark/metrics/mental_health_metrics.py +14 -0
- helm/benchmark/metrics/metric.py +3 -3
- helm/benchmark/metrics/metric_service.py +11 -11
- helm/benchmark/metrics/mimic_bhc_metrics.py +14 -0
- helm/benchmark/metrics/mimic_rrs_metrics.py +14 -0
- helm/benchmark/metrics/mimiciv_billing_code_metrics.py +96 -0
- helm/benchmark/metrics/mtsamples_procedures_metrics.py +14 -0
- helm/benchmark/metrics/mtsamples_replicate_metrics.py +14 -0
- helm/benchmark/metrics/nltk_helper.py +32 -0
- helm/benchmark/metrics/numeracy_metrics.py +4 -4
- helm/benchmark/metrics/omni_math_metrics.py +32 -0
- helm/benchmark/metrics/openai_mrcr_metrics.py +52 -0
- helm/benchmark/metrics/output_processing_metric.py +60 -0
- helm/benchmark/metrics/output_processors.py +15 -0
- helm/benchmark/metrics/paraphrase_generation_metrics.py +2 -2
- helm/benchmark/metrics/ranking_metrics.py +3 -3
- helm/benchmark/metrics/reference_metric.py +3 -3
- helm/benchmark/metrics/ruler_qa_metrics.py +34 -0
- helm/benchmark/metrics/{bhasa_metrics.py → seahelm_metrics.py} +3 -3
- helm/benchmark/metrics/seahelm_metrics_specs.py +10 -0
- helm/benchmark/metrics/spider_metrics.py +7 -0
- helm/benchmark/metrics/starr_patient_instructions_metrics.py +14 -0
- helm/benchmark/metrics/statistic.py +1 -1
- helm/benchmark/metrics/summac/model_summac.py +2 -3
- helm/benchmark/metrics/summarization_critique_metrics.py +4 -4
- helm/benchmark/metrics/summarization_metrics.py +20 -9
- helm/benchmark/metrics/test_bias_metrics.py +5 -1
- helm/benchmark/metrics/test_classification_metrics.py +140 -68
- helm/benchmark/metrics/test_evaluate_reference_metrics.py +15 -0
- helm/benchmark/metrics/test_metric.py +1 -1
- helm/benchmark/metrics/test_statistic.py +2 -2
- helm/benchmark/metrics/tokens/ai21_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/auto_token_cost_estimator.py +6 -6
- helm/benchmark/metrics/tokens/cohere_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/free_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/gooseai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/openai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_ai21_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_openai_token_cost_estimator.py +3 -3
- helm/benchmark/metrics/toxicity_metrics.py +6 -6
- helm/benchmark/metrics/unitxt_metrics.py +7 -5
- helm/benchmark/metrics/vision_language/emd_utils.py +4 -2
- helm/benchmark/metrics/vision_language/image_metrics.py +1 -1
- helm/benchmark/metrics/vision_language/image_utils.py +2 -2
- helm/benchmark/metrics/wildbench_metrics.py +34 -0
- helm/benchmark/model_deployment_registry.py +6 -8
- helm/benchmark/model_metadata_registry.py +16 -0
- helm/benchmark/presentation/contamination.py +3 -3
- helm/benchmark/presentation/create_plots.py +33 -12
- helm/benchmark/presentation/run_display.py +13 -0
- helm/benchmark/presentation/schema.py +2 -1
- helm/benchmark/presentation/summarize.py +97 -67
- helm/benchmark/presentation/torr_robustness_summarizer.py +178 -0
- helm/benchmark/reeval_run.py +202 -0
- helm/benchmark/reeval_runner.py +355 -0
- helm/benchmark/run.py +86 -90
- helm/benchmark/run_expander.py +90 -9
- helm/benchmark/run_spec_factory.py +13 -0
- helm/benchmark/run_specs/air_bench_run_specs.py +21 -3
- helm/benchmark/run_specs/audio_run_specs.py +657 -0
- helm/benchmark/run_specs/call_center_run_specs.py +49 -0
- helm/benchmark/run_specs/capabilities_run_specs.py +308 -0
- helm/benchmark/run_specs/classic_run_specs.py +1 -69
- helm/benchmark/run_specs/enem_challenge_specs.py +31 -0
- helm/benchmark/run_specs/enterprise_run_specs.py +280 -0
- helm/benchmark/run_specs/experimental_run_specs.py +142 -3
- helm/benchmark/run_specs/imdb_ptbr_run_specs.py +30 -0
- helm/benchmark/run_specs/lite_run_specs.py +2 -2
- helm/benchmark/run_specs/long_context_run_specs.py +141 -0
- helm/benchmark/run_specs/medhelm_run_specs.py +1260 -0
- helm/benchmark/run_specs/melt_run_specs.py +783 -0
- helm/benchmark/run_specs/mmlu_clinical_afr_run_specs.py +49 -0
- helm/benchmark/run_specs/oab_exams_specs.py +32 -0
- helm/benchmark/run_specs/safety_run_specs.py +37 -0
- helm/benchmark/run_specs/{bhasa_run_specs.py → seahelm_run_specs.py} +44 -44
- helm/benchmark/run_specs/speech_disorder_audio_run_specs.py +169 -0
- helm/benchmark/run_specs/sql_run_specs.py +54 -0
- helm/benchmark/run_specs/tweetsentbr_run_specs.py +32 -0
- helm/benchmark/run_specs/unitxt_run_specs.py +14 -5
- helm/benchmark/run_specs/vlm_run_specs.py +103 -2
- helm/benchmark/run_specs/winogrande_afr_run_specs.py +47 -0
- helm/benchmark/runner.py +5 -5
- helm/benchmark/scenarios/aci_bench_scenario.py +126 -0
- helm/benchmark/scenarios/air_bench_scenario.py +6 -1
- helm/benchmark/scenarios/anthropic_hh_rlhf_scenario.py +5 -3
- helm/benchmark/scenarios/anthropic_red_team_scenario.py +1 -1
- helm/benchmark/scenarios/audio_language/__init__.py +0 -0
- helm/benchmark/scenarios/audio_language/air_bench_chat_scenario.py +130 -0
- helm/benchmark/scenarios/audio_language/air_bench_foundation_scenario.py +154 -0
- helm/benchmark/scenarios/audio_language/ami_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/audio_mnist_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audio_pairs_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audiocaps_scenario.py +59 -0
- helm/benchmark/scenarios/audio_language/casual_conversations2_scenario.py +152 -0
- helm/benchmark/scenarios/audio_language/common_voice_15_scenario.py +99 -0
- helm/benchmark/scenarios/audio_language/corebench_scenario.py +77 -0
- helm/benchmark/scenarios/audio_language/covost2_scenario.py +163 -0
- helm/benchmark/scenarios/audio_language/fleurs_fairness_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/fleurs_scenario.py +312 -0
- helm/benchmark/scenarios/audio_language/iemocap_audio_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/librispeech_fairness_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/meld_audio_scenario.py +113 -0
- helm/benchmark/scenarios/audio_language/multilingual_librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/mustard_scenario.py +142 -0
- helm/benchmark/scenarios/audio_language/mutox_scenario.py +254 -0
- helm/benchmark/scenarios/audio_language/parade_scenario.py +97 -0
- helm/benchmark/scenarios/audio_language/speech_robust_bench_scenario.py +124 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_asr_classification.py +103 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_classification_scenario.py +110 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_disorder_breakdown_scenario.py +78 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_disorder_symptoms_scenario.py +109 -0
- helm/benchmark/scenarios/audio_language/vocal_sound_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/voice_jailbreak_attacks_scenario.py +87 -0
- helm/benchmark/scenarios/audio_language/voxceleb2_scenario.py +105 -0
- helm/benchmark/scenarios/autobencher_capabilities_scenario.py +68 -0
- helm/benchmark/scenarios/autobencher_safety_scenario.py +51 -0
- helm/benchmark/scenarios/babi_qa_scenario.py +1 -1
- helm/benchmark/scenarios/banking77_scenario.py +6 -1
- helm/benchmark/scenarios/bbq_scenario.py +1 -1
- helm/benchmark/scenarios/big_bench_scenario.py +11 -1
- helm/benchmark/scenarios/bigcodebench_scenario.py +58 -0
- helm/benchmark/scenarios/bird_sql_scenario.py +94 -0
- helm/benchmark/scenarios/bird_sql_scenario_helper.py +118 -0
- helm/benchmark/scenarios/blimp_scenario.py +1 -1
- helm/benchmark/scenarios/bold_scenario.py +1 -1
- helm/benchmark/scenarios/boolq_scenario.py +1 -1
- helm/benchmark/scenarios/casehold_scenario.py +79 -0
- helm/benchmark/scenarios/chw_care_plan_scenario.py +106 -0
- helm/benchmark/scenarios/civil_comments_scenario.py +1 -1
- helm/benchmark/scenarios/clear_scenario.py +157 -0
- helm/benchmark/scenarios/cleva_scenario.py +2 -2
- helm/benchmark/scenarios/code_scenario.py +17 -4
- helm/benchmark/scenarios/commonsense_scenario.py +1 -1
- helm/benchmark/scenarios/conv_fin_qa_calc_scenario.py +97 -0
- helm/benchmark/scenarios/copyright_scenario.py +1 -1
- helm/benchmark/scenarios/covid_dialog_scenario.py +10 -1
- helm/benchmark/scenarios/cti_to_mitre_scenario.py +240 -0
- helm/benchmark/scenarios/custom_mcqa_scenario.py +1 -1
- helm/benchmark/scenarios/czech_bank_qa_scenario.py +130 -0
- helm/benchmark/scenarios/decodingtrust_adv_demonstration_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_privacy_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_stereotype_bias_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_toxicity_prompts_scenario.py +1 -1
- helm/benchmark/scenarios/dialogue_scenarios.py +13 -2
- helm/benchmark/scenarios/dischargeme_scenario.py +172 -0
- helm/benchmark/scenarios/disinformation_scenario.py +10 -1
- helm/benchmark/scenarios/dyck_language_scenario.py +10 -1
- helm/benchmark/scenarios/echr_judgment_classification_scenario.py +113 -0
- helm/benchmark/scenarios/ehr_sql_scenario.py +137 -0
- helm/benchmark/scenarios/ehrshot_scenario.py +1519 -0
- helm/benchmark/scenarios/enem_challenge_scenario.py +58 -0
- helm/benchmark/scenarios/entity_data_imputation_scenario.py +11 -1
- helm/benchmark/scenarios/entity_matching_scenario.py +12 -2
- helm/benchmark/scenarios/financial_phrasebank_scenario.py +94 -0
- helm/benchmark/scenarios/gold_commodity_news_scenario.py +124 -0
- helm/benchmark/scenarios/gpqa_scenario.py +80 -0
- helm/benchmark/scenarios/grammar.py +2 -2
- helm/benchmark/scenarios/grammar_scenario.py +2 -2
- helm/benchmark/scenarios/gsm_scenario.py +10 -1
- helm/benchmark/scenarios/harm_bench_gcg_transfer_scenario.py +50 -0
- helm/benchmark/scenarios/harm_bench_scenario.py +1 -1
- helm/benchmark/scenarios/headqa_scenario.py +136 -0
- helm/benchmark/scenarios/helpdesk_call_summarization_scenario.py +37 -0
- helm/benchmark/scenarios/ice_scenario.py +8 -4
- helm/benchmark/scenarios/ifeval_scenario.py +53 -0
- helm/benchmark/scenarios/imdb_ptbr_scenario.py +60 -0
- helm/benchmark/scenarios/imdb_scenario.py +11 -2
- helm/benchmark/scenarios/infinite_bench_en_qa_scenario.py +85 -0
- helm/benchmark/scenarios/infinite_bench_en_sum_scenario.py +79 -0
- helm/benchmark/scenarios/interactive_qa_mmlu_scenario.py +2 -2
- helm/benchmark/scenarios/koala_scenario.py +1 -1
- helm/benchmark/scenarios/kpi_edgar_scenario.py +151 -0
- helm/benchmark/scenarios/legal_contract_summarization_scenario.py +129 -0
- helm/benchmark/scenarios/legal_opinion_sentiment_classification_scenario.py +77 -0
- helm/benchmark/scenarios/legal_summarization_scenario.py +11 -1
- helm/benchmark/scenarios/legal_support_scenario.py +11 -1
- helm/benchmark/scenarios/legalbench_scenario.py +22 -3
- helm/benchmark/scenarios/lex_glue_scenario.py +12 -2
- helm/benchmark/scenarios/lextreme_scenario.py +11 -1
- helm/benchmark/scenarios/live_qa_scenario.py +1 -1
- helm/benchmark/scenarios/lm_entry_scenario.py +1 -1
- helm/benchmark/scenarios/lsat_qa_scenario.py +1 -1
- helm/benchmark/scenarios/math_scenario.py +9 -1
- helm/benchmark/scenarios/me_q_sum_scenario.py +10 -1
- helm/benchmark/scenarios/med_dialog_scenario.py +25 -22
- helm/benchmark/scenarios/med_mcqa_scenario.py +10 -1
- helm/benchmark/scenarios/med_paragraph_simplification_scenario.py +10 -1
- helm/benchmark/scenarios/med_qa_scenario.py +10 -1
- helm/benchmark/scenarios/medalign_scenario.py +94 -0
- helm/benchmark/scenarios/medalign_scenario_helper.py +432 -0
- helm/benchmark/scenarios/medbullets_scenario.py +145 -0
- helm/benchmark/scenarios/medcalc_bench_scenario.py +127 -0
- helm/benchmark/scenarios/medec_scenario.py +125 -0
- helm/benchmark/scenarios/medhallu_scenario.py +72 -0
- helm/benchmark/scenarios/medi_qa_scenario.py +111 -0
- helm/benchmark/scenarios/medication_qa_scenario.py +8 -2
- helm/benchmark/scenarios/melt_ir_scenario.py +171 -0
- helm/benchmark/scenarios/melt_knowledge_scenario.py +246 -0
- helm/benchmark/scenarios/melt_lm_scenarios.py +252 -0
- helm/benchmark/scenarios/melt_scenarios.py +793 -0
- helm/benchmark/scenarios/melt_srn_scenario.py +342 -0
- helm/benchmark/scenarios/melt_synthetic_reasoning_scenario.py +222 -0
- helm/benchmark/scenarios/melt_translation_scenario.py +152 -0
- helm/benchmark/scenarios/mental_health_scenario.py +123 -0
- helm/benchmark/scenarios/mimic_bhc_scenario.py +103 -0
- helm/benchmark/scenarios/mimic_rrs_scenario.py +98 -0
- helm/benchmark/scenarios/mimiciv_billing_code_scenario.py +77 -0
- helm/benchmark/scenarios/mmlu_clinical_afr_scenario.py +74 -0
- helm/benchmark/scenarios/mmlu_pro_scenario.py +95 -0
- helm/benchmark/scenarios/mmlu_scenario.py +11 -1
- helm/benchmark/scenarios/msmarco_scenario.py +1 -1
- helm/benchmark/scenarios/mtsamples_procedures_scenario.py +144 -0
- helm/benchmark/scenarios/mtsamples_replicate_scenario.py +142 -0
- helm/benchmark/scenarios/n2c2_ct_matching_scenario.py +277 -0
- helm/benchmark/scenarios/narrativeqa_scenario.py +1 -1
- helm/benchmark/scenarios/natural_qa_scenario.py +1 -1
- helm/benchmark/scenarios/newsqa_scenario.py +1 -1
- helm/benchmark/scenarios/numeracy_scenario.py +12 -2
- helm/benchmark/scenarios/oab_exams_scenario.py +57 -0
- helm/benchmark/scenarios/omni_math_scenario.py +53 -0
- helm/benchmark/scenarios/open_assistant_scenario.py +11 -2
- helm/benchmark/scenarios/openai_mrcr_scenario.py +79 -0
- helm/benchmark/scenarios/opinions_qa_scenario.py +1 -1
- helm/benchmark/scenarios/pubmed_qa_scenario.py +59 -43
- helm/benchmark/scenarios/quac_scenario.py +10 -1
- helm/benchmark/scenarios/race_based_med_scenario.py +152 -0
- helm/benchmark/scenarios/raft_scenario.py +17 -2
- helm/benchmark/scenarios/real_toxicity_prompts_scenario.py +1 -1
- helm/benchmark/scenarios/ruler_qa_scenario_helper.py +171 -0
- helm/benchmark/scenarios/ruler_qa_scenarios.py +88 -0
- helm/benchmark/scenarios/scenario.py +9 -1
- helm/benchmark/scenarios/{bhasa_scenario.py → seahelm_scenario.py} +7 -2
- helm/benchmark/scenarios/self_instruct_scenario.py +1 -1
- helm/benchmark/scenarios/shc_bmt_scenario.py +75 -0
- helm/benchmark/scenarios/shc_cdi_scenario.py +75 -0
- helm/benchmark/scenarios/shc_conf_scenario.py +76 -0
- helm/benchmark/scenarios/shc_ent_scenario.py +77 -0
- helm/benchmark/scenarios/shc_gip_scenario.py +74 -0
- helm/benchmark/scenarios/shc_privacy_scenario.py +78 -0
- helm/benchmark/scenarios/shc_proxy_scenario.py +76 -0
- helm/benchmark/scenarios/shc_ptbm_scenario.py +81 -0
- helm/benchmark/scenarios/shc_sei_scenario.py +94 -0
- helm/benchmark/scenarios/shc_sequoia_scenario.py +77 -0
- helm/benchmark/scenarios/simple_safety_tests_scenario.py +1 -1
- helm/benchmark/scenarios/spider_scenario.py +91 -0
- helm/benchmark/scenarios/starr_patient_instructions_scenario.py +97 -0
- helm/benchmark/scenarios/summarization_scenario.py +11 -1
- helm/benchmark/scenarios/sumosum_scenario.py +157 -0
- helm/benchmark/scenarios/synthetic_efficiency_scenario.py +1 -1
- helm/benchmark/scenarios/synthetic_reasoning_natural_scenario.py +11 -1
- helm/benchmark/scenarios/synthetic_reasoning_scenario.py +11 -1
- helm/benchmark/scenarios/test_bigcodebench_scenario.py +26 -0
- helm/benchmark/scenarios/test_czech_bank_qa_scenario.py +18 -0
- helm/benchmark/scenarios/test_enem_challenge_scenario.py +53 -0
- helm/benchmark/scenarios/test_ewok_scenario.py +6 -2
- helm/benchmark/scenarios/test_gold_commodity_news_scenario.py +18 -0
- helm/benchmark/scenarios/test_gpqa_scenario.py +44 -0
- helm/benchmark/scenarios/test_ifeval_scenario.py +36 -0
- helm/benchmark/scenarios/test_imdb_ptbr_scenario.py +27 -0
- helm/benchmark/scenarios/test_infinite_bench_en_qa_scenario.py +18 -0
- helm/benchmark/scenarios/test_infinite_bench_en_sum_scenario.py +31 -0
- helm/benchmark/scenarios/test_math_scenario.py +1 -0
- helm/benchmark/scenarios/test_mmlu_clinical_afr_scenario.py +21 -0
- helm/benchmark/scenarios/test_mmlu_pro_scenario.py +53 -0
- helm/benchmark/scenarios/test_oab_exams_scenario.py +51 -0
- helm/benchmark/scenarios/test_omni_math_scenario.py +27 -0
- helm/benchmark/scenarios/test_tweetsentbr_scenario.py +24 -0
- helm/benchmark/scenarios/test_wildbench_scenario.py +15 -0
- helm/benchmark/scenarios/test_winogrande_afr_scenario.py +19 -0
- helm/benchmark/scenarios/thai_exam_scenario.py +10 -1
- helm/benchmark/scenarios/the_pile_scenario.py +1 -1
- helm/benchmark/scenarios/truthful_qa_scenario.py +12 -2
- helm/benchmark/scenarios/tweetsentbr_scenario.py +66 -0
- helm/benchmark/scenarios/twitter_aae_scenario.py +1 -1
- helm/benchmark/scenarios/unitxt_scenario.py +8 -2
- helm/benchmark/scenarios/verifiability_judgment_scenario.py +1 -1
- helm/benchmark/scenarios/vicuna_scenario.py +1 -1
- helm/benchmark/scenarios/vision_language/blink_scenario.py +140 -0
- helm/benchmark/scenarios/vision_language/mm_star_scenario.py +95 -0
- helm/benchmark/scenarios/vision_language/msr_vtt_scenario.py +75 -0
- helm/benchmark/scenarios/vision_language/vqa_rad_scenario.py +88 -0
- helm/benchmark/scenarios/wikifact_scenario.py +11 -1
- helm/benchmark/scenarios/wikitext_103_scenario.py +1 -1
- helm/benchmark/scenarios/wildbench_scenario.py +83 -0
- helm/benchmark/scenarios/winogrande_afr_scenario.py +78 -0
- helm/benchmark/scenarios/wmt_14_scenario.py +14 -2
- helm/benchmark/scenarios/xstest_scenario.py +1 -1
- helm/benchmark/server.py +13 -1
- helm/benchmark/slurm_runner.py +1 -1
- helm/benchmark/static/schema_audio.yaml +763 -0
- helm/benchmark/static/schema_autobencher.yaml +150 -0
- helm/benchmark/static/schema_call_center.yaml +97 -60
- helm/benchmark/static/{schema_medical.yaml → schema_capabilities.yaml} +100 -101
- helm/benchmark/static/schema_czech_bank.yaml +148 -0
- helm/benchmark/static/schema_enem_challenge.yaml +146 -0
- helm/benchmark/static/schema_enterprise.yaml +319 -0
- helm/benchmark/static/schema_finance.yaml +14 -12
- helm/benchmark/static/schema_heim.yaml +1389 -0
- helm/benchmark/static/schema_long_context.yaml +283 -0
- helm/benchmark/static/schema_medhelm.yaml +1140 -0
- helm/benchmark/static/schema_melt.yaml +1257 -0
- helm/benchmark/static/schema_mmlu_winogrande_afr.yaml +1045 -0
- helm/benchmark/static/schema_safety.yaml +18 -1
- helm/benchmark/static/{schema_bhasa.yaml → schema_seahelm.yaml} +30 -16
- helm/benchmark/static/schema_slphelm.yaml +162 -0
- helm/benchmark/static/schema_social_audio.yaml +224 -0
- helm/benchmark/static/schema_sql.yaml +171 -0
- helm/benchmark/static/{schema_tables.yaml → schema_torr.yaml} +169 -36
- helm/benchmark/static/schema_tweetsentbr.yaml +146 -0
- helm/benchmark/static/schema_vhelm.yaml +129 -56
- helm/benchmark/static/schema_video.yaml +219 -0
- helm/benchmark/static_build/assets/helm-safety-2907a7b6.png +0 -0
- helm/benchmark/static_build/assets/index-94295e78.js +10 -0
- helm/benchmark/static_build/assets/index-b9779128.css +1 -0
- helm/benchmark/static_build/assets/medhelm-overview-eac29843.png +0 -0
- helm/benchmark/static_build/assets/medhelm-v1-overview-3ddfcd65.png +0 -0
- helm/benchmark/static_build/assets/{react-d4a0b69b.js → react-f82877fd.js} +1 -1
- helm/benchmark/static_build/assets/{recharts-6d337683.js → recharts-4037aff0.js} +1 -1
- helm/benchmark/static_build/assets/{tremor-54a99cc4.js → tremor-38a10867.js} +2 -2
- helm/benchmark/static_build/config.js +1 -1
- helm/benchmark/static_build/index.html +6 -6
- helm/benchmark/window_services/default_window_service.py +1 -1
- helm/benchmark/window_services/encoder_decoder_window_service.py +4 -4
- helm/benchmark/window_services/ice_window_service.py +1 -1
- helm/benchmark/window_services/image_generation/lexica_search_window_service.py +1 -1
- helm/benchmark/window_services/image_generation/openai_dalle_window_service.py +1 -1
- helm/benchmark/window_services/local_window_service.py +2 -2
- helm/benchmark/window_services/test_anthropic_window_service.py +3 -3
- helm/benchmark/window_services/test_bloom_window_service.py +3 -3
- helm/benchmark/window_services/test_gpt2_window_service.py +7 -2
- helm/benchmark/window_services/test_gpt4_window_service.py +8 -3
- helm/benchmark/window_services/test_gptj_window_service.py +8 -3
- helm/benchmark/window_services/test_gptneox_window_service.py +3 -3
- helm/benchmark/window_services/test_openai_window_service.py +8 -3
- helm/benchmark/window_services/test_opt_window_service.py +3 -3
- helm/benchmark/window_services/test_palmyra_window_service.py +3 -3
- helm/benchmark/window_services/test_t0pp_window_service.py +3 -3
- helm/benchmark/window_services/test_t511b_window_service.py +3 -3
- helm/benchmark/window_services/test_ul2_window_service.py +3 -3
- helm/benchmark/window_services/test_utils.py +4 -5
- helm/benchmark/window_services/test_yalm_window_service.py +3 -3
- helm/benchmark/window_services/tokenizer_service.py +7 -8
- helm/benchmark/window_services/yalm_window_service.py +1 -1
- helm/clients/ai21_client.py +3 -3
- helm/clients/aleph_alpha_client.py +1 -1
- helm/clients/anthropic_client.py +69 -29
- helm/clients/audio_language/__init__.py +0 -0
- helm/clients/audio_language/diva_llama_client.py +120 -0
- helm/clients/audio_language/llama_omni_client.py +198 -0
- helm/clients/audio_language/qwen2_5_omni_client.py +197 -0
- helm/clients/audio_language/qwen2_audiolm_client.py +190 -0
- helm/clients/audio_language/qwen_audiolm_client.py +152 -0
- helm/clients/audio_language/test.py +62 -0
- helm/clients/auto_client.py +4 -2
- helm/clients/azure_openai_client.py +55 -0
- helm/clients/bedrock_client.py +203 -7
- helm/clients/bedrock_utils.py +33 -0
- helm/clients/client.py +7 -7
- helm/clients/clip_scorers/clip_scorer.py +1 -1
- helm/clients/clip_scorers/multilingual_clip_scorer.py +1 -1
- helm/clients/cohere_client.py +3 -3
- helm/clients/google_client.py +1 -1
- helm/clients/grok_client.py +36 -0
- helm/clients/http_model_client.py +1 -1
- helm/clients/huggingface_client.py +52 -21
- helm/clients/huggingface_pipeline_client.py +138 -0
- helm/clients/ibm_client.py +267 -0
- helm/clients/image_generation/adobe_vision_client.py +1 -1
- helm/clients/image_generation/aleph_alpha_image_generation_client.py +1 -1
- helm/clients/image_generation/cogview2/sr_pipeline/__init__.py +3 -3
- helm/clients/image_generation/cogview2/sr_pipeline/direct_sr.py +5 -2
- helm/clients/image_generation/cogview2/sr_pipeline/iterative_sr.py +5 -2
- helm/clients/image_generation/cogview2/sr_pipeline/sr_group.py +2 -2
- helm/clients/image_generation/cogview2_client.py +1 -1
- helm/clients/image_generation/dalle2_client.py +1 -1
- helm/clients/image_generation/dalle3_client.py +2 -2
- helm/clients/image_generation/dalle_mini/__init__.py +1 -1
- helm/clients/image_generation/dalle_mini/data.py +1 -1
- helm/clients/image_generation/dalle_mini/model/__init__.py +5 -5
- helm/clients/image_generation/dalle_mini/model/configuration.py +2 -2
- helm/clients/image_generation/dalle_mini/model/modeling.py +3 -3
- helm/clients/image_generation/dalle_mini/model/processor.py +5 -5
- helm/clients/image_generation/dalle_mini/model/tokenizer.py +2 -2
- helm/clients/image_generation/dalle_mini/vqgan_jax/__init__.py +1 -1
- helm/clients/image_generation/dalle_mini/vqgan_jax/convert_pt_model_to_jax.py +2 -2
- helm/clients/image_generation/dalle_mini/vqgan_jax/modeling_flax_vqgan.py +1 -1
- helm/clients/image_generation/dalle_mini_client.py +1 -1
- helm/clients/image_generation/deep_floyd_client.py +1 -1
- helm/clients/image_generation/huggingface_diffusers_client.py +1 -1
- helm/clients/image_generation/lexica_client.py +1 -1
- helm/clients/image_generation/mindalle/models/__init__.py +6 -6
- helm/clients/image_generation/mindalle/models/stage1/vqgan.py +1 -1
- helm/clients/image_generation/mindalle/models/stage2/transformer.py +1 -1
- helm/clients/image_generation/mindalle/utils/__init__.py +3 -3
- helm/clients/image_generation/mindalle_client.py +1 -1
- helm/clients/image_generation/together_image_generation_client.py +1 -1
- helm/clients/lit_gpt_client.py +2 -2
- helm/clients/mistral_client.py +62 -18
- helm/clients/nvidia_nim_client.py +0 -3
- helm/clients/openai_client.py +308 -43
- helm/clients/openai_responses_client.py +174 -0
- helm/clients/palmyra_client.py +3 -9
- helm/clients/reka_client.py +3 -3
- helm/clients/stanfordhealthcare_azure_openai_client.py +58 -0
- helm/clients/stanfordhealthcare_claude_client.py +31 -0
- helm/clients/stanfordhealthcare_google_client.py +43 -0
- helm/clients/stanfordhealthcare_http_model_client.py +93 -0
- helm/clients/stanfordhealthcare_openai_client.py +62 -0
- helm/clients/stanfordhealthcare_shc_openai_client.py +42 -0
- helm/clients/test_client.py +1 -1
- helm/clients/test_together_client.py +6 -1
- helm/clients/together_client.py +76 -9
- helm/clients/upstage_client.py +23 -0
- helm/clients/vertexai_client.py +45 -13
- helm/clients/vision_language/huggingface_vision2seq_client.py +6 -4
- helm/clients/vision_language/huggingface_vlm_client.py +2 -2
- helm/clients/vision_language/idefics_client.py +6 -2
- helm/clients/vision_language/open_flamingo/__init__.py +2 -2
- helm/clients/vision_language/open_flamingo/src/factory.py +3 -3
- helm/clients/vision_language/open_flamingo/src/flamingo.py +2 -2
- helm/clients/vision_language/open_flamingo/src/flamingo_lm.py +2 -2
- helm/clients/vision_language/paligemma_client.py +2 -2
- helm/clients/vision_language/qwen2_vlm_client.py +188 -0
- helm/clients/vision_language/qwen_vlm_client.py +7 -5
- helm/clients/vllm_client.py +4 -6
- helm/clients/writer_client.py +102 -0
- helm/clients/yi_client.py +0 -3
- helm/common/audio_utils.py +111 -0
- helm/common/context.py +80 -0
- helm/common/credentials_utils.py +5 -5
- helm/common/file_caches/local_file_cache.py +1 -1
- helm/common/file_caches/test_local_file_cache.py +1 -1
- helm/common/general.py +9 -2
- helm/common/hierarchical_logger.py +46 -3
- helm/common/images_utils.py +2 -2
- helm/common/local_context.py +140 -0
- helm/common/media_object.py +2 -2
- helm/common/multimodal_request_utils.py +26 -0
- helm/common/reeval_parameters.py +12 -0
- helm/common/remote_context.py +61 -0
- helm/common/request.py +14 -2
- helm/common/response_format.py +18 -0
- helm/common/test_media_object.py +1 -1
- helm/config/model_deployments.yaml +1792 -28
- helm/config/model_metadata.yaml +1606 -51
- helm/config/tokenizer_configs.yaml +521 -4
- helm/proxy/cli.py +5 -3
- helm/proxy/critique/mechanical_turk_utils.py +1 -1
- helm/proxy/example_queries.py +1 -1
- helm/proxy/server.py +11 -4
- helm/proxy/services/remote_service.py +1 -1
- helm/proxy/services/server_service.py +22 -86
- helm/proxy/services/test_remote_service.py +2 -2
- helm/proxy/services/test_service.py +1 -1
- helm/proxy/static/general.js +122 -0
- helm/proxy/static/help.html +99 -0
- helm/proxy/static/index.css +57 -0
- helm/proxy/static/index.html +40 -0
- helm/proxy/static/index.js +456 -0
- helm/proxy/static/info-icon.png +0 -0
- helm/proxy/test_retry.py +1 -1
- helm/proxy/token_counters/auto_token_counter.py +1 -1
- helm/tokenizers/aleph_alpha_tokenizer.py +1 -1
- helm/tokenizers/caching_tokenizer.py +2 -30
- helm/tokenizers/grok_tokenizer.py +53 -0
- helm/tokenizers/http_model_tokenizer.py +1 -1
- helm/tokenizers/huggingface_tokenizer.py +3 -3
- helm/tokenizers/lit_gpt_tokenizer.py +1 -1
- helm/tokenizers/test_anthropic_tokenizer.py +6 -2
- helm/tokenizers/test_grok_tokenizer.py +33 -0
- helm/tokenizers/test_huggingface_tokenizer.py +1 -1
- helm/tokenizers/test_yalm_tokenizer.py +1 -1
- helm/tokenizers/tiktoken_tokenizer.py +1 -1
- helm/tokenizers/tokenizer.py +3 -1
- helm/tokenizers/yalm_tokenizer.py +3 -3
- helm/tokenizers/yalm_tokenizer_data/test_yalm_tokenizer.py +1 -1
- crfm_helm-0.5.4.dist-info/METADATA +0 -350
- crfm_helm-0.5.4.dist-info/RECORD +0 -697
- helm/benchmark/metrics/bhasa_metrics_specs.py +0 -10
- helm/benchmark/static_build/assets/01-694cb9b7.png +0 -0
- helm/benchmark/static_build/assets/accenture-6f97eeda.png +0 -0
- helm/benchmark/static_build/assets/ai21-0eb91ec3.png +0 -0
- helm/benchmark/static_build/assets/aisingapore-6dfc9acf.png +0 -0
- helm/benchmark/static_build/assets/aleph-alpha-7ce10034.png +0 -0
- helm/benchmark/static_build/assets/anthropic-70d8bc39.png +0 -0
- helm/benchmark/static_build/assets/bigscience-7f0400c0.png +0 -0
- helm/benchmark/static_build/assets/cohere-3550c6cb.png +0 -0
- helm/benchmark/static_build/assets/cresta-9e22b983.png +0 -0
- helm/benchmark/static_build/assets/cuhk-8c5631e9.png +0 -0
- helm/benchmark/static_build/assets/eleutherai-b9451114.png +0 -0
- helm/benchmark/static_build/assets/google-06d997ad.png +0 -0
- helm/benchmark/static_build/assets/index-05c76bb1.css +0 -1
- helm/benchmark/static_build/assets/index-3ee38b3d.js +0 -10
- helm/benchmark/static_build/assets/meta-5580e9f1.png +0 -0
- helm/benchmark/static_build/assets/microsoft-f5ee5016.png +0 -0
- helm/benchmark/static_build/assets/mistral-18e1be23.png +0 -0
- helm/benchmark/static_build/assets/nvidia-86fa75c1.png +0 -0
- helm/benchmark/static_build/assets/openai-3f8653e4.png +0 -0
- helm/benchmark/static_build/assets/scb10x-204bd786.png +0 -0
- helm/benchmark/static_build/assets/tii-24de195c.png +0 -0
- helm/benchmark/static_build/assets/together-a665a35b.png +0 -0
- helm/benchmark/static_build/assets/tsinghua-keg-97d4b395.png +0 -0
- helm/benchmark/static_build/assets/wellsfargo-a86a6c4a.png +0 -0
- helm/benchmark/static_build/assets/yandex-38e09d70.png +0 -0
- helm/tokenizers/anthropic_tokenizer.py +0 -52
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.6.dist-info}/entry_points.txt +0 -0
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.6.dist-info/licenses}/LICENSE +0 -0
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.6.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,432 @@
|
|
|
1
|
+
# flake8: noqa
|
|
2
|
+
# type: ignore
|
|
3
|
+
# fmt: off
|
|
4
|
+
|
|
5
|
+
import ast
|
|
6
|
+
import datetime
|
|
7
|
+
import transformers
|
|
8
|
+
import langchain
|
|
9
|
+
import langchain.prompts
|
|
10
|
+
import lxml.etree
|
|
11
|
+
import os
|
|
12
|
+
import pandas as pd
|
|
13
|
+
import re
|
|
14
|
+
import tiktoken
|
|
15
|
+
|
|
16
|
+
from langchain_community.retrievers import BM25Retriever
|
|
17
|
+
from tqdm import tqdm
|
|
18
|
+
from typing import Any, Dict, Optional, Union, Callable
|
|
19
|
+
from langchain.schema import Document
|
|
20
|
+
import langchain_community
|
|
21
|
+
|
|
22
|
+
from helm.common.general import check_file_exists
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_instructions(path_to_instructions: str) -> Dict[int, Dict[str, Any]]:
|
|
26
|
+
"""
|
|
27
|
+
Builds map from Instruction ID to instruction details
|
|
28
|
+
|
|
29
|
+
The needed information for creating the map is accomplished by reading
|
|
30
|
+
a CSV file from the user-specified path.
|
|
31
|
+
|
|
32
|
+
The CSV file is expected to contain at least the following columns:
|
|
33
|
+
- instruction_id: The ID of the instruction.
|
|
34
|
+
- question: The text of the instruction.
|
|
35
|
+
- person_id: The ID of the associated patient.
|
|
36
|
+
- is_selected_ehr: A flag indicating whether the instruction is selected.
|
|
37
|
+
|
|
38
|
+
See https://stanfordmedicine.box.com/s/0om9qav2sklb9vaitn0ibye65vgbfx0e
|
|
39
|
+
|
|
40
|
+
Parameters:
|
|
41
|
+
path_to_instructions (str): Path to CSV file containing instructions.
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
Dict[int, Dict[str, Any]]: A dictionary mapping instruction IDs to a
|
|
45
|
+
dictionary containing instruction text and associated patient ID.
|
|
46
|
+
|
|
47
|
+
Raises:
|
|
48
|
+
FileNotFoundError: If the specified file does not exist.
|
|
49
|
+
ValueError: If the CSV file does not contain the expected columns.
|
|
50
|
+
"""
|
|
51
|
+
if not os.path.exists(path_to_instructions):
|
|
52
|
+
raise FileNotFoundError(
|
|
53
|
+
f"The specified file {path_to_instructions} does not exist."
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
instructions_df = pd.read_csv(path_to_instructions, sep='\t')
|
|
57
|
+
required_columns = {
|
|
58
|
+
"instruction_id",
|
|
59
|
+
"question",
|
|
60
|
+
"person_id",
|
|
61
|
+
}
|
|
62
|
+
if not required_columns.issubset(instructions_df.columns):
|
|
63
|
+
raise ValueError(
|
|
64
|
+
f"The CSV file is missing one or more of the required columns: {required_columns}"
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
selected_instructions_df = instructions_df #.query("is_selected_ehr == 'yes'")
|
|
68
|
+
instructions_map = {
|
|
69
|
+
row["instruction_id"]: {
|
|
70
|
+
"instruction": row["question"],
|
|
71
|
+
"patient_id": row["person_id"],
|
|
72
|
+
}
|
|
73
|
+
for _, row in selected_instructions_df.iterrows()
|
|
74
|
+
}
|
|
75
|
+
return instructions_map
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def extract_patient_id_from_fname(fname: str) -> Optional[int]:
|
|
79
|
+
"""
|
|
80
|
+
Extracts and returns the patient ID from a given filename.
|
|
81
|
+
|
|
82
|
+
The function expects filenames in the format 'EHR_<patient_id>.xml',
|
|
83
|
+
where <patient_id> is a sequence of digits.
|
|
84
|
+
|
|
85
|
+
Parameters:
|
|
86
|
+
fname (str): The filename from which to extract the patient ID.
|
|
87
|
+
|
|
88
|
+
Returns:
|
|
89
|
+
Optional[int]: The extracted patient ID as an integer, or None if
|
|
90
|
+
the filename doesn't match the expected format.
|
|
91
|
+
"""
|
|
92
|
+
name=fname.split('.')[0]
|
|
93
|
+
return int(name)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def get_ehrs(path_to_ehrs: str) -> Dict[int, str]:
|
|
97
|
+
"""
|
|
98
|
+
Builds a map from Instruction ID to EHR (Electronic Health Record) timeline.
|
|
99
|
+
|
|
100
|
+
EHR timelines are in string format and EHR files are read in from the
|
|
101
|
+
user-specified directory. Each file in the directory should be named
|
|
102
|
+
'EHR_<patient_id>.xml', where <patient_id> is a sequence of digits.
|
|
103
|
+
|
|
104
|
+
See https://stanfordmedicine.box.com/s/r28wfwwude9rpjtu0szhzegmku8qv2pe
|
|
105
|
+
|
|
106
|
+
Parameters:
|
|
107
|
+
path_to_ehrs (str): The path to the directory containing the EHR files.
|
|
108
|
+
|
|
109
|
+
Returns:
|
|
110
|
+
Dict[int, str]: A dictionary mapping patient IDs to EHR timelines.
|
|
111
|
+
|
|
112
|
+
Raises:
|
|
113
|
+
FileNotFoundError: If the specified directory does not exist.
|
|
114
|
+
"""
|
|
115
|
+
if not os.path.isdir(path_to_ehrs):
|
|
116
|
+
raise FileNotFoundError(
|
|
117
|
+
f"The specified directory {path_to_ehrs} does not exist."
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
ehr_map = {}
|
|
121
|
+
for fname in os.listdir(path_to_ehrs):
|
|
122
|
+
pt_id = extract_patient_id_from_fname(fname)
|
|
123
|
+
if pt_id is None:
|
|
124
|
+
print(
|
|
125
|
+
f"Warning: File '{fname}' does not match the expected format "
|
|
126
|
+
"and will be skipped."
|
|
127
|
+
)
|
|
128
|
+
continue
|
|
129
|
+
|
|
130
|
+
file_path = os.path.join(path_to_ehrs, fname)
|
|
131
|
+
with open(file_path, encoding="utf-8", mode="r") as f:
|
|
132
|
+
ehr = f.read()
|
|
133
|
+
|
|
134
|
+
ehr_map[pt_id] = ehr
|
|
135
|
+
return ehr_map
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def get_tokenizer(tokenizer_name: str) -> Callable:
|
|
139
|
+
"""
|
|
140
|
+
Returns a tokenizer based on the given tokenizer name.
|
|
141
|
+
|
|
142
|
+
Parameters:
|
|
143
|
+
tokenizer_name (str): The name of the tokenizer. Acceptable values are:
|
|
144
|
+
- "tiktoken"
|
|
145
|
+
- "chatgpt"
|
|
146
|
+
- "gpt-3.5-turbo"
|
|
147
|
+
- "gpt-4"
|
|
148
|
+
- "gpt-4-turbo"
|
|
149
|
+
- "gpt-4o"
|
|
150
|
+
- "cl100k_base"
|
|
151
|
+
- Any valid tokenizer name recognized by the transformers library.
|
|
152
|
+
|
|
153
|
+
Returns:
|
|
154
|
+
Callable: The tokenizer instance.
|
|
155
|
+
"""
|
|
156
|
+
if tokenizer_name.lower() in [
|
|
157
|
+
"tiktoken",
|
|
158
|
+
"chatgpt",
|
|
159
|
+
"gpt-3.5-turbo",
|
|
160
|
+
"gpt-4",
|
|
161
|
+
"gpt-4-turbo",
|
|
162
|
+
"gpt-4o",
|
|
163
|
+
"cl100k_base",
|
|
164
|
+
]:
|
|
165
|
+
return tiktoken.get_encoding("cl100k_base")
|
|
166
|
+
print(tokenizer_name)
|
|
167
|
+
return transformers.AutoTokenizer.from_pretrained(tokenizer_name, legacy=False)
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
def retrieve_most_relevant_visits(ehr_visit_strs, query, target_length, tokenizer):
|
|
171
|
+
"""
|
|
172
|
+
Retrieve and filter relevant EHR visits based on a query and target length.
|
|
173
|
+
|
|
174
|
+
This function retrieves electronic health record (EHR) visit strings, sorts them
|
|
175
|
+
by relevance using the BM25Retriever, and constructs a list of final documents
|
|
176
|
+
that fit within a specified character length. The final list ensures that the
|
|
177
|
+
most important visit isn't cut off and is sorted chronologically.
|
|
178
|
+
|
|
179
|
+
Parameters:
|
|
180
|
+
ehr_visit_strs (list of str): List of EHR visit strings.
|
|
181
|
+
query (str): Query string to retrieve relevant visits.
|
|
182
|
+
target_length (int): Maximum total token count for the final list of documents.
|
|
183
|
+
tokenizer (Callable): Tokenizer that converts text to tokens (used for tracking context length)
|
|
184
|
+
|
|
185
|
+
Returns:
|
|
186
|
+
list[str]: List of EHR visit strings sorted chronologically and constrained by the target length.
|
|
187
|
+
"""
|
|
188
|
+
ehr_visits=re.split(r'(?=</encounter>\n)',ehr_visit_strs)
|
|
189
|
+
langchain_docs = [
|
|
190
|
+
langchain.schema.Document(page_content=doc) for doc in ehr_visits #broken since ehr_visit_strs is one string of all visits
|
|
191
|
+
]
|
|
192
|
+
# `k` is the number of documents to retrieve
|
|
193
|
+
# We retrieve everything and just use the BM25Retriever to sort the documents
|
|
194
|
+
retriever = langchain_community.retrievers.BM25Retriever.from_documents(
|
|
195
|
+
langchain_docs, k=len(langchain_docs)
|
|
196
|
+
)
|
|
197
|
+
|
|
198
|
+
# Invoking the retriever means the most relevant documents are sorted first
|
|
199
|
+
sorted_docs = retriever.invoke(query)
|
|
200
|
+
|
|
201
|
+
# Define the regex pattern to find the start time
|
|
202
|
+
# pattern = r'start="([\d/]+ [\d:]+)"'
|
|
203
|
+
pattern = r'start="([\d/]+ [\d:]+ ?[APM]{0,2})"'
|
|
204
|
+
|
|
205
|
+
docs = []
|
|
206
|
+
dts = []
|
|
207
|
+
|
|
208
|
+
# Find the startime of the document
|
|
209
|
+
for doc in sorted_docs:
|
|
210
|
+
doc_content = doc.page_content
|
|
211
|
+
start_dt_match = re.search(pattern, doc_content)
|
|
212
|
+
if start_dt_match:
|
|
213
|
+
start_dt = start_dt_match.group(1)
|
|
214
|
+
parsed = False
|
|
215
|
+
# Try different date formats
|
|
216
|
+
for fmt in (
|
|
217
|
+
"%m/%d/%y %I:%M %p",
|
|
218
|
+
"%m/%d/%Y %I:%M %p",
|
|
219
|
+
"%m/%d/%y %H:%M",
|
|
220
|
+
"%m/%d/%Y %H:%M",
|
|
221
|
+
):
|
|
222
|
+
try:
|
|
223
|
+
dts.append(datetime.datetime.strptime(start_dt, fmt))
|
|
224
|
+
parsed = True
|
|
225
|
+
break
|
|
226
|
+
except ValueError:
|
|
227
|
+
continue
|
|
228
|
+
if not parsed:
|
|
229
|
+
print(f"Error parsing date: {start_dt}")
|
|
230
|
+
continue
|
|
231
|
+
else:
|
|
232
|
+
print(f"Start time not found., {doc_content}")
|
|
233
|
+
dts.append(datetime.datetime.min)
|
|
234
|
+
docs.append(doc_content)
|
|
235
|
+
|
|
236
|
+
final_docs = []
|
|
237
|
+
current_length = 0
|
|
238
|
+
|
|
239
|
+
# Add documents until we exceed the allocated context length
|
|
240
|
+
for i in range(len(docs)):
|
|
241
|
+
doc_content = docs[i]
|
|
242
|
+
doc_length = len(tokenizer.encode(doc_content))
|
|
243
|
+
final_docs.append((dts[i], doc_content))
|
|
244
|
+
current_length += doc_length
|
|
245
|
+
if current_length > target_length:
|
|
246
|
+
break
|
|
247
|
+
|
|
248
|
+
# Sort final_docs chronologically
|
|
249
|
+
final_docs.sort(key=lambda x: x[0])
|
|
250
|
+
|
|
251
|
+
# Extract only the document content for the final output
|
|
252
|
+
final_docs_content = [doc_content for _, doc_content in final_docs]
|
|
253
|
+
|
|
254
|
+
return final_docs_content
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
def pack_and_trim_prompts(
|
|
259
|
+
instructions: Dict[int, Dict[str, str]],
|
|
260
|
+
ehrs: Dict[int, str],
|
|
261
|
+
prompt_template: langchain.prompts.PromptTemplate,
|
|
262
|
+
context_length: int,
|
|
263
|
+
generation_length: int,
|
|
264
|
+
tokenizer: Any,
|
|
265
|
+
use_RAG: bool = True,
|
|
266
|
+
verbose: bool = False,
|
|
267
|
+
include_ehr: bool = True,
|
|
268
|
+
) -> Dict[int, str]:
|
|
269
|
+
"""
|
|
270
|
+
Returns:
|
|
271
|
+
A map from Instruction ID to prompt
|
|
272
|
+
"""
|
|
273
|
+
prompts_map = {}
|
|
274
|
+
for instruction_id in tqdm(instructions.keys()):
|
|
275
|
+
instruction = instructions[instruction_id]["instruction"]
|
|
276
|
+
patient_id = int(instructions[instruction_id]["patient_id"])
|
|
277
|
+
relevant_ehr = ehrs[patient_id]
|
|
278
|
+
|
|
279
|
+
# Calculate how many tokens of EHR we can include in the prompt
|
|
280
|
+
num_tokens_instruction = len(tokenizer.encode(instruction))
|
|
281
|
+
num_tokens_prompt_template = len(tokenizer.encode(prompt_template.template))
|
|
282
|
+
if include_ehr:
|
|
283
|
+
target_ehr_length = context_length - generation_length - num_tokens_prompt_template - num_tokens_instruction
|
|
284
|
+
else:
|
|
285
|
+
target_ehr_length = 0
|
|
286
|
+
if target_ehr_length <= 0:
|
|
287
|
+
prompt_with_truncated_ehr = prompt_template.format(question=instruction, ehr="")
|
|
288
|
+
else:
|
|
289
|
+
if use_RAG:
|
|
290
|
+
# Return a list of the most relevant visit strings
|
|
291
|
+
most_relevant_visits = retrieve_most_relevant_visits(
|
|
292
|
+
ehr_visit_strs=relevant_ehr,
|
|
293
|
+
query=instruction,
|
|
294
|
+
target_length=target_ehr_length,
|
|
295
|
+
tokenizer=tokenizer,
|
|
296
|
+
)
|
|
297
|
+
relevant_ehr = "\n".join(most_relevant_visits)
|
|
298
|
+
|
|
299
|
+
# Do a first pass with a fast tokenizer
|
|
300
|
+
fast_tokenizer = tiktoken.get_encoding("cl100k_base")
|
|
301
|
+
fast_encoded = fast_tokenizer.encode(relevant_ehr)
|
|
302
|
+
if len(fast_encoded) <= target_ehr_length:
|
|
303
|
+
fast_encoded_truncated = fast_encoded[-(2 * target_ehr_length) :]
|
|
304
|
+
fast_truncated_ehr = fast_tokenizer.decode(fast_encoded_truncated)
|
|
305
|
+
|
|
306
|
+
# Then do a second pass with the actual tokenizer
|
|
307
|
+
encoded_ehr = tokenizer.encode(fast_truncated_ehr)
|
|
308
|
+
truncated_encoded_ehr = encoded_ehr[-target_ehr_length:]
|
|
309
|
+
truncated_ehr = tokenizer.decode(truncated_encoded_ehr)
|
|
310
|
+
prompt_with_truncated_ehr = prompt_template.format(question=instruction, ehr=truncated_ehr)
|
|
311
|
+
|
|
312
|
+
prompts_map[instruction_id] = prompt_with_truncated_ehr
|
|
313
|
+
|
|
314
|
+
if verbose:
|
|
315
|
+
print(prompt_with_truncated_ehr)
|
|
316
|
+
print("~" * 20)
|
|
317
|
+
return prompts_map
|
|
318
|
+
|
|
319
|
+
|
|
320
|
+
def preprocess_prompts(
|
|
321
|
+
target_context_length,
|
|
322
|
+
generation_length,
|
|
323
|
+
path_to_instructions,
|
|
324
|
+
path_to_ehrs,
|
|
325
|
+
use_RAG,
|
|
326
|
+
include_ehr,
|
|
327
|
+
tokenizer,
|
|
328
|
+
codes_only=False,
|
|
329
|
+
notes_only=False,
|
|
330
|
+
):
|
|
331
|
+
print(
|
|
332
|
+
f"\n\twith target context length = {target_context_length} "
|
|
333
|
+
f"\n\twith target generation length = {generation_length} "
|
|
334
|
+
)
|
|
335
|
+
|
|
336
|
+
# FETCH INSTRUCTIONS
|
|
337
|
+
print("Fetching instructions...")
|
|
338
|
+
instructions = get_instructions(path_to_instructions)
|
|
339
|
+
|
|
340
|
+
# FETCH RELEVANT EHRs #
|
|
341
|
+
print("Fetching patient EHR timelines...")
|
|
342
|
+
ehrs = get_ehrs(path_to_ehrs)
|
|
343
|
+
|
|
344
|
+
# LOAD TOKENIZER #
|
|
345
|
+
print("Loading tokenizer...")
|
|
346
|
+
tokenizer = get_tokenizer(tokenizer)
|
|
347
|
+
|
|
348
|
+
# CONSTRUCT & TRUNCATE PROMPTS #
|
|
349
|
+
print("Constructing prompts using instructions and EHRs...")
|
|
350
|
+
prompt_string="Instruction: Answer the following question based on the EHR:\n\nEHR: {ehr}\n\nQuestion: {question}\n\nAnswer:"
|
|
351
|
+
prompt_template = langchain.prompts.PromptTemplate.from_template(prompt_string)
|
|
352
|
+
filled_prompts = pack_and_trim_prompts(
|
|
353
|
+
instructions=instructions,
|
|
354
|
+
ehrs=ehrs,
|
|
355
|
+
prompt_template=prompt_template,
|
|
356
|
+
context_length=target_context_length,
|
|
357
|
+
generation_length=generation_length,
|
|
358
|
+
tokenizer=tokenizer,
|
|
359
|
+
use_RAG=use_RAG,
|
|
360
|
+
verbose=False,
|
|
361
|
+
include_ehr=include_ehr,
|
|
362
|
+
)
|
|
363
|
+
assert filled_prompts, f"No prompts were found for length: {target_context_length}. Try again with a larger length."
|
|
364
|
+
# SAVE CONSTRUCTED PROMPTS TO DISK
|
|
365
|
+
df_rows = []
|
|
366
|
+
for instruction_id in tqdm(filled_prompts.keys()):
|
|
367
|
+
row = {}
|
|
368
|
+
row["instruction_id"] = instruction_id
|
|
369
|
+
patient_id = instructions[instruction_id]["patient_id"]
|
|
370
|
+
row["patient_id"] = patient_id
|
|
371
|
+
row["instruction"] = instructions[instruction_id]["instruction"]
|
|
372
|
+
row["ehr"] = "".join(ehrs[patient_id])
|
|
373
|
+
row["prompt"] = filled_prompts[instruction_id]
|
|
374
|
+
row["context_length"] = target_context_length
|
|
375
|
+
row["generation_length"] = generation_length
|
|
376
|
+
df_rows.append(row)
|
|
377
|
+
|
|
378
|
+
prompts_df = pd.DataFrame(df_rows)
|
|
379
|
+
instructionid_to_prompt_map = (
|
|
380
|
+
prompts_df[["instruction_id", "prompt"]].set_index("instruction_id").to_dict().get("prompt")
|
|
381
|
+
)
|
|
382
|
+
instructionid_to_prompt_df = (
|
|
383
|
+
pd.DataFrame.from_dict(instructionid_to_prompt_map, orient="index", columns=["prompt"])
|
|
384
|
+
.reset_index()
|
|
385
|
+
.rename(columns={"index": "instruction_id"})
|
|
386
|
+
)
|
|
387
|
+
|
|
388
|
+
print("...Prompt construction complete")
|
|
389
|
+
return instructionid_to_prompt_df
|
|
390
|
+
|
|
391
|
+
|
|
392
|
+
def add_reference_responses(prompts_df, path_to_reference_responses) -> pd.DataFrame:
|
|
393
|
+
"""
|
|
394
|
+
Processes a single file for evaluation.
|
|
395
|
+
|
|
396
|
+
Parameters:
|
|
397
|
+
file_path (str): Path to the file to be processed.
|
|
398
|
+
args (argparse.Namespace): Command line arguments passed to the script.
|
|
399
|
+
|
|
400
|
+
Returns:
|
|
401
|
+
pd.DataFrame: DataFrame containing the processed data.
|
|
402
|
+
"""
|
|
403
|
+
gold_df = pd.read_csv(path_to_reference_responses, sep='\t')
|
|
404
|
+
gold_df = gold_df.query("annotator_num == 'Annotator_1'")
|
|
405
|
+
gold_df = gold_df[["instruction_id", "clinician_response"]]
|
|
406
|
+
merged_df = gold_df.merge(prompts_df, on="instruction_id", how="inner")
|
|
407
|
+
return merged_df
|
|
408
|
+
|
|
409
|
+
|
|
410
|
+
def return_dataset_dataframe(max_length: int, data_path: str) -> pd.DataFrame:
|
|
411
|
+
target_context_length = max_length
|
|
412
|
+
generation_length = 256
|
|
413
|
+
path_to_instructions = os.path.join(data_path, "clinician-reviewed-model-responses.tsv")
|
|
414
|
+
check_file_exists(path_to_instructions, msg=f"[MedAlignScenario] Required instructions file not found: '{path_to_instructions}'")
|
|
415
|
+
path_to_ehrs = os.path.join(data_path, "medalign_ehr_xml")
|
|
416
|
+
path_to_reference_responses = os.path.join(data_path, "clinician-instruction-responses.tsv")
|
|
417
|
+
check_file_exists(path_to_reference_responses, msg=f"[MedAlignScenario] Required clinician responses file not found: '{path_to_reference_responses}'")
|
|
418
|
+
use_RAG = False
|
|
419
|
+
include_ehr = True
|
|
420
|
+
tokenizer = "tiktoken"
|
|
421
|
+
|
|
422
|
+
instructionid_to_prompt_df = preprocess_prompts(
|
|
423
|
+
target_context_length=target_context_length,
|
|
424
|
+
generation_length=generation_length,
|
|
425
|
+
path_to_instructions=path_to_instructions,
|
|
426
|
+
path_to_ehrs=path_to_ehrs,
|
|
427
|
+
use_RAG=use_RAG,
|
|
428
|
+
include_ehr=include_ehr,
|
|
429
|
+
tokenizer=tokenizer,
|
|
430
|
+
)
|
|
431
|
+
medalign_dataframe = add_reference_responses(instructionid_to_prompt_df, path_to_reference_responses)
|
|
432
|
+
return medalign_dataframe
|
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import csv
|
|
3
|
+
import sys
|
|
4
|
+
from typing import List
|
|
5
|
+
|
|
6
|
+
from helm.benchmark.scenarios.scenario import (
|
|
7
|
+
CORRECT_TAG,
|
|
8
|
+
TEST_SPLIT,
|
|
9
|
+
Input,
|
|
10
|
+
Instance,
|
|
11
|
+
Output,
|
|
12
|
+
Reference,
|
|
13
|
+
Scenario,
|
|
14
|
+
)
|
|
15
|
+
from helm.common.general import ensure_file_downloaded
|
|
16
|
+
|
|
17
|
+
csv.field_size_limit(sys.maxsize)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class MedBulletsScenario(Scenario):
|
|
21
|
+
"""
|
|
22
|
+
From "Benchmarking Large Language Models on Answering and Explaining Challenging Medical Questions"
|
|
23
|
+
(Chen et al.), MedBullet is a dataset comprising USMLE Step 2&3 style clinical questions. The dataset
|
|
24
|
+
is designed to evaluate the performance of LLMs in answering and explaining challenging medical questions,
|
|
25
|
+
emphasizing the need for explainable AI in medical QA.
|
|
26
|
+
|
|
27
|
+
Example from the dataset:
|
|
28
|
+
|
|
29
|
+
Question:
|
|
30
|
+
A 42-year-old woman is enrolled in a randomized controlled trial to study cardiac function in the setting of
|
|
31
|
+
several different drugs. She is started on verapamil and instructed to exercise at 50% of her VO2 max while
|
|
32
|
+
several cardiac parameters are being measured. During this experiment, which of the following represents
|
|
33
|
+
the relative conduction speed through the heart from fastest to slowest?
|
|
34
|
+
|
|
35
|
+
A) AV node > ventricles > atria > Purkinje fibers
|
|
36
|
+
B) Purkinje fibers > ventricles > atria > AV node
|
|
37
|
+
C) Purkinje fibers > atria > ventricles > AV node
|
|
38
|
+
D) Purkinje fibers > AV node > ventricles > atria
|
|
39
|
+
|
|
40
|
+
Answer:
|
|
41
|
+
The answer is C. Explanation: The conduction velocity of the structures of the heart is in the following order:
|
|
42
|
+
Purkinje fibers > atria > ventricles > AV node. A calcium channel blocker such as verapamil would only slow
|
|
43
|
+
conduction in the AV node.
|
|
44
|
+
|
|
45
|
+
@Article{MedBullet,
|
|
46
|
+
author = {Hanjie Chen and Zhouxiang Fang and Yash Singla and Mark Dredze},
|
|
47
|
+
title = {Benchmarking Large Language Models on Answering and Explaining Challenging Medical Questions},
|
|
48
|
+
year = {2023},
|
|
49
|
+
abstract = {LLMs have demonstrated impressive performance in answering medical questions, such as passing scores
|
|
50
|
+
on medical licensing examinations. However, medical board exam questions or general clinical questions do not
|
|
51
|
+
capture the complexity of realistic clinical cases. Moreover, the lack of reference explanations means we cannot
|
|
52
|
+
easily evaluate the reasoning of model decisions, a crucial component of supporting doctors in making complex
|
|
53
|
+
medical decisions. To address these challenges, we construct two new datasets: JAMA Clinical Challenge and
|
|
54
|
+
Medbullets. JAMA Clinical Challenge consists of questions based on challenging clinical cases, while Medbullets
|
|
55
|
+
comprises USMLE Step 2&3 style clinical questions. Both datasets are structured as multiple-choice
|
|
56
|
+
question-answering tasks, where each question is accompanied by an expert-written explanation. We evaluate four
|
|
57
|
+
LLMs on the two datasets using various prompts. Experiments demonstrate that our datasets are harder than
|
|
58
|
+
previous benchmarks. The inconsistency between automatic and human evaluations of model-generated explanations
|
|
59
|
+
highlights the need to develop new metrics to support future research on explainable medical QA.}}
|
|
60
|
+
|
|
61
|
+
Task:
|
|
62
|
+
Given a clinical question with multiple-choice options, models must identify the correct answer and generate a
|
|
63
|
+
response that includes the reasoning, as described in the expert-written explanation.
|
|
64
|
+
"""
|
|
65
|
+
|
|
66
|
+
DATASET_DOWNLOAD_BASE_URL = (
|
|
67
|
+
"https://raw.githubusercontent.com/HanjieChen/ChallengeClinicalQA/refs/heads/main/medbullets/"
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
name = "medbullets"
|
|
71
|
+
description = (
|
|
72
|
+
"Medbullets is a benchmark of USMLE-style medical questions designed to assess a"
|
|
73
|
+
"model’s ability to understand and apply clinical knowledge. Each question is accompanied"
|
|
74
|
+
"by a patient scenario and five multiple-choice options, similar to those found on"
|
|
75
|
+
"Step 2 and Step 3 on the US medical licensing exam."
|
|
76
|
+
)
|
|
77
|
+
tags = ["reasoning", "biomedical"]
|
|
78
|
+
|
|
79
|
+
# Define the possible answer choices
|
|
80
|
+
POSSIBLE_ANSWER_CHOICES: List[str] = ["A", "B", "C", "D", "E"]
|
|
81
|
+
|
|
82
|
+
def __init__(self):
|
|
83
|
+
super().__init__()
|
|
84
|
+
# self.splits = {"_op4": TRAIN_SPLIT, "_op5": TEST_SPLIT}
|
|
85
|
+
# limit to zero shot setting for now
|
|
86
|
+
self.splits = {"_op5": TEST_SPLIT}
|
|
87
|
+
|
|
88
|
+
def download_csv(self, output_path: str, split: str):
|
|
89
|
+
"""Download CSV files for the given split."""
|
|
90
|
+
csv_path = os.path.join(output_path, f"medbullets{split}.csv")
|
|
91
|
+
ensure_file_downloaded(
|
|
92
|
+
source_url=f"{self.DATASET_DOWNLOAD_BASE_URL}/medbullets{split}.csv",
|
|
93
|
+
target_path=csv_path,
|
|
94
|
+
unpack=False,
|
|
95
|
+
)
|
|
96
|
+
return csv_path
|
|
97
|
+
|
|
98
|
+
def process_csv(self, csv_path: str, split: str) -> List[Instance]:
|
|
99
|
+
"""Read and process a CSV file to generate instances."""
|
|
100
|
+
instances: List[Instance] = []
|
|
101
|
+
with open(csv_path, "r", encoding="utf-8") as f:
|
|
102
|
+
reader = csv.DictReader(f)
|
|
103
|
+
for row in reader:
|
|
104
|
+
# Validate required fields
|
|
105
|
+
if not row.get("question") or not row.get("answer_idx") or not row.get("opa"):
|
|
106
|
+
print(f"Skipping invalid row: {row}")
|
|
107
|
+
continue
|
|
108
|
+
|
|
109
|
+
# Map answers to indices
|
|
110
|
+
option_map = {
|
|
111
|
+
"A": row.get("opa", "Not applicable"),
|
|
112
|
+
"B": row.get("opb", "Not applicable"),
|
|
113
|
+
"C": row.get("opc", "Not applicable"),
|
|
114
|
+
"D": row.get("opd", "Not applicable"),
|
|
115
|
+
"E": row.get("ope", "Not applicable"),
|
|
116
|
+
}
|
|
117
|
+
|
|
118
|
+
# Correct answer text
|
|
119
|
+
correct_option = row["answer_idx"]
|
|
120
|
+
|
|
121
|
+
# Build references using POSSIBLE_ANSWER_CHOICES
|
|
122
|
+
references = [
|
|
123
|
+
Reference(
|
|
124
|
+
Output(text=option_map.get(option, "Not applicable")),
|
|
125
|
+
tags=[CORRECT_TAG] if option == correct_option else [],
|
|
126
|
+
)
|
|
127
|
+
for option in self.POSSIBLE_ANSWER_CHOICES
|
|
128
|
+
]
|
|
129
|
+
|
|
130
|
+
# Create instance
|
|
131
|
+
instance = Instance(
|
|
132
|
+
input=Input(text=row["question"]),
|
|
133
|
+
references=references,
|
|
134
|
+
split=split,
|
|
135
|
+
)
|
|
136
|
+
instances.append(instance)
|
|
137
|
+
return instances
|
|
138
|
+
|
|
139
|
+
def get_instances(self, output_path: str) -> List[Instance]:
|
|
140
|
+
"""Download and process dataset to generate instances."""
|
|
141
|
+
instances: List[Instance] = []
|
|
142
|
+
for split_suffix, split in self.splits.items():
|
|
143
|
+
csv_path = self.download_csv(output_path, split_suffix)
|
|
144
|
+
instances.extend(self.process_csv(csv_path, split))
|
|
145
|
+
return instances
|