crfm-helm 0.5.1__py3-none-any.whl → 0.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of crfm-helm might be problematic. Click here for more details.
- {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/METADATA +13 -3
- {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/RECORD +96 -63
- helm/benchmark/adaptation/adapter_spec.py +32 -31
- helm/benchmark/annotation/air_bench_annotator.py +64 -0
- helm/benchmark/annotation/annotator_factory.py +6 -0
- helm/benchmark/annotation/live_qa_annotator.py +84 -0
- helm/benchmark/annotation/medication_qa_annotator.py +81 -0
- helm/benchmark/augmentations/translate_perturbation.py +1 -0
- helm/benchmark/huggingface_registration.py +16 -6
- helm/benchmark/metrics/air_bench_metrics.py +56 -0
- helm/benchmark/metrics/fin_qa_metrics.py +60 -0
- helm/benchmark/metrics/fin_qa_metrics_helper.py +398 -0
- helm/benchmark/metrics/gpt4v_originality_critique_metrics.py +126 -0
- helm/benchmark/metrics/instruction_following_critique_metrics.py +1 -0
- helm/benchmark/metrics/live_qa_metrics.py +23 -0
- helm/benchmark/metrics/medication_qa_metrics.py +23 -0
- helm/benchmark/metrics/prometheus_vision_critique_metrics.py +185 -0
- helm/benchmark/metrics/reka_vibe_critique_metrics.py +158 -0
- helm/benchmark/metrics/unitxt_metrics.py +20 -10
- helm/benchmark/metrics/vision_language/emd_utils.py +4 -0
- helm/benchmark/metrics/vision_language/image_metrics.py +29 -71
- helm/benchmark/presentation/schema.py +54 -4
- helm/benchmark/presentation/test_schema.py +11 -0
- helm/benchmark/run.py +16 -2
- helm/benchmark/run_expander.py +77 -0
- helm/benchmark/run_spec_factory.py +4 -0
- helm/benchmark/run_specs/air_bench_run_specs.py +40 -0
- helm/benchmark/run_specs/classic_run_specs.py +15 -11
- helm/benchmark/run_specs/decodingtrust_run_specs.py +3 -1
- helm/benchmark/run_specs/experimental_run_specs.py +33 -0
- helm/benchmark/run_specs/finance_run_specs.py +33 -0
- helm/benchmark/run_specs/vlm_run_specs.py +168 -45
- helm/benchmark/scenarios/air_bench_scenario.py +50 -0
- helm/benchmark/scenarios/ci_mcqa_scenario.py +80 -0
- helm/benchmark/scenarios/entity_data_imputation_scenario.py +8 -2
- helm/benchmark/scenarios/fin_qa_scenario.py +117 -0
- helm/benchmark/scenarios/test_air_bench_scenario.py +27 -0
- helm/benchmark/scenarios/vision_language/bingo_scenario.py +3 -3
- helm/benchmark/scenarios/vision_language/image2structure/image2structure_scenario.py +13 -2
- helm/benchmark/scenarios/vision_language/image2structure/latex_scenario.py +1 -5
- helm/benchmark/scenarios/vision_language/image2structure/musicsheet_scenario.py +0 -4
- helm/benchmark/scenarios/vision_language/image2structure/webpage_scenario.py +4 -2
- helm/benchmark/scenarios/vision_language/pairs_scenario.py +6 -5
- helm/benchmark/scenarios/vision_language/unicorn_scenario.py +3 -3
- helm/benchmark/scenarios/vision_language/vibe_eval_scenario.py +95 -0
- helm/benchmark/static/schema_air_bench.yaml +3149 -0
- helm/benchmark/static/schema_classic.yaml +3 -59
- helm/benchmark/static/schema_finance.yaml +143 -0
- helm/benchmark/static/schema_image2structure.yaml +254 -111
- helm/benchmark/static/schema_instruction_following.yaml +3 -52
- helm/benchmark/static/schema_lite.yaml +3 -61
- helm/benchmark/static/schema_medical.yaml +255 -0
- helm/benchmark/static/schema_mmlu.yaml +3 -61
- helm/benchmark/static/schema_tables.yaml +200 -0
- helm/benchmark/static/schema_thai.yaml +223 -0
- helm/benchmark/static/schema_unitxt.yaml +3 -61
- helm/benchmark/static/{schema_vlm.yaml → schema_vhelm.yaml} +294 -293
- helm/benchmark/static/schema_vhelm_lite.yaml +4 -59
- helm/benchmark/static_build/assets/air-overview-d2e6c49f.png +0 -0
- helm/benchmark/static_build/assets/index-30dbceba.js +10 -0
- helm/benchmark/static_build/assets/index-66b02d40.css +1 -0
- helm/benchmark/static_build/assets/overview-74aea3d8.png +0 -0
- helm/benchmark/static_build/assets/process-flow-bd2eba96.png +0 -0
- helm/benchmark/static_build/index.html +2 -2
- helm/clients/anthropic_client.py +43 -9
- helm/clients/auto_client.py +11 -0
- helm/clients/client.py +24 -7
- helm/clients/cohere_client.py +98 -3
- helm/clients/huggingface_client.py +71 -12
- helm/clients/openai_client.py +9 -2
- helm/clients/reka_client.py +189 -0
- helm/clients/test_client.py +3 -3
- helm/clients/test_huggingface_client.py +19 -3
- helm/clients/test_together_client.py +72 -2
- helm/clients/together_client.py +129 -23
- helm/clients/vertexai_client.py +62 -18
- helm/clients/vision_language/huggingface_vlm_client.py +1 -0
- helm/clients/vision_language/paligemma_client.py +146 -0
- helm/clients/vision_language/palmyra_vision_client.py +84 -0
- helm/clients/yi_client.py +31 -0
- helm/common/critique_request.py +10 -1
- helm/common/images_utils.py +19 -0
- helm/config/model_deployments.yaml +412 -18
- helm/config/model_metadata.yaml +447 -25
- helm/config/tokenizer_configs.yaml +93 -1
- helm/proxy/critique/model_critique_client.py +32 -4
- helm/proxy/services/server_service.py +1 -1
- helm/tokenizers/auto_tokenizer.py +1 -1
- helm/tokenizers/cohere_tokenizer.py +44 -2
- helm/tokenizers/huggingface_tokenizer.py +36 -13
- helm/tokenizers/test_cohere_tokenizer.py +39 -0
- helm/tokenizers/test_huggingface_tokenizer.py +5 -1
- helm/benchmark/static_build/assets/index-737eef9e.js +0 -10
- helm/benchmark/static_build/assets/index-878a1094.css +0 -1
- {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/LICENSE +0 -0
- {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/WHEEL +0 -0
- {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/entry_points.txt +0 -0
- {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/top_level.txt +0 -0
helm/config/model_metadata.yaml
CHANGED
|
@@ -100,6 +100,25 @@ models:
|
|
|
100
100
|
# - j2-large -> j2-light
|
|
101
101
|
|
|
102
102
|
|
|
103
|
+
# AI Singapore
|
|
104
|
+
- name: aisingapore/sea-lion-7b
|
|
105
|
+
display_name: SEA-LION (7B)
|
|
106
|
+
description: SEA-LION is a collection of language models which has been pretrained and instruct-tuned on languages from the Southeast Asia region. It utilizes the MPT architecture and a custom SEABPETokenizer for tokenization.
|
|
107
|
+
creator_organization_name: AI Singapore
|
|
108
|
+
access: open
|
|
109
|
+
num_parameters: 7000000000
|
|
110
|
+
release_date: 2023-02-24
|
|
111
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
112
|
+
|
|
113
|
+
- name: aisingapore/sea-lion-7b-instruct
|
|
114
|
+
display_name: SEA-LION Instruct (7B)
|
|
115
|
+
description: SEA-LION is a collection of language models which has been pretrained and instruct-tuned on languages from the Southeast Asia region. It utilizes the MPT architecture and a custom SEABPETokenizer for tokenization.
|
|
116
|
+
creator_organization_name: AI Singapore
|
|
117
|
+
access: open
|
|
118
|
+
num_parameters: 7000000000
|
|
119
|
+
release_date: 2023-02-24
|
|
120
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
121
|
+
|
|
103
122
|
|
|
104
123
|
# Aleph Alpha
|
|
105
124
|
# Aleph Alpha's Luminous models: https://docs.aleph-alpha.com/docs/introduction/luminous
|
|
@@ -327,6 +346,18 @@ models:
|
|
|
327
346
|
release_date: 2023-05-09 # ArXiv submission date
|
|
328
347
|
tags: [CODE_MODEL_TAG]
|
|
329
348
|
|
|
349
|
+
# BioMistral
|
|
350
|
+
|
|
351
|
+
- name: biomistral/biomistral-7b
|
|
352
|
+
display_name: BioMistral (7B)
|
|
353
|
+
description: BioMistral 7B is an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central.
|
|
354
|
+
creator_organization_name: BioMistral
|
|
355
|
+
access: open
|
|
356
|
+
num_parameters: 7300000000
|
|
357
|
+
release_date: 2024-02-15
|
|
358
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
359
|
+
|
|
360
|
+
|
|
330
361
|
|
|
331
362
|
|
|
332
363
|
# Cerebras Systems
|
|
@@ -418,7 +449,7 @@ models:
|
|
|
418
449
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
419
450
|
|
|
420
451
|
- name: cohere/command-medium-beta # DEPRECATED
|
|
421
|
-
display_name:
|
|
452
|
+
display_name: Command beta (6.1B)
|
|
422
453
|
description: Cohere Command beta (6.1B parameters) is fine-tuned from the medium model to respond well with instruction-like prompts ([details](https://docs.cohere.ai/docs/command-beta)).
|
|
423
454
|
creator_organization_name: Cohere
|
|
424
455
|
access: limited
|
|
@@ -427,7 +458,7 @@ models:
|
|
|
427
458
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
428
459
|
|
|
429
460
|
- name: cohere/command-xlarge-beta # DEPRECATED
|
|
430
|
-
display_name:
|
|
461
|
+
display_name: Command beta (52.4B)
|
|
431
462
|
description: Cohere Command beta (52.4B parameters) is fine-tuned from the XL model to respond well with instruction-like prompts ([details](https://docs.cohere.ai/docs/command-beta)).
|
|
432
463
|
creator_organization_name: Cohere
|
|
433
464
|
access: limited
|
|
@@ -436,7 +467,7 @@ models:
|
|
|
436
467
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
437
468
|
|
|
438
469
|
- name: cohere/command
|
|
439
|
-
display_name:
|
|
470
|
+
display_name: Command
|
|
440
471
|
description: Command is Cohere’s flagship text generation model. It is trained to follow user commands and to be instantly useful in practical business applications. [docs](https://docs.cohere.com/reference/generate) and [changelog](https://docs.cohere.com/changelog)
|
|
441
472
|
creator_organization_name: Cohere
|
|
442
473
|
access: limited
|
|
@@ -444,12 +475,30 @@ models:
|
|
|
444
475
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
445
476
|
|
|
446
477
|
- name: cohere/command-light
|
|
447
|
-
display_name:
|
|
478
|
+
display_name: Command Light
|
|
448
479
|
description: Command is Cohere’s flagship text generation model. It is trained to follow user commands and to be instantly useful in practical business applications. [docs](https://docs.cohere.com/reference/generate) and [changelog](https://docs.cohere.com/changelog)
|
|
449
480
|
creator_organization_name: Cohere
|
|
450
481
|
access: limited
|
|
451
482
|
release_date: 2023-09-29
|
|
452
|
-
tags: [TEXT_MODEL_TAG,
|
|
483
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
484
|
+
|
|
485
|
+
- name: cohere/command-r
|
|
486
|
+
display_name: Command R
|
|
487
|
+
description: Command R is a multilingual 35B parameter model with a context length of 128K that has been trained with conversational tool use capabilities.
|
|
488
|
+
creator_organization_name: Cohere
|
|
489
|
+
access: open
|
|
490
|
+
num_parameters: 35000000000
|
|
491
|
+
release_date: 2024-03-11
|
|
492
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
493
|
+
|
|
494
|
+
- name: cohere/command-r-plus
|
|
495
|
+
display_name: Command R Plus
|
|
496
|
+
description: Command R+ is a multilingual 104B parameter model with a context length of 128K that has been trained with conversational tool use capabilities.
|
|
497
|
+
creator_organization_name: Cohere
|
|
498
|
+
access: open
|
|
499
|
+
num_parameters: 104000000000
|
|
500
|
+
release_date: 2024-04-04
|
|
501
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
453
502
|
|
|
454
503
|
# Craiyon
|
|
455
504
|
- name: craiyon/dalle-mini
|
|
@@ -624,7 +673,16 @@ models:
|
|
|
624
673
|
release_date: 2023-02-13
|
|
625
674
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
626
675
|
|
|
676
|
+
# EPFL LLM
|
|
627
677
|
|
|
678
|
+
- name: epfl-llm/meditron-7b
|
|
679
|
+
display_name: Meditron (7B)
|
|
680
|
+
description: Meditron-7B is a 7 billion parameter model adapted to the medical domain from Llama-2-7B through continued pretraining on a comprehensively curated medical corpus.
|
|
681
|
+
creator_organization_name: EPFL LLM
|
|
682
|
+
access: open
|
|
683
|
+
num_parameters: 7000000000
|
|
684
|
+
release_date: 2023-11-27
|
|
685
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
628
686
|
|
|
629
687
|
# Google
|
|
630
688
|
- name: google/t5-11b
|
|
@@ -673,13 +731,21 @@ models:
|
|
|
673
731
|
tags: [TEXT_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
674
732
|
|
|
675
733
|
- name: google/gemini-1.0-pro-001
|
|
676
|
-
display_name: Gemini 1.0 Pro
|
|
734
|
+
display_name: Gemini 1.0 Pro (001)
|
|
677
735
|
description: Gemini 1.0 Pro is a multimodal model able to reason across text, images, video, audio and code. ([paper](https://arxiv.org/abs/2312.11805))
|
|
678
736
|
creator_organization_name: Google
|
|
679
737
|
access: limited
|
|
680
738
|
release_date: 2023-12-13
|
|
681
739
|
tags: [TEXT_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
682
740
|
|
|
741
|
+
- name: google/gemini-1.0-pro-002
|
|
742
|
+
display_name: Gemini 1.0 Pro (002)
|
|
743
|
+
description: Gemini 1.0 Pro is a multimodal model able to reason across text, images, video, audio and code. ([paper](https://arxiv.org/abs/2312.11805))
|
|
744
|
+
creator_organization_name: Google
|
|
745
|
+
access: limited
|
|
746
|
+
release_date: 2024-04-09
|
|
747
|
+
tags: [TEXT_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
748
|
+
|
|
683
749
|
# Note: This is aliased to a snapshot of gemini-pro-vision. When possible, please use a versioned snapshot instead.
|
|
684
750
|
- name: google/gemini-pro-vision
|
|
685
751
|
display_name: Gemini Pro Vision
|
|
@@ -697,14 +763,78 @@ models:
|
|
|
697
763
|
release_date: 2023-12-13
|
|
698
764
|
tags: [VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, GOOGLE_GEMINI_PRO_VISION_V1_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
699
765
|
|
|
766
|
+
- name: google/gemini-1.5-pro-001
|
|
767
|
+
display_name: Gemini 1.5 Pro (001)
|
|
768
|
+
description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
|
|
769
|
+
creator_organization_name: Google
|
|
770
|
+
access: limited
|
|
771
|
+
release_date: 2024-05-24
|
|
772
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
773
|
+
|
|
774
|
+
- name: google/gemini-1.5-flash-001
|
|
775
|
+
display_name: Gemini 1.5 Flash (001)
|
|
776
|
+
description: Gemini 1.5 Flash is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
|
|
777
|
+
creator_organization_name: Google
|
|
778
|
+
access: limited
|
|
779
|
+
release_date: 2024-05-24
|
|
780
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
781
|
+
|
|
700
782
|
- name: google/gemini-1.5-pro-preview-0409
|
|
701
783
|
display_name: Gemini 1.5 Pro (0409 preview)
|
|
702
|
-
description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. ([paper](https://arxiv.org/abs/2403.05530))
|
|
784
|
+
description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
|
|
703
785
|
creator_organization_name: Google
|
|
704
786
|
access: limited
|
|
705
787
|
release_date: 2024-04-10
|
|
706
788
|
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
707
789
|
|
|
790
|
+
- name: google/gemini-1.5-pro-preview-0514
|
|
791
|
+
display_name: Gemini 1.5 Pro (0514 preview)
|
|
792
|
+
description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
|
|
793
|
+
creator_organization_name: Google
|
|
794
|
+
access: limited
|
|
795
|
+
release_date: 2024-05-14
|
|
796
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
797
|
+
|
|
798
|
+
- name: google/gemini-1.5-flash-preview-0514
|
|
799
|
+
display_name: Gemini 1.5 Flash (0514 preview)
|
|
800
|
+
description: Gemini 1.5 Flash is a smaller Gemini model. It has a 1 million token context window and allows interleaving text, images, audio and video as inputs. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([blog](https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/))
|
|
801
|
+
creator_organization_name: Google
|
|
802
|
+
access: limited
|
|
803
|
+
release_date: 2024-05-14
|
|
804
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
805
|
+
|
|
806
|
+
- name: google/gemini-1.5-pro-001-safety-default
|
|
807
|
+
display_name: Gemini 1.5 Pro (001, default safety)
|
|
808
|
+
description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and uses default safety settings. ([paper](https://arxiv.org/abs/2403.05530))
|
|
809
|
+
creator_organization_name: Google
|
|
810
|
+
access: limited
|
|
811
|
+
release_date: 2024-05-24
|
|
812
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
813
|
+
|
|
814
|
+
- name: google/gemini-1.5-pro-001-safety-block-none
|
|
815
|
+
display_name: Gemini 1.5 Pro (001, BLOCK_NONE safety)
|
|
816
|
+
description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
|
|
817
|
+
creator_organization_name: Google
|
|
818
|
+
access: limited
|
|
819
|
+
release_date: 2024-05-24
|
|
820
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
821
|
+
|
|
822
|
+
- name: google/gemini-1.5-flash-001-safety-default
|
|
823
|
+
display_name: Gemini 1.5 Flash (001, default safety)
|
|
824
|
+
description: Gemini 1.5 Flash is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and uses default safety settings. ([paper](https://arxiv.org/abs/2403.05530))
|
|
825
|
+
creator_organization_name: Google
|
|
826
|
+
access: limited
|
|
827
|
+
release_date: 2024-05-24
|
|
828
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
829
|
+
|
|
830
|
+
- name: google/gemini-1.5-flash-001-safety-block-none
|
|
831
|
+
display_name: Gemini 1.5 Flash (001, BLOCK_NONE safety)
|
|
832
|
+
description: Gemini 1.5 Flash is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
|
|
833
|
+
creator_organization_name: Google
|
|
834
|
+
access: limited
|
|
835
|
+
release_date: 2024-05-24
|
|
836
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
837
|
+
|
|
708
838
|
- name: google/gemma-2b
|
|
709
839
|
display_name: Gemma (2B)
|
|
710
840
|
# TODO: Fill in Gemma description.
|
|
@@ -742,6 +872,22 @@ models:
|
|
|
742
872
|
# TODO: Add OUTPUT_FORMAT_INSTRUCTIONS_TAG tag
|
|
743
873
|
tags: [TEXT_MODEL_TAG, GOOGLE_GEMMA_INSTRUCT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
744
874
|
|
|
875
|
+
- name: google/paligemma-3b-mix-224
|
|
876
|
+
display_name: PaliGemma (3B) Mix 224
|
|
877
|
+
description: PaliGemma is a versatile and lightweight vision-language model (VLM) inspired by PaLI-3 and based on open components such as the SigLIP vision model and the Gemma language model. Pre-trained with 224x224 input images and 128 token input/output text sequences. Finetuned on a mixture of downstream academic datasets. ([blog](https://developers.googleblog.com/en/gemma-family-and-toolkit-expansion-io-2024/))
|
|
878
|
+
creator_organization_name: Google
|
|
879
|
+
access: open
|
|
880
|
+
release_date: 2024-05-12
|
|
881
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
882
|
+
|
|
883
|
+
- name: google/paligemma-3b-mix-448
|
|
884
|
+
display_name: PaliGemma (3B) Mix 448
|
|
885
|
+
description: PaliGemma is a versatile and lightweight vision-language model (VLM) inspired by PaLI-3 and based on open components such as the SigLIP vision model and the Gemma language model. Pre-trained with 448x448 input images and 512 token input/output text sequences. Finetuned on a mixture of downstream academic datasets. ([blog](https://developers.googleblog.com/en/gemma-family-and-toolkit-expansion-io-2024/))
|
|
886
|
+
creator_organization_name: Google
|
|
887
|
+
access: open
|
|
888
|
+
release_date: 2024-05-12
|
|
889
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
890
|
+
|
|
745
891
|
- name: google/text-bison@001
|
|
746
892
|
display_name: PaLM-2 (Bison)
|
|
747
893
|
description: The best value PaLM model. PaLM 2 (Pathways Language Model) is a Transformer-based model trained using a mixture of objectives that was evaluated on English and multilingual language, and reasoning tasks. ([report](https://arxiv.org/pdf/2305.10403.pdf))
|
|
@@ -798,7 +944,21 @@ models:
|
|
|
798
944
|
release_date: 2023-06-29 # Source: https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/code-generation#model_versions
|
|
799
945
|
tags: [CODE_MODEL_TAG]
|
|
800
946
|
|
|
947
|
+
- name: google/medlm-medium
|
|
948
|
+
display_name: MedLM (Medium)
|
|
949
|
+
description: MedLM is a family of foundation models fine-tuned for the healthcare industry based on Google Research's medically-tuned large language model, Med-PaLM 2. ([documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/medlm/overview))
|
|
950
|
+
creator_organization_name: Google
|
|
951
|
+
access: limited
|
|
952
|
+
release_date: 2023-12-13
|
|
953
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
801
954
|
|
|
955
|
+
- name: google/medlm-large
|
|
956
|
+
display_name: MedLM (Large)
|
|
957
|
+
description: MedLM is a family of foundation models fine-tuned for the healthcare industry based on Google Research's medically-tuned large language model, Med-PaLM 2. ([documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/medlm/overview))
|
|
958
|
+
creator_organization_name: Google
|
|
959
|
+
access: limited
|
|
960
|
+
release_date: 2023-12-13
|
|
961
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
802
962
|
|
|
803
963
|
# HuggingFace
|
|
804
964
|
- name: HuggingFaceM4/idefics2-8b
|
|
@@ -1059,8 +1219,6 @@ models:
|
|
|
1059
1219
|
release_date: 2023-06-22
|
|
1060
1220
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1061
1221
|
|
|
1062
|
-
|
|
1063
|
-
|
|
1064
1222
|
# Meta
|
|
1065
1223
|
- name: meta/opt-iml-175b # NOT SUPPORTED
|
|
1066
1224
|
display_name: OPT-IML (175B)
|
|
@@ -1220,7 +1378,7 @@ models:
|
|
|
1220
1378
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1221
1379
|
|
|
1222
1380
|
- name: meta/llama-3-8b-chat
|
|
1223
|
-
display_name: Llama 3
|
|
1381
|
+
display_name: Llama 3 Instruct (8B)
|
|
1224
1382
|
description: Llama 3 is a family of language models that have been trained on more than 15 trillion tokens, and use Grouped-Query Attention (GQA) for improved inference scalability. It used SFT, rejection sampling, PPO and DPO for post-training.
|
|
1225
1383
|
creator_organization_name: Meta
|
|
1226
1384
|
access: open
|
|
@@ -1229,7 +1387,7 @@ models:
|
|
|
1229
1387
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1230
1388
|
|
|
1231
1389
|
- name: meta/llama-3-70b-chat
|
|
1232
|
-
display_name: Llama 3
|
|
1390
|
+
display_name: Llama 3 Instruct (70B)
|
|
1233
1391
|
description: Llama 3 is a family of language models that have been trained on more than 15 trillion tokens, and use Grouped-Query Attention (GQA) for improved inference scalability. It used SFT, rejection sampling, PPO and DPO for post-training.
|
|
1234
1392
|
creator_organization_name: Meta
|
|
1235
1393
|
access: open
|
|
@@ -1237,6 +1395,26 @@ models:
|
|
|
1237
1395
|
release_date: 2024-04-18
|
|
1238
1396
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1239
1397
|
|
|
1398
|
+
- name: meta/llama-guard-7b
|
|
1399
|
+
display_name: Llama Guard (7B)
|
|
1400
|
+
description: Llama-Guard is a 7B parameter Llama 2-based input-output safeguard model. It can be used for classifying content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM it generates text in its output that indicates whether a given prompt or response is safe/unsafe, and if unsafe based on a policy, it also lists the violating subcategories.
|
|
1401
|
+
creator_organization_name: Meta
|
|
1402
|
+
access: open
|
|
1403
|
+
num_parameters: 7000000000
|
|
1404
|
+
release_date: 2023-12-07
|
|
1405
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1406
|
+
|
|
1407
|
+
- name: meta/llama-guard-2-8b
|
|
1408
|
+
display_name: Llama Guard 2 (8B)
|
|
1409
|
+
description: Llama Guard 2 is an 8B parameter Llama 3-based LLM safeguard model. Similar to Llama Guard, it can be used for classifying content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM – it generates text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated.
|
|
1410
|
+
creator_organization_name: Meta
|
|
1411
|
+
access: open
|
|
1412
|
+
num_parameters: 8000000000
|
|
1413
|
+
release_date: 2024-04-18
|
|
1414
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1415
|
+
|
|
1416
|
+
|
|
1417
|
+
|
|
1240
1418
|
|
|
1241
1419
|
# Microsoft/NVIDIA
|
|
1242
1420
|
- name: microsoft/TNLGv2_530B
|
|
@@ -1329,7 +1507,15 @@ models:
|
|
|
1329
1507
|
release_date: 2023-10-05
|
|
1330
1508
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1331
1509
|
|
|
1332
|
-
|
|
1510
|
+
# KAIST AI
|
|
1511
|
+
- name: kaistai/prometheus-vision-13b-v1.0-hf
|
|
1512
|
+
display_name: LLaVA + Vicuna-v1.5 (13B)
|
|
1513
|
+
description: LLaVa is an open-source chatbot trained by fine-tuning LlamA/Vicuna on GPT-generated multimodal instruction-following data. ([paper](https://arxiv.org/abs/2304.08485))
|
|
1514
|
+
creator_organization_name: KAIST AI
|
|
1515
|
+
access: open
|
|
1516
|
+
num_parameters: 13000000000
|
|
1517
|
+
release_date: 2024-01-01
|
|
1518
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LLAVA_MODEL_TAG, LIMITED_FUNCTIONALITY_VLM_TAG]
|
|
1333
1519
|
|
|
1334
1520
|
# 01.AI
|
|
1335
1521
|
- name: 01-ai/yi-6b
|
|
@@ -1340,6 +1526,7 @@ models:
|
|
|
1340
1526
|
num_parameters: 6000000000
|
|
1341
1527
|
release_date: 2023-11-02
|
|
1342
1528
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1529
|
+
|
|
1343
1530
|
- name: 01-ai/yi-34b
|
|
1344
1531
|
display_name: Yi (34B)
|
|
1345
1532
|
description: The Yi models are large language models trained from scratch by developers at 01.AI.
|
|
@@ -1348,6 +1535,7 @@ models:
|
|
|
1348
1535
|
num_parameters: 34000000000
|
|
1349
1536
|
release_date: 2023-11-02
|
|
1350
1537
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1538
|
+
|
|
1351
1539
|
- name: 01-ai/yi-6b-chat
|
|
1352
1540
|
display_name: Yi Chat (6B)
|
|
1353
1541
|
description: The Yi models are large language models trained from scratch by developers at 01.AI.
|
|
@@ -1356,6 +1544,7 @@ models:
|
|
|
1356
1544
|
num_parameters: 6000000000
|
|
1357
1545
|
release_date: 2023-11-23
|
|
1358
1546
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1547
|
+
|
|
1359
1548
|
- name: 01-ai/yi-34b-chat
|
|
1360
1549
|
display_name: Yi Chat (34B)
|
|
1361
1550
|
description: The Yi models are large language models trained from scratch by developers at 01.AI.
|
|
@@ -1365,6 +1554,22 @@ models:
|
|
|
1365
1554
|
release_date: 2023-11-23
|
|
1366
1555
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1367
1556
|
|
|
1557
|
+
- name: 01-ai/yi-large
|
|
1558
|
+
display_name: Yi Large
|
|
1559
|
+
description: The Yi models are large language models trained from scratch by developers at 01.AI. ([tweet](https://x.com/01AI_Yi/status/1789894091620458667))
|
|
1560
|
+
creator_organization_name: 01.AI
|
|
1561
|
+
access: limited
|
|
1562
|
+
release_date: 2024-05-12
|
|
1563
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1564
|
+
|
|
1565
|
+
- name: 01-ai/yi-large-preview
|
|
1566
|
+
display_name: Yi Large (Preview)
|
|
1567
|
+
description: The Yi models are large language models trained from scratch by developers at 01.AI. ([tweet](https://x.com/01AI_Yi/status/1789894091620458667))
|
|
1568
|
+
creator_organization_name: 01.AI
|
|
1569
|
+
access: limited
|
|
1570
|
+
release_date: 2024-05-12
|
|
1571
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1572
|
+
|
|
1368
1573
|
# Allen Institute for AI
|
|
1369
1574
|
# OLMo Blog: https://blog.allenai.org/olmo-open-language-model-87ccfc95f580
|
|
1370
1575
|
- name: allenai/olmo-7b
|
|
@@ -1395,29 +1600,64 @@ models:
|
|
|
1395
1600
|
# TODO: Add instruct tag.
|
|
1396
1601
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1397
1602
|
|
|
1603
|
+
- name: allenai/olmo-1.7-7b
|
|
1604
|
+
display_name: OLMo 1.7 (7B)
|
|
1605
|
+
description: OLMo is a series of Open Language Models trained on the Dolma dataset. The instruct versions was trained on the Tulu SFT mixture and a cleaned version of the UltraFeedback dataset.
|
|
1606
|
+
creator_organization_name: Allen Institute for AI
|
|
1607
|
+
access: open
|
|
1608
|
+
num_parameters: 7000000000
|
|
1609
|
+
release_date: 2024-04-17
|
|
1610
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1398
1611
|
|
|
1399
1612
|
# Mistral AI
|
|
1400
1613
|
- name: mistralai/mistral-7b-v0.1
|
|
1401
1614
|
display_name: Mistral v0.1 (7B)
|
|
1402
|
-
description: Mistral 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA) and Sliding-Window Attention (SWA).
|
|
1615
|
+
description: Mistral 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA) and Sliding-Window Attention (SWA). ([blog post](https://mistral.ai/news/announcing-mistral-7b/))
|
|
1616
|
+
creator_organization_name: Mistral AI
|
|
1617
|
+
access: open
|
|
1618
|
+
num_parameters: 7300000000
|
|
1619
|
+
release_date: 2023-09-27
|
|
1620
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1621
|
+
|
|
1622
|
+
- name: mistralai/mistral-7b-instruct-v0.1
|
|
1623
|
+
display_name: Mistral Instruct v0.1 (7B)
|
|
1624
|
+
description: Mistral v0.1 Instruct 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA) and Sliding-Window Attention (SWA). The instruct version was fined-tuned using publicly available conversation datasets. ([blog post](https://mistral.ai/news/announcing-mistral-7b/))
|
|
1403
1625
|
creator_organization_name: Mistral AI
|
|
1404
1626
|
access: open
|
|
1405
1627
|
num_parameters: 7300000000
|
|
1406
1628
|
release_date: 2023-09-27
|
|
1407
1629
|
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1408
1630
|
|
|
1631
|
+
- name: mistralai/mistral-7b-instruct-v0.2
|
|
1632
|
+
display_name: Mistral Instruct v0.2 (7B)
|
|
1633
|
+
description: Mistral v0.2 Instruct 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA). Compared to v0.1, v0.2 has a 32k context window and no Sliding-Window Attention (SWA). ([blog post](https://mistral.ai/news/la-plateforme/))
|
|
1634
|
+
creator_organization_name: Mistral AI
|
|
1635
|
+
access: open
|
|
1636
|
+
num_parameters: 7300000000
|
|
1637
|
+
release_date: 2024-03-23
|
|
1638
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1639
|
+
|
|
1640
|
+
- name: mistralai/mistral-7b-instruct-v0.3
|
|
1641
|
+
display_name: Mistral Instruct v0.3 (7B)
|
|
1642
|
+
description: Mistral v0.3 Instruct 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA). Compared to v0.1, v0.2 has a 32k context window and no Sliding-Window Attention (SWA). ([blog post](https://mistral.ai/news/la-plateforme/))
|
|
1643
|
+
creator_organization_name: Mistral AI
|
|
1644
|
+
access: open
|
|
1645
|
+
num_parameters: 7300000000
|
|
1646
|
+
release_date: 2024-05-22
|
|
1647
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1648
|
+
|
|
1409
1649
|
- name: mistralai/mixtral-8x7b-32kseqlen
|
|
1410
1650
|
display_name: Mixtral (8x7B 32K seqlen)
|
|
1411
|
-
description:
|
|
1651
|
+
description: Mixtral is a mixture-of-experts model that has 46.7B total parameters but only uses 12.9B parameters per token. ([blog post](https://mistral.ai/news/mixtral-of-experts/), [tweet](https://twitter.com/MistralAI/status/1733150512395038967)).
|
|
1412
1652
|
creator_organization_name: Mistral AI
|
|
1413
1653
|
access: open
|
|
1414
1654
|
num_parameters: 46700000000
|
|
1415
1655
|
release_date: 2023-12-08
|
|
1416
|
-
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG
|
|
1656
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1417
1657
|
|
|
1418
1658
|
- name: mistralai/mixtral-8x7b-instruct-v0.1
|
|
1419
|
-
display_name: Mixtral (8x7B
|
|
1420
|
-
description: Mixtral (8x7B
|
|
1659
|
+
display_name: Mixtral Instruct (8x7B)
|
|
1660
|
+
description: Mixtral Instruct (8x7B) is a version of Mixtral (8x7B) that was optimized through supervised fine-tuning and direct preference optimisation (DPO) for careful instruction following. ([blog post](https://mistral.ai/news/mixtral-of-experts/)).
|
|
1421
1661
|
creator_organization_name: Mistral AI
|
|
1422
1662
|
access: open
|
|
1423
1663
|
num_parameters: 46700000000
|
|
@@ -1432,7 +1672,7 @@ models:
|
|
|
1432
1672
|
access: open
|
|
1433
1673
|
num_parameters: 176000000000
|
|
1434
1674
|
release_date: 2024-04-10
|
|
1435
|
-
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG
|
|
1675
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1436
1676
|
|
|
1437
1677
|
- name: mistralai/mixtral-8x22b-instruct-v0.1
|
|
1438
1678
|
display_name: Mixtral Instruct (8x22B)
|
|
@@ -1727,7 +1967,7 @@ models:
|
|
|
1727
1967
|
tags: [TEXT_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1728
1968
|
|
|
1729
1969
|
- name: openai/gpt-3.5-turbo-0125
|
|
1730
|
-
display_name:
|
|
1970
|
+
display_name: GPT-3.5 Turbo (0125)
|
|
1731
1971
|
description: Sibling model of text-davinci-003 that is optimized for chat but works well for traditional completions tasks as well. Snapshot from 2024-01-25.
|
|
1732
1972
|
creator_organization_name: OpenAI
|
|
1733
1973
|
access: limited
|
|
@@ -1806,6 +2046,14 @@ models:
|
|
|
1806
2046
|
release_date: 2024-04-09
|
|
1807
2047
|
tags: [TEXT_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1808
2048
|
|
|
2049
|
+
- name: openai/gpt-4o-2024-05-13
|
|
2050
|
+
display_name: GPT-4o (2024-05-13)
|
|
2051
|
+
description: GPT-4o (2024-05-13) is a large multimodal model that accepts as input any combination of text, audio, and image and generates any combination of text, audio, and image outputs.
|
|
2052
|
+
creator_organization_name: OpenAI
|
|
2053
|
+
access: limited
|
|
2054
|
+
release_date: 2024-04-09
|
|
2055
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2056
|
+
|
|
1809
2057
|
- name: openai/gpt-4-vision-preview
|
|
1810
2058
|
# According to https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4, this model has pointed gpt-4-1106-vision-preview.
|
|
1811
2059
|
display_name: GPT-4V (1106 preview)
|
|
@@ -1953,7 +2201,7 @@ models:
|
|
|
1953
2201
|
|
|
1954
2202
|
- name: qwen/qwen-7b
|
|
1955
2203
|
display_name: Qwen
|
|
1956
|
-
description: 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen
|
|
2204
|
+
description: 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
|
|
1957
2205
|
creator_organization_name: Qwen
|
|
1958
2206
|
access: open
|
|
1959
2207
|
release_date: 2024-02-05
|
|
@@ -1961,7 +2209,7 @@ models:
|
|
|
1961
2209
|
|
|
1962
2210
|
- name: qwen/qwen1.5-7b
|
|
1963
2211
|
display_name: Qwen1.5 (7B)
|
|
1964
|
-
description: 7B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen
|
|
2212
|
+
description: 7B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
|
|
1965
2213
|
creator_organization_name: Qwen
|
|
1966
2214
|
access: open
|
|
1967
2215
|
release_date: 2024-02-05
|
|
@@ -1969,7 +2217,7 @@ models:
|
|
|
1969
2217
|
|
|
1970
2218
|
- name: qwen/qwen1.5-14b
|
|
1971
2219
|
display_name: Qwen1.5 (14B)
|
|
1972
|
-
description: 14B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen
|
|
2220
|
+
description: 14B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
|
|
1973
2221
|
creator_organization_name: Qwen
|
|
1974
2222
|
access: open
|
|
1975
2223
|
release_date: 2024-02-05
|
|
@@ -1977,20 +2225,68 @@ models:
|
|
|
1977
2225
|
|
|
1978
2226
|
- name: qwen/qwen1.5-32b
|
|
1979
2227
|
display_name: Qwen1.5 (32B)
|
|
1980
|
-
description: 32B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen
|
|
2228
|
+
description: 32B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. The 32B version also includes grouped query attention (GQA). ([blog](https://qwenlm.github.io/blog/qwen1.5-32b/))
|
|
1981
2229
|
creator_organization_name: Qwen
|
|
1982
2230
|
access: open
|
|
1983
|
-
release_date: 2024-02
|
|
2231
|
+
release_date: 2024-04-02
|
|
1984
2232
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1985
2233
|
|
|
1986
2234
|
- name: qwen/qwen1.5-72b
|
|
1987
2235
|
display_name: Qwen1.5 (72B)
|
|
1988
|
-
description: 72B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen
|
|
2236
|
+
description: 72B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
|
|
1989
2237
|
creator_organization_name: Qwen
|
|
1990
2238
|
access: open
|
|
1991
2239
|
release_date: 2024-02-05
|
|
1992
2240
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1993
2241
|
|
|
2242
|
+
- name: qwen/qwen1.5-7b-chat
|
|
2243
|
+
display_name: Qwen1.5 Chat (7B)
|
|
2244
|
+
description: 7B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
|
|
2245
|
+
creator_organization_name: Qwen
|
|
2246
|
+
access: open
|
|
2247
|
+
release_date: 2024-02-05
|
|
2248
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2249
|
+
|
|
2250
|
+
- name: qwen/qwen1.5-14b-chat
|
|
2251
|
+
display_name: Qwen1.5 Chat (14B)
|
|
2252
|
+
description: 14B-parameter chat version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
|
|
2253
|
+
creator_organization_name: Qwen
|
|
2254
|
+
access: open
|
|
2255
|
+
release_date: 2024-02-05
|
|
2256
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2257
|
+
|
|
2258
|
+
- name: qwen/qwen1.5-32b-chat
|
|
2259
|
+
display_name: Qwen1.5 Chat (32B)
|
|
2260
|
+
description: 32B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. The 32B version also includes grouped query attention (GQA). ([blog](https://qwenlm.github.io/blog/qwen1.5-32b/))
|
|
2261
|
+
creator_organization_name: Qwen
|
|
2262
|
+
access: open
|
|
2263
|
+
release_date: 2024-04-02
|
|
2264
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2265
|
+
|
|
2266
|
+
- name: qwen/qwen1.5-72b-chat
|
|
2267
|
+
display_name: Qwen1.5 Chat (72B)
|
|
2268
|
+
description: 72B-parameter chat version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
|
|
2269
|
+
creator_organization_name: Qwen
|
|
2270
|
+
access: open
|
|
2271
|
+
release_date: 2024-02-05
|
|
2272
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2273
|
+
|
|
2274
|
+
- name: qwen/qwen1.5-110b-chat
|
|
2275
|
+
display_name: Qwen1.5 Chat (110B)
|
|
2276
|
+
description: 110B-parameter chat version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. The 110B version also includes grouped query attention (GQA). ([blog](https://qwenlm.github.io/blog/qwen1.5-110b/))
|
|
2277
|
+
creator_organization_name: Qwen
|
|
2278
|
+
access: open
|
|
2279
|
+
release_date: 2024-04-25
|
|
2280
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2281
|
+
|
|
2282
|
+
- name: qwen/qwen2-72b-instruct
|
|
2283
|
+
display_name: Qwen2 Instruct (72B)
|
|
2284
|
+
description: 72B-parameter chat version of the large language model series, Qwen2. Qwen2 uses Group Query Attention (GQA) and has extended context length support up to 128K tokens. ([blog](https://qwenlm.github.io/blog/qwen2/))
|
|
2285
|
+
creator_organization_name: Qwen
|
|
2286
|
+
access: open
|
|
2287
|
+
release_date: 2024-06-07
|
|
2288
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2289
|
+
|
|
1994
2290
|
- name: qwen/qwen-vl
|
|
1995
2291
|
display_name: Qwen-VL
|
|
1996
2292
|
description: Visual multimodal version of the Qwen large language model series ([paper](https://arxiv.org/abs/2308.12966)).
|
|
@@ -2007,6 +2303,43 @@ models:
|
|
|
2007
2303
|
release_date: 2023-08-24
|
|
2008
2304
|
tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
|
|
2009
2305
|
|
|
2306
|
+
# SAIL (Sea AI Lab)
|
|
2307
|
+
- name: sail/sailor-7b
|
|
2308
|
+
display_name: Sailor (7B)
|
|
2309
|
+
description: Sailor is a suite of Open Language Models tailored for South-East Asia, focusing on languages such as Indonesian, Thai, Vietnamese, Malay, and Lao. These models were continually pre-trained from Qwen1.5. ([paper](https://arxiv.org/abs/2404.03608))
|
|
2310
|
+
creator_organization_name: SAIL
|
|
2311
|
+
access: open
|
|
2312
|
+
num_parameters: 7000000000
|
|
2313
|
+
release_date: 2024-04-04
|
|
2314
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2315
|
+
|
|
2316
|
+
- name: sail/sailor-7b-chat
|
|
2317
|
+
display_name: Sailor Chat (7B)
|
|
2318
|
+
description: Sailor is a suite of Open Language Models tailored for South-East Asia, focusing on languages such as Indonesian, Thai, Vietnamese, Malay, and Lao. These models were continually pre-trained from Qwen1.5. ([paper](https://arxiv.org/abs/2404.03608))
|
|
2319
|
+
creator_organization_name: SAIL
|
|
2320
|
+
access: open
|
|
2321
|
+
num_parameters: 7000000000
|
|
2322
|
+
release_date: 2024-04-04
|
|
2323
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2324
|
+
|
|
2325
|
+
- name: sail/sailor-14b
|
|
2326
|
+
display_name: Sailor (14B)
|
|
2327
|
+
description: Sailor is a suite of Open Language Models tailored for South-East Asia, focusing on languages such as Indonesian, Thai, Vietnamese, Malay, and Lao. These models were continually pre-trained from Qwen1.5. ([paper](https://arxiv.org/abs/2404.03608))
|
|
2328
|
+
creator_organization_name: SAIL
|
|
2329
|
+
access: open
|
|
2330
|
+
num_parameters: 14000000000
|
|
2331
|
+
release_date: 2024-04-04
|
|
2332
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2333
|
+
|
|
2334
|
+
- name: sail/sailor-14b-chat
|
|
2335
|
+
display_name: Sailor Chat (14B)
|
|
2336
|
+
description: Sailor is a suite of Open Language Models tailored for South-East Asia, focusing on languages such as Indonesian, Thai, Vietnamese, Malay, and Lao. These models were continually pre-trained from Qwen1.5. ([paper](https://arxiv.org/abs/2404.03608))
|
|
2337
|
+
creator_organization_name: SAIL
|
|
2338
|
+
access: open
|
|
2339
|
+
num_parameters: 14000000000
|
|
2340
|
+
release_date: 2024-04-04
|
|
2341
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2342
|
+
|
|
2010
2343
|
# Salesforce
|
|
2011
2344
|
- name: salesforce/codegen # NOT SUPPORTED
|
|
2012
2345
|
display_name: CodeGen (16B)
|
|
@@ -2017,6 +2350,24 @@ models:
|
|
|
2017
2350
|
release_date: 2022-03-25
|
|
2018
2351
|
tags: [] # TODO: add tags
|
|
2019
2352
|
|
|
2353
|
+
# SCB10X
|
|
2354
|
+
- name: scb10x/typhoon-v1.5-72b
|
|
2355
|
+
display_name: Typhoon v1.5 (72B)
|
|
2356
|
+
description: Typhoon v1.5 (72B) is pretrained Thai large language model with 72 billion parameters based on Qwen1.5-72B. ([blog](https://blog.opentyphoon.ai/typhoon-1-5-release-a9364cb8e8d7))
|
|
2357
|
+
creator_organization_name: SCB10X
|
|
2358
|
+
access: open
|
|
2359
|
+
num_parameters: 72000000000
|
|
2360
|
+
release_date: 2024-05-08
|
|
2361
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2362
|
+
|
|
2363
|
+
- name: scb10x/typhoon-v1.5-72b-instruct
|
|
2364
|
+
display_name: Typhoon v1.5 Instruct (72B)
|
|
2365
|
+
description: Typhoon v1.5 Instruct (72B) is pretrained Thai large language model with 72 billion parameters based on Qwen1.5-72B. ([blog](https://blog.opentyphoon.ai/typhoon-1-5-release-a9364cb8e8d7))
|
|
2366
|
+
creator_organization_name: SCB10X
|
|
2367
|
+
access: open
|
|
2368
|
+
num_parameters: 72000000000
|
|
2369
|
+
release_date: 2024-05-08
|
|
2370
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2020
2371
|
|
|
2021
2372
|
# Snowflake
|
|
2022
2373
|
- name: snowflake/snowflake-arctic-instruct
|
|
@@ -2293,6 +2644,15 @@ models:
|
|
|
2293
2644
|
# Does not support echo
|
|
2294
2645
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2295
2646
|
|
|
2647
|
+
- name: writer/palmyra-vision-003
|
|
2648
|
+
display_name: Palmyra Vision 003
|
|
2649
|
+
description: Palmyra Vision 003 (internal only)
|
|
2650
|
+
creator_organization_name: Writer
|
|
2651
|
+
access: limited
|
|
2652
|
+
num_parameters: 5000000000
|
|
2653
|
+
release_date: 2024-05-24
|
|
2654
|
+
# Does not support echo
|
|
2655
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_VLM_TAG]
|
|
2296
2656
|
|
|
2297
2657
|
|
|
2298
2658
|
# Yandex
|
|
@@ -2304,3 +2664,65 @@ models:
|
|
|
2304
2664
|
num_parameters: 100000000000
|
|
2305
2665
|
release_date: 2022-06-23
|
|
2306
2666
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG]
|
|
2667
|
+
|
|
2668
|
+
# Reka
|
|
2669
|
+
- name: reka/reka-core
|
|
2670
|
+
display_name: Reka-Core
|
|
2671
|
+
description: Reka-Core
|
|
2672
|
+
creator_organization_name: Reka AI
|
|
2673
|
+
access: limited
|
|
2674
|
+
release_date: 2024-04-18
|
|
2675
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2676
|
+
|
|
2677
|
+
- name: reka/reka-core-20240415
|
|
2678
|
+
display_name: Reka-Core-20240415
|
|
2679
|
+
description: Reka-Core-20240415
|
|
2680
|
+
creator_organization_name: Reka AI
|
|
2681
|
+
access: limited
|
|
2682
|
+
release_date: 2024-04-18
|
|
2683
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2684
|
+
|
|
2685
|
+
- name: reka/reka-core-20240501
|
|
2686
|
+
display_name: Reka-Core-20240501
|
|
2687
|
+
description: Reka-Core-20240501
|
|
2688
|
+
creator_organization_name: Reka AI
|
|
2689
|
+
access: limited
|
|
2690
|
+
release_date: 2024-05-01
|
|
2691
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2692
|
+
|
|
2693
|
+
- name: reka/reka-flash
|
|
2694
|
+
display_name: Reka-Flash (21B)
|
|
2695
|
+
description: Reka-Flash (21B)
|
|
2696
|
+
creator_organization_name: Reka AI
|
|
2697
|
+
access: limited
|
|
2698
|
+
num_parameters: 21000000000
|
|
2699
|
+
release_date: 2024-04-18
|
|
2700
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2701
|
+
|
|
2702
|
+
- name: reka/reka-flash-20240226
|
|
2703
|
+
display_name: Reka-Flash-20240226 (21B)
|
|
2704
|
+
description: Reka-Flash-20240226 (21B)
|
|
2705
|
+
creator_organization_name: Reka AI
|
|
2706
|
+
access: limited
|
|
2707
|
+
num_parameters: 21000000000
|
|
2708
|
+
release_date: 2024-04-18
|
|
2709
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2710
|
+
|
|
2711
|
+
- name: reka/reka-edge
|
|
2712
|
+
display_name: Reka-Edge (7B)
|
|
2713
|
+
description: Reka-Edge (7B)
|
|
2714
|
+
creator_organization_name: Reka AI
|
|
2715
|
+
access: limited
|
|
2716
|
+
num_parameters: 7000000000
|
|
2717
|
+
release_date: 2024-04-18
|
|
2718
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2719
|
+
|
|
2720
|
+
- name: reka/reka-edge-20240208
|
|
2721
|
+
display_name: Reka-Edge-20240208 (7B)
|
|
2722
|
+
description: Reka-Edge-20240208 (7B)
|
|
2723
|
+
creator_organization_name: Reka AI
|
|
2724
|
+
access: limited
|
|
2725
|
+
num_parameters: 7000000000
|
|
2726
|
+
release_date: 2024-04-18
|
|
2727
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2728
|
+
|