crfm-helm 0.5.1__py3-none-any.whl → 0.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of crfm-helm might be problematic. Click here for more details.

Files changed (98) hide show
  1. {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/METADATA +13 -3
  2. {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/RECORD +96 -63
  3. helm/benchmark/adaptation/adapter_spec.py +32 -31
  4. helm/benchmark/annotation/air_bench_annotator.py +64 -0
  5. helm/benchmark/annotation/annotator_factory.py +6 -0
  6. helm/benchmark/annotation/live_qa_annotator.py +84 -0
  7. helm/benchmark/annotation/medication_qa_annotator.py +81 -0
  8. helm/benchmark/augmentations/translate_perturbation.py +1 -0
  9. helm/benchmark/huggingface_registration.py +16 -6
  10. helm/benchmark/metrics/air_bench_metrics.py +56 -0
  11. helm/benchmark/metrics/fin_qa_metrics.py +60 -0
  12. helm/benchmark/metrics/fin_qa_metrics_helper.py +398 -0
  13. helm/benchmark/metrics/gpt4v_originality_critique_metrics.py +126 -0
  14. helm/benchmark/metrics/instruction_following_critique_metrics.py +1 -0
  15. helm/benchmark/metrics/live_qa_metrics.py +23 -0
  16. helm/benchmark/metrics/medication_qa_metrics.py +23 -0
  17. helm/benchmark/metrics/prometheus_vision_critique_metrics.py +185 -0
  18. helm/benchmark/metrics/reka_vibe_critique_metrics.py +158 -0
  19. helm/benchmark/metrics/unitxt_metrics.py +20 -10
  20. helm/benchmark/metrics/vision_language/emd_utils.py +4 -0
  21. helm/benchmark/metrics/vision_language/image_metrics.py +29 -71
  22. helm/benchmark/presentation/schema.py +54 -4
  23. helm/benchmark/presentation/test_schema.py +11 -0
  24. helm/benchmark/run.py +16 -2
  25. helm/benchmark/run_expander.py +77 -0
  26. helm/benchmark/run_spec_factory.py +4 -0
  27. helm/benchmark/run_specs/air_bench_run_specs.py +40 -0
  28. helm/benchmark/run_specs/classic_run_specs.py +15 -11
  29. helm/benchmark/run_specs/decodingtrust_run_specs.py +3 -1
  30. helm/benchmark/run_specs/experimental_run_specs.py +33 -0
  31. helm/benchmark/run_specs/finance_run_specs.py +33 -0
  32. helm/benchmark/run_specs/vlm_run_specs.py +168 -45
  33. helm/benchmark/scenarios/air_bench_scenario.py +50 -0
  34. helm/benchmark/scenarios/ci_mcqa_scenario.py +80 -0
  35. helm/benchmark/scenarios/entity_data_imputation_scenario.py +8 -2
  36. helm/benchmark/scenarios/fin_qa_scenario.py +117 -0
  37. helm/benchmark/scenarios/test_air_bench_scenario.py +27 -0
  38. helm/benchmark/scenarios/vision_language/bingo_scenario.py +3 -3
  39. helm/benchmark/scenarios/vision_language/image2structure/image2structure_scenario.py +13 -2
  40. helm/benchmark/scenarios/vision_language/image2structure/latex_scenario.py +1 -5
  41. helm/benchmark/scenarios/vision_language/image2structure/musicsheet_scenario.py +0 -4
  42. helm/benchmark/scenarios/vision_language/image2structure/webpage_scenario.py +4 -2
  43. helm/benchmark/scenarios/vision_language/pairs_scenario.py +6 -5
  44. helm/benchmark/scenarios/vision_language/unicorn_scenario.py +3 -3
  45. helm/benchmark/scenarios/vision_language/vibe_eval_scenario.py +95 -0
  46. helm/benchmark/static/schema_air_bench.yaml +3149 -0
  47. helm/benchmark/static/schema_classic.yaml +3 -59
  48. helm/benchmark/static/schema_finance.yaml +143 -0
  49. helm/benchmark/static/schema_image2structure.yaml +254 -111
  50. helm/benchmark/static/schema_instruction_following.yaml +3 -52
  51. helm/benchmark/static/schema_lite.yaml +3 -61
  52. helm/benchmark/static/schema_medical.yaml +255 -0
  53. helm/benchmark/static/schema_mmlu.yaml +3 -61
  54. helm/benchmark/static/schema_tables.yaml +200 -0
  55. helm/benchmark/static/schema_thai.yaml +223 -0
  56. helm/benchmark/static/schema_unitxt.yaml +3 -61
  57. helm/benchmark/static/{schema_vlm.yaml → schema_vhelm.yaml} +294 -293
  58. helm/benchmark/static/schema_vhelm_lite.yaml +4 -59
  59. helm/benchmark/static_build/assets/air-overview-d2e6c49f.png +0 -0
  60. helm/benchmark/static_build/assets/index-30dbceba.js +10 -0
  61. helm/benchmark/static_build/assets/index-66b02d40.css +1 -0
  62. helm/benchmark/static_build/assets/overview-74aea3d8.png +0 -0
  63. helm/benchmark/static_build/assets/process-flow-bd2eba96.png +0 -0
  64. helm/benchmark/static_build/index.html +2 -2
  65. helm/clients/anthropic_client.py +43 -9
  66. helm/clients/auto_client.py +11 -0
  67. helm/clients/client.py +24 -7
  68. helm/clients/cohere_client.py +98 -3
  69. helm/clients/huggingface_client.py +71 -12
  70. helm/clients/openai_client.py +9 -2
  71. helm/clients/reka_client.py +189 -0
  72. helm/clients/test_client.py +3 -3
  73. helm/clients/test_huggingface_client.py +19 -3
  74. helm/clients/test_together_client.py +72 -2
  75. helm/clients/together_client.py +129 -23
  76. helm/clients/vertexai_client.py +62 -18
  77. helm/clients/vision_language/huggingface_vlm_client.py +1 -0
  78. helm/clients/vision_language/paligemma_client.py +146 -0
  79. helm/clients/vision_language/palmyra_vision_client.py +84 -0
  80. helm/clients/yi_client.py +31 -0
  81. helm/common/critique_request.py +10 -1
  82. helm/common/images_utils.py +19 -0
  83. helm/config/model_deployments.yaml +412 -18
  84. helm/config/model_metadata.yaml +447 -25
  85. helm/config/tokenizer_configs.yaml +93 -1
  86. helm/proxy/critique/model_critique_client.py +32 -4
  87. helm/proxy/services/server_service.py +1 -1
  88. helm/tokenizers/auto_tokenizer.py +1 -1
  89. helm/tokenizers/cohere_tokenizer.py +44 -2
  90. helm/tokenizers/huggingface_tokenizer.py +36 -13
  91. helm/tokenizers/test_cohere_tokenizer.py +39 -0
  92. helm/tokenizers/test_huggingface_tokenizer.py +5 -1
  93. helm/benchmark/static_build/assets/index-737eef9e.js +0 -10
  94. helm/benchmark/static_build/assets/index-878a1094.css +0 -1
  95. {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/LICENSE +0 -0
  96. {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/WHEEL +0 -0
  97. {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/entry_points.txt +0 -0
  98. {crfm_helm-0.5.1.dist-info → crfm_helm-0.5.2.dist-info}/top_level.txt +0 -0
@@ -100,6 +100,25 @@ models:
100
100
  # - j2-large -> j2-light
101
101
 
102
102
 
103
+ # AI Singapore
104
+ - name: aisingapore/sea-lion-7b
105
+ display_name: SEA-LION (7B)
106
+ description: SEA-LION is a collection of language models which has been pretrained and instruct-tuned on languages from the Southeast Asia region. It utilizes the MPT architecture and a custom SEABPETokenizer for tokenization.
107
+ creator_organization_name: AI Singapore
108
+ access: open
109
+ num_parameters: 7000000000
110
+ release_date: 2023-02-24
111
+ tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
112
+
113
+ - name: aisingapore/sea-lion-7b-instruct
114
+ display_name: SEA-LION Instruct (7B)
115
+ description: SEA-LION is a collection of language models which has been pretrained and instruct-tuned on languages from the Southeast Asia region. It utilizes the MPT architecture and a custom SEABPETokenizer for tokenization.
116
+ creator_organization_name: AI Singapore
117
+ access: open
118
+ num_parameters: 7000000000
119
+ release_date: 2023-02-24
120
+ tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
121
+
103
122
 
104
123
  # Aleph Alpha
105
124
  # Aleph Alpha's Luminous models: https://docs.aleph-alpha.com/docs/introduction/luminous
@@ -327,6 +346,18 @@ models:
327
346
  release_date: 2023-05-09 # ArXiv submission date
328
347
  tags: [CODE_MODEL_TAG]
329
348
 
349
+ # BioMistral
350
+
351
+ - name: biomistral/biomistral-7b
352
+ display_name: BioMistral (7B)
353
+ description: BioMistral 7B is an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central.
354
+ creator_organization_name: BioMistral
355
+ access: open
356
+ num_parameters: 7300000000
357
+ release_date: 2024-02-15
358
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
359
+
360
+
330
361
 
331
362
 
332
363
  # Cerebras Systems
@@ -418,7 +449,7 @@ models:
418
449
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
419
450
 
420
451
  - name: cohere/command-medium-beta # DEPRECATED
421
- display_name: Cohere Command beta (6.1B)
452
+ display_name: Command beta (6.1B)
422
453
  description: Cohere Command beta (6.1B parameters) is fine-tuned from the medium model to respond well with instruction-like prompts ([details](https://docs.cohere.ai/docs/command-beta)).
423
454
  creator_organization_name: Cohere
424
455
  access: limited
@@ -427,7 +458,7 @@ models:
427
458
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
428
459
 
429
460
  - name: cohere/command-xlarge-beta # DEPRECATED
430
- display_name: Cohere Command beta (52.4B)
461
+ display_name: Command beta (52.4B)
431
462
  description: Cohere Command beta (52.4B parameters) is fine-tuned from the XL model to respond well with instruction-like prompts ([details](https://docs.cohere.ai/docs/command-beta)).
432
463
  creator_organization_name: Cohere
433
464
  access: limited
@@ -436,7 +467,7 @@ models:
436
467
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
437
468
 
438
469
  - name: cohere/command
439
- display_name: Cohere Command
470
+ display_name: Command
440
471
  description: Command is Cohere’s flagship text generation model. It is trained to follow user commands and to be instantly useful in practical business applications. [docs](https://docs.cohere.com/reference/generate) and [changelog](https://docs.cohere.com/changelog)
441
472
  creator_organization_name: Cohere
442
473
  access: limited
@@ -444,12 +475,30 @@ models:
444
475
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
445
476
 
446
477
  - name: cohere/command-light
447
- display_name: Cohere Command Light
478
+ display_name: Command Light
448
479
  description: Command is Cohere’s flagship text generation model. It is trained to follow user commands and to be instantly useful in practical business applications. [docs](https://docs.cohere.com/reference/generate) and [changelog](https://docs.cohere.com/changelog)
449
480
  creator_organization_name: Cohere
450
481
  access: limited
451
482
  release_date: 2023-09-29
452
- tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
483
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
484
+
485
+ - name: cohere/command-r
486
+ display_name: Command R
487
+ description: Command R is a multilingual 35B parameter model with a context length of 128K that has been trained with conversational tool use capabilities.
488
+ creator_organization_name: Cohere
489
+ access: open
490
+ num_parameters: 35000000000
491
+ release_date: 2024-03-11
492
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
493
+
494
+ - name: cohere/command-r-plus
495
+ display_name: Command R Plus
496
+ description: Command R+ is a multilingual 104B parameter model with a context length of 128K that has been trained with conversational tool use capabilities.
497
+ creator_organization_name: Cohere
498
+ access: open
499
+ num_parameters: 104000000000
500
+ release_date: 2024-04-04
501
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
453
502
 
454
503
  # Craiyon
455
504
  - name: craiyon/dalle-mini
@@ -624,7 +673,16 @@ models:
624
673
  release_date: 2023-02-13
625
674
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
626
675
 
676
+ # EPFL LLM
627
677
 
678
+ - name: epfl-llm/meditron-7b
679
+ display_name: Meditron (7B)
680
+ description: Meditron-7B is a 7 billion parameter model adapted to the medical domain from Llama-2-7B through continued pretraining on a comprehensively curated medical corpus.
681
+ creator_organization_name: EPFL LLM
682
+ access: open
683
+ num_parameters: 7000000000
684
+ release_date: 2023-11-27
685
+ tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
628
686
 
629
687
  # Google
630
688
  - name: google/t5-11b
@@ -673,13 +731,21 @@ models:
673
731
  tags: [TEXT_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
674
732
 
675
733
  - name: google/gemini-1.0-pro-001
676
- display_name: Gemini 1.0 Pro
734
+ display_name: Gemini 1.0 Pro (001)
677
735
  description: Gemini 1.0 Pro is a multimodal model able to reason across text, images, video, audio and code. ([paper](https://arxiv.org/abs/2312.11805))
678
736
  creator_organization_name: Google
679
737
  access: limited
680
738
  release_date: 2023-12-13
681
739
  tags: [TEXT_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
682
740
 
741
+ - name: google/gemini-1.0-pro-002
742
+ display_name: Gemini 1.0 Pro (002)
743
+ description: Gemini 1.0 Pro is a multimodal model able to reason across text, images, video, audio and code. ([paper](https://arxiv.org/abs/2312.11805))
744
+ creator_organization_name: Google
745
+ access: limited
746
+ release_date: 2024-04-09
747
+ tags: [TEXT_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
748
+
683
749
  # Note: This is aliased to a snapshot of gemini-pro-vision. When possible, please use a versioned snapshot instead.
684
750
  - name: google/gemini-pro-vision
685
751
  display_name: Gemini Pro Vision
@@ -697,14 +763,78 @@ models:
697
763
  release_date: 2023-12-13
698
764
  tags: [VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, GOOGLE_GEMINI_PRO_VISION_V1_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
699
765
 
766
+ - name: google/gemini-1.5-pro-001
767
+ display_name: Gemini 1.5 Pro (001)
768
+ description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
769
+ creator_organization_name: Google
770
+ access: limited
771
+ release_date: 2024-05-24
772
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
773
+
774
+ - name: google/gemini-1.5-flash-001
775
+ display_name: Gemini 1.5 Flash (001)
776
+ description: Gemini 1.5 Flash is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
777
+ creator_organization_name: Google
778
+ access: limited
779
+ release_date: 2024-05-24
780
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
781
+
700
782
  - name: google/gemini-1.5-pro-preview-0409
701
783
  display_name: Gemini 1.5 Pro (0409 preview)
702
- description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. ([paper](https://arxiv.org/abs/2403.05530))
784
+ description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
703
785
  creator_organization_name: Google
704
786
  access: limited
705
787
  release_date: 2024-04-10
706
788
  tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
707
789
 
790
+ - name: google/gemini-1.5-pro-preview-0514
791
+ display_name: Gemini 1.5 Pro (0514 preview)
792
+ description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
793
+ creator_organization_name: Google
794
+ access: limited
795
+ release_date: 2024-05-14
796
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
797
+
798
+ - name: google/gemini-1.5-flash-preview-0514
799
+ display_name: Gemini 1.5 Flash (0514 preview)
800
+ description: Gemini 1.5 Flash is a smaller Gemini model. It has a 1 million token context window and allows interleaving text, images, audio and video as inputs. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([blog](https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/))
801
+ creator_organization_name: Google
802
+ access: limited
803
+ release_date: 2024-05-14
804
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
805
+
806
+ - name: google/gemini-1.5-pro-001-safety-default
807
+ display_name: Gemini 1.5 Pro (001, default safety)
808
+ description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and uses default safety settings. ([paper](https://arxiv.org/abs/2403.05530))
809
+ creator_organization_name: Google
810
+ access: limited
811
+ release_date: 2024-05-24
812
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
813
+
814
+ - name: google/gemini-1.5-pro-001-safety-block-none
815
+ display_name: Gemini 1.5 Pro (001, BLOCK_NONE safety)
816
+ description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
817
+ creator_organization_name: Google
818
+ access: limited
819
+ release_date: 2024-05-24
820
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
821
+
822
+ - name: google/gemini-1.5-flash-001-safety-default
823
+ display_name: Gemini 1.5 Flash (001, default safety)
824
+ description: Gemini 1.5 Flash is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and uses default safety settings. ([paper](https://arxiv.org/abs/2403.05530))
825
+ creator_organization_name: Google
826
+ access: limited
827
+ release_date: 2024-05-24
828
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
829
+
830
+ - name: google/gemini-1.5-flash-001-safety-block-none
831
+ display_name: Gemini 1.5 Flash (001, BLOCK_NONE safety)
832
+ description: Gemini 1.5 Flash is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
833
+ creator_organization_name: Google
834
+ access: limited
835
+ release_date: 2024-05-24
836
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
837
+
708
838
  - name: google/gemma-2b
709
839
  display_name: Gemma (2B)
710
840
  # TODO: Fill in Gemma description.
@@ -742,6 +872,22 @@ models:
742
872
  # TODO: Add OUTPUT_FORMAT_INSTRUCTIONS_TAG tag
743
873
  tags: [TEXT_MODEL_TAG, GOOGLE_GEMMA_INSTRUCT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
744
874
 
875
+ - name: google/paligemma-3b-mix-224
876
+ display_name: PaliGemma (3B) Mix 224
877
+ description: PaliGemma is a versatile and lightweight vision-language model (VLM) inspired by PaLI-3 and based on open components such as the SigLIP vision model and the Gemma language model. Pre-trained with 224x224 input images and 128 token input/output text sequences. Finetuned on a mixture of downstream academic datasets. ([blog](https://developers.googleblog.com/en/gemma-family-and-toolkit-expansion-io-2024/))
878
+ creator_organization_name: Google
879
+ access: open
880
+ release_date: 2024-05-12
881
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
882
+
883
+ - name: google/paligemma-3b-mix-448
884
+ display_name: PaliGemma (3B) Mix 448
885
+ description: PaliGemma is a versatile and lightweight vision-language model (VLM) inspired by PaLI-3 and based on open components such as the SigLIP vision model and the Gemma language model. Pre-trained with 448x448 input images and 512 token input/output text sequences. Finetuned on a mixture of downstream academic datasets. ([blog](https://developers.googleblog.com/en/gemma-family-and-toolkit-expansion-io-2024/))
886
+ creator_organization_name: Google
887
+ access: open
888
+ release_date: 2024-05-12
889
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
890
+
745
891
  - name: google/text-bison@001
746
892
  display_name: PaLM-2 (Bison)
747
893
  description: The best value PaLM model. PaLM 2 (Pathways Language Model) is a Transformer-based model trained using a mixture of objectives that was evaluated on English and multilingual language, and reasoning tasks. ([report](https://arxiv.org/pdf/2305.10403.pdf))
@@ -798,7 +944,21 @@ models:
798
944
  release_date: 2023-06-29 # Source: https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/code-generation#model_versions
799
945
  tags: [CODE_MODEL_TAG]
800
946
 
947
+ - name: google/medlm-medium
948
+ display_name: MedLM (Medium)
949
+ description: MedLM is a family of foundation models fine-tuned for the healthcare industry based on Google Research's medically-tuned large language model, Med-PaLM 2. ([documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/medlm/overview))
950
+ creator_organization_name: Google
951
+ access: limited
952
+ release_date: 2023-12-13
953
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
801
954
 
955
+ - name: google/medlm-large
956
+ display_name: MedLM (Large)
957
+ description: MedLM is a family of foundation models fine-tuned for the healthcare industry based on Google Research's medically-tuned large language model, Med-PaLM 2. ([documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/medlm/overview))
958
+ creator_organization_name: Google
959
+ access: limited
960
+ release_date: 2023-12-13
961
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
802
962
 
803
963
  # HuggingFace
804
964
  - name: HuggingFaceM4/idefics2-8b
@@ -1059,8 +1219,6 @@ models:
1059
1219
  release_date: 2023-06-22
1060
1220
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1061
1221
 
1062
-
1063
-
1064
1222
  # Meta
1065
1223
  - name: meta/opt-iml-175b # NOT SUPPORTED
1066
1224
  display_name: OPT-IML (175B)
@@ -1220,7 +1378,7 @@ models:
1220
1378
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
1221
1379
 
1222
1380
  - name: meta/llama-3-8b-chat
1223
- display_name: Llama 3 Chat (8B)
1381
+ display_name: Llama 3 Instruct (8B)
1224
1382
  description: Llama 3 is a family of language models that have been trained on more than 15 trillion tokens, and use Grouped-Query Attention (GQA) for improved inference scalability. It used SFT, rejection sampling, PPO and DPO for post-training.
1225
1383
  creator_organization_name: Meta
1226
1384
  access: open
@@ -1229,7 +1387,7 @@ models:
1229
1387
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1230
1388
 
1231
1389
  - name: meta/llama-3-70b-chat
1232
- display_name: Llama 3 Chat (70B)
1390
+ display_name: Llama 3 Instruct (70B)
1233
1391
  description: Llama 3 is a family of language models that have been trained on more than 15 trillion tokens, and use Grouped-Query Attention (GQA) for improved inference scalability. It used SFT, rejection sampling, PPO and DPO for post-training.
1234
1392
  creator_organization_name: Meta
1235
1393
  access: open
@@ -1237,6 +1395,26 @@ models:
1237
1395
  release_date: 2024-04-18
1238
1396
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1239
1397
 
1398
+ - name: meta/llama-guard-7b
1399
+ display_name: Llama Guard (7B)
1400
+ description: Llama-Guard is a 7B parameter Llama 2-based input-output safeguard model. It can be used for classifying content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM it generates text in its output that indicates whether a given prompt or response is safe/unsafe, and if unsafe based on a policy, it also lists the violating subcategories.
1401
+ creator_organization_name: Meta
1402
+ access: open
1403
+ num_parameters: 7000000000
1404
+ release_date: 2023-12-07
1405
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1406
+
1407
+ - name: meta/llama-guard-2-8b
1408
+ display_name: Llama Guard 2 (8B)
1409
+ description: Llama Guard 2 is an 8B parameter Llama 3-based LLM safeguard model. Similar to Llama Guard, it can be used for classifying content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM – it generates text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated.
1410
+ creator_organization_name: Meta
1411
+ access: open
1412
+ num_parameters: 8000000000
1413
+ release_date: 2024-04-18
1414
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1415
+
1416
+
1417
+
1240
1418
 
1241
1419
  # Microsoft/NVIDIA
1242
1420
  - name: microsoft/TNLGv2_530B
@@ -1329,7 +1507,15 @@ models:
1329
1507
  release_date: 2023-10-05
1330
1508
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
1331
1509
 
1332
-
1510
+ # KAIST AI
1511
+ - name: kaistai/prometheus-vision-13b-v1.0-hf
1512
+ display_name: LLaVA + Vicuna-v1.5 (13B)
1513
+ description: LLaVa is an open-source chatbot trained by fine-tuning LlamA/Vicuna on GPT-generated multimodal instruction-following data. ([paper](https://arxiv.org/abs/2304.08485))
1514
+ creator_organization_name: KAIST AI
1515
+ access: open
1516
+ num_parameters: 13000000000
1517
+ release_date: 2024-01-01
1518
+ tags: [VISION_LANGUAGE_MODEL_TAG, LLAVA_MODEL_TAG, LIMITED_FUNCTIONALITY_VLM_TAG]
1333
1519
 
1334
1520
  # 01.AI
1335
1521
  - name: 01-ai/yi-6b
@@ -1340,6 +1526,7 @@ models:
1340
1526
  num_parameters: 6000000000
1341
1527
  release_date: 2023-11-02
1342
1528
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
1529
+
1343
1530
  - name: 01-ai/yi-34b
1344
1531
  display_name: Yi (34B)
1345
1532
  description: The Yi models are large language models trained from scratch by developers at 01.AI.
@@ -1348,6 +1535,7 @@ models:
1348
1535
  num_parameters: 34000000000
1349
1536
  release_date: 2023-11-02
1350
1537
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
1538
+
1351
1539
  - name: 01-ai/yi-6b-chat
1352
1540
  display_name: Yi Chat (6B)
1353
1541
  description: The Yi models are large language models trained from scratch by developers at 01.AI.
@@ -1356,6 +1544,7 @@ models:
1356
1544
  num_parameters: 6000000000
1357
1545
  release_date: 2023-11-23
1358
1546
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
1547
+
1359
1548
  - name: 01-ai/yi-34b-chat
1360
1549
  display_name: Yi Chat (34B)
1361
1550
  description: The Yi models are large language models trained from scratch by developers at 01.AI.
@@ -1365,6 +1554,22 @@ models:
1365
1554
  release_date: 2023-11-23
1366
1555
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
1367
1556
 
1557
+ - name: 01-ai/yi-large
1558
+ display_name: Yi Large
1559
+ description: The Yi models are large language models trained from scratch by developers at 01.AI. ([tweet](https://x.com/01AI_Yi/status/1789894091620458667))
1560
+ creator_organization_name: 01.AI
1561
+ access: limited
1562
+ release_date: 2024-05-12
1563
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1564
+
1565
+ - name: 01-ai/yi-large-preview
1566
+ display_name: Yi Large (Preview)
1567
+ description: The Yi models are large language models trained from scratch by developers at 01.AI. ([tweet](https://x.com/01AI_Yi/status/1789894091620458667))
1568
+ creator_organization_name: 01.AI
1569
+ access: limited
1570
+ release_date: 2024-05-12
1571
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1572
+
1368
1573
  # Allen Institute for AI
1369
1574
  # OLMo Blog: https://blog.allenai.org/olmo-open-language-model-87ccfc95f580
1370
1575
  - name: allenai/olmo-7b
@@ -1395,29 +1600,64 @@ models:
1395
1600
  # TODO: Add instruct tag.
1396
1601
  tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
1397
1602
 
1603
+ - name: allenai/olmo-1.7-7b
1604
+ display_name: OLMo 1.7 (7B)
1605
+ description: OLMo is a series of Open Language Models trained on the Dolma dataset. The instruct versions was trained on the Tulu SFT mixture and a cleaned version of the UltraFeedback dataset.
1606
+ creator_organization_name: Allen Institute for AI
1607
+ access: open
1608
+ num_parameters: 7000000000
1609
+ release_date: 2024-04-17
1610
+ tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
1398
1611
 
1399
1612
  # Mistral AI
1400
1613
  - name: mistralai/mistral-7b-v0.1
1401
1614
  display_name: Mistral v0.1 (7B)
1402
- description: Mistral 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA) and Sliding-Window Attention (SWA).
1615
+ description: Mistral 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA) and Sliding-Window Attention (SWA). ([blog post](https://mistral.ai/news/announcing-mistral-7b/))
1616
+ creator_organization_name: Mistral AI
1617
+ access: open
1618
+ num_parameters: 7300000000
1619
+ release_date: 2023-09-27
1620
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1621
+
1622
+ - name: mistralai/mistral-7b-instruct-v0.1
1623
+ display_name: Mistral Instruct v0.1 (7B)
1624
+ description: Mistral v0.1 Instruct 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA) and Sliding-Window Attention (SWA). The instruct version was fined-tuned using publicly available conversation datasets. ([blog post](https://mistral.ai/news/announcing-mistral-7b/))
1403
1625
  creator_organization_name: Mistral AI
1404
1626
  access: open
1405
1627
  num_parameters: 7300000000
1406
1628
  release_date: 2023-09-27
1407
1629
  tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1408
1630
 
1631
+ - name: mistralai/mistral-7b-instruct-v0.2
1632
+ display_name: Mistral Instruct v0.2 (7B)
1633
+ description: Mistral v0.2 Instruct 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA). Compared to v0.1, v0.2 has a 32k context window and no Sliding-Window Attention (SWA). ([blog post](https://mistral.ai/news/la-plateforme/))
1634
+ creator_organization_name: Mistral AI
1635
+ access: open
1636
+ num_parameters: 7300000000
1637
+ release_date: 2024-03-23
1638
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1639
+
1640
+ - name: mistralai/mistral-7b-instruct-v0.3
1641
+ display_name: Mistral Instruct v0.3 (7B)
1642
+ description: Mistral v0.3 Instruct 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA). Compared to v0.1, v0.2 has a 32k context window and no Sliding-Window Attention (SWA). ([blog post](https://mistral.ai/news/la-plateforme/))
1643
+ creator_organization_name: Mistral AI
1644
+ access: open
1645
+ num_parameters: 7300000000
1646
+ release_date: 2024-05-22
1647
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1648
+
1409
1649
  - name: mistralai/mixtral-8x7b-32kseqlen
1410
1650
  display_name: Mixtral (8x7B 32K seqlen)
1411
- description: Mistral AI's mixture-of-experts model ([tweet](https://twitter.com/MistralAI/status/1733150512395038967)).
1651
+ description: Mixtral is a mixture-of-experts model that has 46.7B total parameters but only uses 12.9B parameters per token. ([blog post](https://mistral.ai/news/mixtral-of-experts/), [tweet](https://twitter.com/MistralAI/status/1733150512395038967)).
1412
1652
  creator_organization_name: Mistral AI
1413
1653
  access: open
1414
1654
  num_parameters: 46700000000
1415
1655
  release_date: 2023-12-08
1416
- tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1656
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1417
1657
 
1418
1658
  - name: mistralai/mixtral-8x7b-instruct-v0.1
1419
- display_name: Mixtral (8x7B Instruct)
1420
- description: Mixtral (8x7B Instruct) is a version of Mixtral (8x7B) that was optimized through supervised fine-tuning and direct preference optimisation (DPO) for careful instruction following.
1659
+ display_name: Mixtral Instruct (8x7B)
1660
+ description: Mixtral Instruct (8x7B) is a version of Mixtral (8x7B) that was optimized through supervised fine-tuning and direct preference optimisation (DPO) for careful instruction following. ([blog post](https://mistral.ai/news/mixtral-of-experts/)).
1421
1661
  creator_organization_name: Mistral AI
1422
1662
  access: open
1423
1663
  num_parameters: 46700000000
@@ -1432,7 +1672,7 @@ models:
1432
1672
  access: open
1433
1673
  num_parameters: 176000000000
1434
1674
  release_date: 2024-04-10
1435
- tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1675
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
1436
1676
 
1437
1677
  - name: mistralai/mixtral-8x22b-instruct-v0.1
1438
1678
  display_name: Mixtral Instruct (8x22B)
@@ -1727,7 +1967,7 @@ models:
1727
1967
  tags: [TEXT_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1728
1968
 
1729
1969
  - name: openai/gpt-3.5-turbo-0125
1730
- display_name: gpt-3.5-turbo-0125
1970
+ display_name: GPT-3.5 Turbo (0125)
1731
1971
  description: Sibling model of text-davinci-003 that is optimized for chat but works well for traditional completions tasks as well. Snapshot from 2024-01-25.
1732
1972
  creator_organization_name: OpenAI
1733
1973
  access: limited
@@ -1806,6 +2046,14 @@ models:
1806
2046
  release_date: 2024-04-09
1807
2047
  tags: [TEXT_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
1808
2048
 
2049
+ - name: openai/gpt-4o-2024-05-13
2050
+ display_name: GPT-4o (2024-05-13)
2051
+ description: GPT-4o (2024-05-13) is a large multimodal model that accepts as input any combination of text, audio, and image and generates any combination of text, audio, and image outputs.
2052
+ creator_organization_name: OpenAI
2053
+ access: limited
2054
+ release_date: 2024-04-09
2055
+ tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2056
+
1809
2057
  - name: openai/gpt-4-vision-preview
1810
2058
  # According to https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4, this model has pointed gpt-4-1106-vision-preview.
1811
2059
  display_name: GPT-4V (1106 preview)
@@ -1953,7 +2201,7 @@ models:
1953
2201
 
1954
2202
  - name: qwen/qwen-7b
1955
2203
  display_name: Qwen
1956
- description: 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc.
2204
+ description: 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
1957
2205
  creator_organization_name: Qwen
1958
2206
  access: open
1959
2207
  release_date: 2024-02-05
@@ -1961,7 +2209,7 @@ models:
1961
2209
 
1962
2210
  - name: qwen/qwen1.5-7b
1963
2211
  display_name: Qwen1.5 (7B)
1964
- description: 7B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc.
2212
+ description: 7B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
1965
2213
  creator_organization_name: Qwen
1966
2214
  access: open
1967
2215
  release_date: 2024-02-05
@@ -1969,7 +2217,7 @@ models:
1969
2217
 
1970
2218
  - name: qwen/qwen1.5-14b
1971
2219
  display_name: Qwen1.5 (14B)
1972
- description: 14B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc.
2220
+ description: 14B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
1973
2221
  creator_organization_name: Qwen
1974
2222
  access: open
1975
2223
  release_date: 2024-02-05
@@ -1977,20 +2225,68 @@ models:
1977
2225
 
1978
2226
  - name: qwen/qwen1.5-32b
1979
2227
  display_name: Qwen1.5 (32B)
1980
- description: 32B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc.
2228
+ description: 32B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. The 32B version also includes grouped query attention (GQA). ([blog](https://qwenlm.github.io/blog/qwen1.5-32b/))
1981
2229
  creator_organization_name: Qwen
1982
2230
  access: open
1983
- release_date: 2024-02-05
2231
+ release_date: 2024-04-02
1984
2232
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
1985
2233
 
1986
2234
  - name: qwen/qwen1.5-72b
1987
2235
  display_name: Qwen1.5 (72B)
1988
- description: 72B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc.
2236
+ description: 72B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
1989
2237
  creator_organization_name: Qwen
1990
2238
  access: open
1991
2239
  release_date: 2024-02-05
1992
2240
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
1993
2241
 
2242
+ - name: qwen/qwen1.5-7b-chat
2243
+ display_name: Qwen1.5 Chat (7B)
2244
+ description: 7B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
2245
+ creator_organization_name: Qwen
2246
+ access: open
2247
+ release_date: 2024-02-05
2248
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2249
+
2250
+ - name: qwen/qwen1.5-14b-chat
2251
+ display_name: Qwen1.5 Chat (14B)
2252
+ description: 14B-parameter chat version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
2253
+ creator_organization_name: Qwen
2254
+ access: open
2255
+ release_date: 2024-02-05
2256
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2257
+
2258
+ - name: qwen/qwen1.5-32b-chat
2259
+ display_name: Qwen1.5 Chat (32B)
2260
+ description: 32B-parameter version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. The 32B version also includes grouped query attention (GQA). ([blog](https://qwenlm.github.io/blog/qwen1.5-32b/))
2261
+ creator_organization_name: Qwen
2262
+ access: open
2263
+ release_date: 2024-04-02
2264
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2265
+
2266
+ - name: qwen/qwen1.5-72b-chat
2267
+ display_name: Qwen1.5 Chat (72B)
2268
+ description: 72B-parameter chat version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. ([blog](https://qwenlm.github.io/blog/qwen1.5/))
2269
+ creator_organization_name: Qwen
2270
+ access: open
2271
+ release_date: 2024-02-05
2272
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2273
+
2274
+ - name: qwen/qwen1.5-110b-chat
2275
+ display_name: Qwen1.5 Chat (110B)
2276
+ description: 110B-parameter chat version of the large language model series, Qwen 1.5 (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen is a family of transformer models with SwiGLU activation, RoPE, and multi-head attention. The 110B version also includes grouped query attention (GQA). ([blog](https://qwenlm.github.io/blog/qwen1.5-110b/))
2277
+ creator_organization_name: Qwen
2278
+ access: open
2279
+ release_date: 2024-04-25
2280
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2281
+
2282
+ - name: qwen/qwen2-72b-instruct
2283
+ display_name: Qwen2 Instruct (72B)
2284
+ description: 72B-parameter chat version of the large language model series, Qwen2. Qwen2 uses Group Query Attention (GQA) and has extended context length support up to 128K tokens. ([blog](https://qwenlm.github.io/blog/qwen2/))
2285
+ creator_organization_name: Qwen
2286
+ access: open
2287
+ release_date: 2024-06-07
2288
+ tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2289
+
1994
2290
  - name: qwen/qwen-vl
1995
2291
  display_name: Qwen-VL
1996
2292
  description: Visual multimodal version of the Qwen large language model series ([paper](https://arxiv.org/abs/2308.12966)).
@@ -2007,6 +2303,43 @@ models:
2007
2303
  release_date: 2023-08-24
2008
2304
  tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
2009
2305
 
2306
+ # SAIL (Sea AI Lab)
2307
+ - name: sail/sailor-7b
2308
+ display_name: Sailor (7B)
2309
+ description: Sailor is a suite of Open Language Models tailored for South-East Asia, focusing on languages such as Indonesian, Thai, Vietnamese, Malay, and Lao. These models were continually pre-trained from Qwen1.5. ([paper](https://arxiv.org/abs/2404.03608))
2310
+ creator_organization_name: SAIL
2311
+ access: open
2312
+ num_parameters: 7000000000
2313
+ release_date: 2024-04-04
2314
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2315
+
2316
+ - name: sail/sailor-7b-chat
2317
+ display_name: Sailor Chat (7B)
2318
+ description: Sailor is a suite of Open Language Models tailored for South-East Asia, focusing on languages such as Indonesian, Thai, Vietnamese, Malay, and Lao. These models were continually pre-trained from Qwen1.5. ([paper](https://arxiv.org/abs/2404.03608))
2319
+ creator_organization_name: SAIL
2320
+ access: open
2321
+ num_parameters: 7000000000
2322
+ release_date: 2024-04-04
2323
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2324
+
2325
+ - name: sail/sailor-14b
2326
+ display_name: Sailor (14B)
2327
+ description: Sailor is a suite of Open Language Models tailored for South-East Asia, focusing on languages such as Indonesian, Thai, Vietnamese, Malay, and Lao. These models were continually pre-trained from Qwen1.5. ([paper](https://arxiv.org/abs/2404.03608))
2328
+ creator_organization_name: SAIL
2329
+ access: open
2330
+ num_parameters: 14000000000
2331
+ release_date: 2024-04-04
2332
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2333
+
2334
+ - name: sail/sailor-14b-chat
2335
+ display_name: Sailor Chat (14B)
2336
+ description: Sailor is a suite of Open Language Models tailored for South-East Asia, focusing on languages such as Indonesian, Thai, Vietnamese, Malay, and Lao. These models were continually pre-trained from Qwen1.5. ([paper](https://arxiv.org/abs/2404.03608))
2337
+ creator_organization_name: SAIL
2338
+ access: open
2339
+ num_parameters: 14000000000
2340
+ release_date: 2024-04-04
2341
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2342
+
2010
2343
  # Salesforce
2011
2344
  - name: salesforce/codegen # NOT SUPPORTED
2012
2345
  display_name: CodeGen (16B)
@@ -2017,6 +2350,24 @@ models:
2017
2350
  release_date: 2022-03-25
2018
2351
  tags: [] # TODO: add tags
2019
2352
 
2353
+ # SCB10X
2354
+ - name: scb10x/typhoon-v1.5-72b
2355
+ display_name: Typhoon v1.5 (72B)
2356
+ description: Typhoon v1.5 (72B) is pretrained Thai large language model with 72 billion parameters based on Qwen1.5-72B. ([blog](https://blog.opentyphoon.ai/typhoon-1-5-release-a9364cb8e8d7))
2357
+ creator_organization_name: SCB10X
2358
+ access: open
2359
+ num_parameters: 72000000000
2360
+ release_date: 2024-05-08
2361
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2362
+
2363
+ - name: scb10x/typhoon-v1.5-72b-instruct
2364
+ display_name: Typhoon v1.5 Instruct (72B)
2365
+ description: Typhoon v1.5 Instruct (72B) is pretrained Thai large language model with 72 billion parameters based on Qwen1.5-72B. ([blog](https://blog.opentyphoon.ai/typhoon-1-5-release-a9364cb8e8d7))
2366
+ creator_organization_name: SCB10X
2367
+ access: open
2368
+ num_parameters: 72000000000
2369
+ release_date: 2024-05-08
2370
+ tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
2020
2371
 
2021
2372
  # Snowflake
2022
2373
  - name: snowflake/snowflake-arctic-instruct
@@ -2293,6 +2644,15 @@ models:
2293
2644
  # Does not support echo
2294
2645
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
2295
2646
 
2647
+ - name: writer/palmyra-vision-003
2648
+ display_name: Palmyra Vision 003
2649
+ description: Palmyra Vision 003 (internal only)
2650
+ creator_organization_name: Writer
2651
+ access: limited
2652
+ num_parameters: 5000000000
2653
+ release_date: 2024-05-24
2654
+ # Does not support echo
2655
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_VLM_TAG]
2296
2656
 
2297
2657
 
2298
2658
  # Yandex
@@ -2304,3 +2664,65 @@ models:
2304
2664
  num_parameters: 100000000000
2305
2665
  release_date: 2022-06-23
2306
2666
  tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG]
2667
+
2668
+ # Reka
2669
+ - name: reka/reka-core
2670
+ display_name: Reka-Core
2671
+ description: Reka-Core
2672
+ creator_organization_name: Reka AI
2673
+ access: limited
2674
+ release_date: 2024-04-18
2675
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
2676
+
2677
+ - name: reka/reka-core-20240415
2678
+ display_name: Reka-Core-20240415
2679
+ description: Reka-Core-20240415
2680
+ creator_organization_name: Reka AI
2681
+ access: limited
2682
+ release_date: 2024-04-18
2683
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
2684
+
2685
+ - name: reka/reka-core-20240501
2686
+ display_name: Reka-Core-20240501
2687
+ description: Reka-Core-20240501
2688
+ creator_organization_name: Reka AI
2689
+ access: limited
2690
+ release_date: 2024-05-01
2691
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
2692
+
2693
+ - name: reka/reka-flash
2694
+ display_name: Reka-Flash (21B)
2695
+ description: Reka-Flash (21B)
2696
+ creator_organization_name: Reka AI
2697
+ access: limited
2698
+ num_parameters: 21000000000
2699
+ release_date: 2024-04-18
2700
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
2701
+
2702
+ - name: reka/reka-flash-20240226
2703
+ display_name: Reka-Flash-20240226 (21B)
2704
+ description: Reka-Flash-20240226 (21B)
2705
+ creator_organization_name: Reka AI
2706
+ access: limited
2707
+ num_parameters: 21000000000
2708
+ release_date: 2024-04-18
2709
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
2710
+
2711
+ - name: reka/reka-edge
2712
+ display_name: Reka-Edge (7B)
2713
+ description: Reka-Edge (7B)
2714
+ creator_organization_name: Reka AI
2715
+ access: limited
2716
+ num_parameters: 7000000000
2717
+ release_date: 2024-04-18
2718
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
2719
+
2720
+ - name: reka/reka-edge-20240208
2721
+ display_name: Reka-Edge-20240208 (7B)
2722
+ description: Reka-Edge-20240208 (7B)
2723
+ creator_organization_name: Reka AI
2724
+ access: limited
2725
+ num_parameters: 7000000000
2726
+ release_date: 2024-04-18
2727
+ tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
2728
+