crfm-helm 0.4.0__py3-none-any.whl → 0.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of crfm-helm might be problematic. Click here for more details.
- {crfm_helm-0.4.0.dist-info → crfm_helm-0.5.1.dist-info}/METADATA +138 -31
- crfm_helm-0.5.1.dist-info/RECORD +654 -0
- {crfm_helm-0.4.0.dist-info → crfm_helm-0.5.1.dist-info}/WHEEL +1 -1
- helm/benchmark/adaptation/adapter_spec.py +31 -3
- helm/benchmark/adaptation/adapters/adapter.py +2 -2
- helm/benchmark/adaptation/adapters/adapter_factory.py +24 -27
- helm/benchmark/adaptation/adapters/generation_adapter.py +1 -0
- helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +20 -4
- helm/benchmark/adaptation/adapters/language_modeling_adapter.py +2 -3
- helm/benchmark/adaptation/adapters/multimodal/in_context_learning_multimodal_adapter.py +1 -0
- helm/benchmark/adaptation/adapters/multimodal/multimodal_prompt.py +7 -0
- helm/benchmark/adaptation/adapters/multimodal/multiple_choice_joint_multimodal_adapter.py +104 -0
- helm/benchmark/adaptation/adapters/multimodal/test_in_context_learning_multimodal_adapter.py +2 -1
- helm/benchmark/adaptation/adapters/multimodal/test_multimodal_prompt.py +2 -0
- helm/benchmark/adaptation/adapters/test_adapter.py +2 -1
- helm/benchmark/adaptation/adapters/test_generation_adapter.py +32 -8
- helm/benchmark/adaptation/adapters/test_language_modeling_adapter.py +7 -19
- helm/benchmark/adaptation/adapters/test_multiple_choice_joint_adapter.py +60 -6
- helm/benchmark/adaptation/common_adapter_specs.py +376 -0
- helm/benchmark/adaptation/request_state.py +6 -1
- helm/benchmark/adaptation/scenario_state.py +6 -2
- helm/benchmark/annotation/annotator.py +43 -0
- helm/benchmark/annotation/annotator_factory.py +61 -0
- helm/benchmark/annotation/image2structure/image_compiler_annotator.py +88 -0
- helm/benchmark/annotation/image2structure/latex_compiler_annotator.py +59 -0
- helm/benchmark/annotation/image2structure/lilypond_compiler_annotator.py +84 -0
- helm/benchmark/annotation/image2structure/webpage_compiler_annotator.py +132 -0
- helm/benchmark/annotation/test_annotator_factory.py +26 -0
- helm/benchmark/annotation/test_dummy_annotator.py +44 -0
- helm/benchmark/annotation_executor.py +124 -0
- helm/benchmark/augmentations/data_augmenter.py +0 -2
- helm/benchmark/augmentations/gender_perturbation.py +1 -1
- helm/benchmark/augmentations/perturbation.py +25 -3
- helm/benchmark/augmentations/perturbation_description.py +1 -1
- helm/benchmark/augmentations/suffix_perturbation.py +29 -0
- helm/benchmark/augmentations/test_perturbation.py +41 -7
- helm/benchmark/augmentations/translate_perturbation.py +30 -0
- helm/benchmark/config_registry.py +7 -1
- helm/benchmark/executor.py +46 -16
- helm/benchmark/huggingface_registration.py +20 -7
- helm/benchmark/metrics/basic_metrics.py +169 -664
- helm/benchmark/metrics/bbq_metrics.py +3 -4
- helm/benchmark/metrics/bias_metrics.py +6 -6
- helm/benchmark/metrics/classification_metrics.py +11 -8
- helm/benchmark/metrics/cleva_accuracy_metrics.py +8 -5
- helm/benchmark/metrics/cleva_harms_metrics.py +2 -2
- helm/benchmark/metrics/code_metrics_helper.py +0 -2
- helm/benchmark/metrics/common_metric_specs.py +167 -0
- helm/benchmark/metrics/decodingtrust_fairness_metrics.py +72 -0
- helm/benchmark/metrics/decodingtrust_ood_knowledge_metrics.py +66 -0
- helm/benchmark/metrics/decodingtrust_privacy_metrics.py +101 -0
- helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +202 -0
- helm/benchmark/metrics/disinformation_metrics.py +4 -110
- helm/benchmark/metrics/dry_run_metrics.py +2 -2
- helm/benchmark/metrics/efficiency_metrics.py +213 -0
- helm/benchmark/metrics/evaluate_instances_metric.py +59 -0
- helm/benchmark/metrics/evaluate_reference_metrics.py +392 -0
- helm/benchmark/metrics/image_generation/aesthetics_metrics.py +54 -0
- helm/benchmark/metrics/image_generation/aesthetics_scorer.py +66 -0
- helm/benchmark/metrics/image_generation/clip_score_metrics.py +73 -0
- helm/benchmark/metrics/image_generation/denoised_runtime_metric.py +42 -0
- helm/benchmark/metrics/image_generation/detection_metrics.py +57 -0
- helm/benchmark/metrics/image_generation/detectors/base_detector.py +8 -0
- helm/benchmark/metrics/image_generation/detectors/vitdet.py +178 -0
- helm/benchmark/metrics/image_generation/efficiency_metrics.py +41 -0
- helm/benchmark/metrics/image_generation/fidelity_metrics.py +168 -0
- helm/benchmark/metrics/image_generation/fractal_dimension/__init__.py +0 -0
- helm/benchmark/metrics/image_generation/fractal_dimension/fractal_dimension_util.py +63 -0
- helm/benchmark/metrics/image_generation/fractal_dimension/test_fractal_dimension_util.py +33 -0
- helm/benchmark/metrics/image_generation/fractal_dimension_metric.py +50 -0
- helm/benchmark/metrics/image_generation/gender_metrics.py +58 -0
- helm/benchmark/metrics/image_generation/image_critique_metrics.py +284 -0
- helm/benchmark/metrics/image_generation/lpips_metrics.py +82 -0
- helm/benchmark/metrics/image_generation/multi_scale_ssim_metrics.py +82 -0
- helm/benchmark/metrics/image_generation/nsfw_detector.py +96 -0
- helm/benchmark/metrics/image_generation/nsfw_metrics.py +103 -0
- helm/benchmark/metrics/image_generation/nudity_metrics.py +38 -0
- helm/benchmark/metrics/image_generation/photorealism_critique_metrics.py +153 -0
- helm/benchmark/metrics/image_generation/psnr_metrics.py +78 -0
- helm/benchmark/metrics/image_generation/q16/__init__.py +0 -0
- helm/benchmark/metrics/image_generation/q16/q16_toxicity_detector.py +90 -0
- helm/benchmark/metrics/image_generation/q16/test_q16.py +18 -0
- helm/benchmark/metrics/image_generation/q16_toxicity_metrics.py +48 -0
- helm/benchmark/metrics/image_generation/skin_tone_metrics.py +164 -0
- helm/benchmark/metrics/image_generation/uiqi_metrics.py +92 -0
- helm/benchmark/metrics/image_generation/watermark/__init__.py +0 -0
- helm/benchmark/metrics/image_generation/watermark/test_watermark_detector.py +16 -0
- helm/benchmark/metrics/image_generation/watermark/watermark_detector.py +87 -0
- helm/benchmark/metrics/image_generation/watermark_metrics.py +48 -0
- helm/benchmark/metrics/instruction_following_critique_metrics.py +3 -1
- helm/benchmark/metrics/language_modeling_metrics.py +99 -0
- helm/benchmark/metrics/machine_translation_metrics.py +89 -0
- helm/benchmark/metrics/metric.py +93 -172
- helm/benchmark/metrics/metric_name.py +0 -1
- helm/benchmark/metrics/metric_service.py +16 -0
- helm/benchmark/metrics/paraphrase_generation_metrics.py +3 -4
- helm/benchmark/metrics/ranking_metrics.py +2 -2
- helm/benchmark/metrics/reference_metric.py +148 -0
- helm/benchmark/metrics/summac/model_summac.py +0 -2
- helm/benchmark/metrics/summarization_metrics.py +2 -2
- helm/benchmark/metrics/test_classification_metrics.py +8 -5
- helm/benchmark/metrics/test_disinformation_metrics.py +78 -0
- helm/benchmark/metrics/{test_basic_metrics.py → test_evaluate_reference_metrics.py} +5 -1
- helm/benchmark/metrics/test_metric.py +2 -2
- helm/benchmark/metrics/tokens/gooseai_token_cost_estimator.py +10 -2
- helm/benchmark/metrics/toxicity_metrics.py +1 -1
- helm/benchmark/metrics/toxicity_utils.py +23 -0
- helm/benchmark/metrics/unitxt_metrics.py +81 -0
- helm/benchmark/metrics/vision_language/__init__.py +0 -0
- helm/benchmark/metrics/vision_language/emd_utils.py +341 -0
- helm/benchmark/metrics/vision_language/image_metrics.py +575 -0
- helm/benchmark/metrics/vision_language/image_utils.py +100 -0
- helm/benchmark/model_deployment_registry.py +74 -0
- helm/benchmark/model_metadata_registry.py +41 -1
- helm/benchmark/multi_gpu_runner.py +133 -0
- helm/benchmark/presentation/create_plots.py +8 -7
- helm/benchmark/presentation/run_display.py +26 -10
- helm/benchmark/presentation/schema.py +15 -40
- helm/benchmark/presentation/summarize.py +119 -79
- helm/benchmark/presentation/table.py +8 -8
- helm/benchmark/presentation/test_contamination.py +2 -2
- helm/benchmark/presentation/test_run_entry.py +1 -2
- helm/benchmark/presentation/test_summarize.py +3 -3
- helm/benchmark/run.py +54 -26
- helm/benchmark/run_expander.py +205 -35
- helm/benchmark/run_spec.py +93 -0
- helm/benchmark/run_spec_factory.py +163 -0
- helm/benchmark/run_specs/__init__.py +0 -0
- helm/benchmark/run_specs/classic_run_specs.py +1510 -0
- helm/benchmark/run_specs/cleva_run_specs.py +277 -0
- helm/benchmark/run_specs/decodingtrust_run_specs.py +314 -0
- helm/benchmark/run_specs/heim_run_specs.py +623 -0
- helm/benchmark/run_specs/instruction_following_run_specs.py +129 -0
- helm/benchmark/run_specs/lite_run_specs.py +307 -0
- helm/benchmark/run_specs/simple_run_specs.py +104 -0
- helm/benchmark/run_specs/unitxt_run_specs.py +42 -0
- helm/benchmark/run_specs/vlm_run_specs.py +757 -0
- helm/benchmark/runner.py +51 -57
- helm/benchmark/runner_config_registry.py +21 -0
- helm/benchmark/scenarios/bbq_scenario.py +1 -1
- helm/benchmark/scenarios/bold_scenario.py +2 -2
- helm/benchmark/scenarios/code_scenario.py +1 -0
- helm/benchmark/scenarios/decodingtrust_adv_demonstration_scenario.py +169 -0
- helm/benchmark/scenarios/decodingtrust_adv_robustness_scenario.py +121 -0
- helm/benchmark/scenarios/decodingtrust_fairness_scenario.py +77 -0
- helm/benchmark/scenarios/decodingtrust_machine_ethics_scenario.py +324 -0
- helm/benchmark/scenarios/decodingtrust_ood_robustness_scenario.py +204 -0
- helm/benchmark/scenarios/decodingtrust_privacy_scenario.py +559 -0
- helm/benchmark/scenarios/decodingtrust_stereotype_bias_scenario.py +67 -0
- helm/benchmark/scenarios/decodingtrust_toxicity_prompts_scenario.py +78 -0
- helm/benchmark/scenarios/dialogue_scenarios.py +0 -1
- helm/benchmark/scenarios/image_generation/__init__.py +0 -0
- helm/benchmark/scenarios/image_generation/common_syntactic_processes_scenario.py +105 -0
- helm/benchmark/scenarios/image_generation/cub200_scenario.py +95 -0
- helm/benchmark/scenarios/image_generation/daily_dalle_scenario.py +124 -0
- helm/benchmark/scenarios/image_generation/demographic_stereotypes_scenario.py +82 -0
- helm/benchmark/scenarios/image_generation/detection_scenario.py +83 -0
- helm/benchmark/scenarios/image_generation/draw_bench_scenario.py +74 -0
- helm/benchmark/scenarios/image_generation/i2p_scenario.py +57 -0
- helm/benchmark/scenarios/image_generation/landing_page_scenario.py +46 -0
- helm/benchmark/scenarios/image_generation/logos_scenario.py +223 -0
- helm/benchmark/scenarios/image_generation/magazine_cover_scenario.py +91 -0
- helm/benchmark/scenarios/image_generation/mental_disorders_scenario.py +46 -0
- helm/benchmark/scenarios/image_generation/mscoco_scenario.py +91 -0
- helm/benchmark/scenarios/image_generation/paint_skills_scenario.py +72 -0
- helm/benchmark/scenarios/image_generation/parti_prompts_scenario.py +94 -0
- helm/benchmark/scenarios/image_generation/radiology_scenario.py +42 -0
- helm/benchmark/scenarios/image_generation/relational_understanding_scenario.py +52 -0
- helm/benchmark/scenarios/image_generation/time_most_significant_historical_figures_scenario.py +124 -0
- helm/benchmark/scenarios/image_generation/winoground_scenario.py +62 -0
- helm/benchmark/scenarios/imdb_scenario.py +0 -1
- helm/benchmark/scenarios/legalbench_scenario.py +6 -2
- helm/benchmark/scenarios/live_qa_scenario.py +94 -0
- helm/benchmark/scenarios/lm_entry_scenario.py +185 -0
- helm/benchmark/scenarios/math_scenario.py +19 -2
- helm/benchmark/scenarios/medication_qa_scenario.py +60 -0
- helm/benchmark/scenarios/numeracy_scenario.py +1 -1
- helm/benchmark/scenarios/opinions_qa_scenario.py +0 -4
- helm/benchmark/scenarios/scenario.py +4 -0
- helm/benchmark/scenarios/simple_scenarios.py +122 -1
- helm/benchmark/scenarios/test_math_scenario.py +6 -0
- helm/benchmark/scenarios/test_scenario.py +6 -3
- helm/benchmark/scenarios/test_simple_scenarios.py +50 -0
- helm/benchmark/scenarios/thai_exam_scenario.py +135 -0
- helm/benchmark/scenarios/unitxt_scenario.py +56 -0
- helm/benchmark/scenarios/verifiability_judgment_scenario.py +3 -1
- helm/benchmark/scenarios/vicuna_scenario.py +1 -1
- helm/benchmark/scenarios/vision_language/a_okvqa_scenario.py +83 -0
- helm/benchmark/scenarios/vision_language/bingo_scenario.py +103 -0
- helm/benchmark/scenarios/vision_language/crossmodal_3600_scenario.py +134 -0
- helm/benchmark/scenarios/vision_language/flickr30k_scenario.py +74 -0
- helm/benchmark/scenarios/vision_language/gqa_scenario.py +91 -0
- helm/benchmark/scenarios/vision_language/hateful_memes_scenario.py +94 -0
- helm/benchmark/scenarios/vision_language/heim_human_eval_scenario.py +113 -0
- helm/benchmark/scenarios/vision_language/image2structure/__init__.py +0 -0
- helm/benchmark/scenarios/vision_language/image2structure/chart2csv_scenario.py +55 -0
- helm/benchmark/scenarios/vision_language/image2structure/image2structure_scenario.py +214 -0
- helm/benchmark/scenarios/vision_language/image2structure/latex_scenario.py +25 -0
- helm/benchmark/scenarios/vision_language/image2structure/musicsheet_scenario.py +20 -0
- helm/benchmark/scenarios/vision_language/image2structure/utils_latex.py +347 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage/__init__.py +0 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage/driver.py +84 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage/jekyll_server.py +182 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage/utils.py +31 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage_scenario.py +225 -0
- helm/benchmark/scenarios/vision_language/math_vista_scenario.py +117 -0
- helm/benchmark/scenarios/vision_language/mementos_scenario.py +124 -0
- helm/benchmark/scenarios/vision_language/mm_safety_bench_scenario.py +103 -0
- helm/benchmark/scenarios/vision_language/mme_scenario.py +145 -0
- helm/benchmark/scenarios/vision_language/mmmu_scenario.py +187 -0
- helm/benchmark/scenarios/vision_language/mscoco_captioning_scenario.py +92 -0
- helm/benchmark/scenarios/vision_language/mscoco_categorization_scenario.py +117 -0
- helm/benchmark/scenarios/vision_language/multipanelvqa_scenario.py +169 -0
- helm/benchmark/scenarios/vision_language/originality_scenario.py +35 -0
- helm/benchmark/scenarios/vision_language/pairs_scenario.py +246 -0
- helm/benchmark/scenarios/vision_language/pope_scenario.py +104 -0
- helm/benchmark/scenarios/vision_language/seed_bench_scenario.py +129 -0
- helm/benchmark/scenarios/vision_language/unicorn_scenario.py +108 -0
- helm/benchmark/scenarios/vision_language/viz_wiz_scenario.py +3 -4
- helm/benchmark/scenarios/vision_language/vqa_scenario.py +5 -3
- helm/benchmark/scenarios/wmt_14_scenario.py +1 -1
- helm/benchmark/server.py +24 -1
- helm/benchmark/slurm_runner.py +70 -49
- helm/benchmark/static/benchmarking.js +1 -1
- helm/benchmark/static/schema_classic.yaml +258 -1066
- helm/benchmark/static/schema_image2structure.yaml +304 -0
- helm/benchmark/static/schema_instruction_following.yaml +210 -0
- helm/benchmark/static/schema_lite.yaml +2 -227
- helm/benchmark/static/schema_mmlu.yaml +1507 -0
- helm/benchmark/static/schema_unitxt.yaml +428 -0
- helm/benchmark/static/schema_vhelm_lite.yaml +164 -0
- helm/benchmark/static/schema_vlm.yaml +823 -0
- helm/benchmark/static_build/assets/01-694cb9b7.png +0 -0
- helm/benchmark/static_build/assets/ai21-0eb91ec3.png +0 -0
- helm/benchmark/static_build/assets/aleph-alpha-7ce10034.png +0 -0
- helm/benchmark/static_build/assets/anthropic-70d8bc39.png +0 -0
- helm/benchmark/static_build/assets/bigscience-7f0400c0.png +0 -0
- helm/benchmark/static_build/assets/cohere-3550c6cb.png +0 -0
- helm/benchmark/static_build/assets/crfm-logo-74391ab8.png +0 -0
- helm/benchmark/static_build/assets/eleutherai-b9451114.png +0 -0
- helm/benchmark/static_build/assets/google-06d997ad.png +0 -0
- helm/benchmark/static_build/assets/heim-logo-3e5e3aa4.png +0 -0
- helm/benchmark/static_build/assets/helm-logo-simple-2ed5400b.png +0 -0
- helm/benchmark/static_build/assets/helmhero-28e90f4d.png +0 -0
- helm/benchmark/static_build/assets/index-737eef9e.js +10 -0
- helm/benchmark/static_build/assets/index-878a1094.css +1 -0
- helm/benchmark/static_build/assets/meta-5580e9f1.png +0 -0
- helm/benchmark/static_build/assets/microsoft-f5ee5016.png +0 -0
- helm/benchmark/static_build/assets/mistral-18e1be23.png +0 -0
- helm/benchmark/static_build/assets/nvidia-86fa75c1.png +0 -0
- helm/benchmark/static_build/assets/openai-3f8653e4.png +0 -0
- helm/benchmark/static_build/assets/react-d4a0b69b.js +85 -0
- helm/benchmark/static_build/assets/recharts-6d337683.js +97 -0
- helm/benchmark/static_build/assets/tii-24de195c.png +0 -0
- helm/benchmark/static_build/assets/together-a665a35b.png +0 -0
- helm/benchmark/static_build/assets/tremor-54a99cc4.js +10 -0
- helm/benchmark/static_build/assets/tsinghua-keg-97d4b395.png +0 -0
- helm/benchmark/static_build/assets/vhelm-framework-cde7618a.png +0 -0
- helm/benchmark/static_build/assets/vhelm-model-6d812526.png +0 -0
- helm/benchmark/static_build/assets/yandex-38e09d70.png +0 -0
- helm/benchmark/static_build/config.js +4 -0
- helm/benchmark/static_build/index.html +20 -0
- helm/benchmark/test_data_preprocessor.py +3 -3
- helm/benchmark/test_run_expander.py +1 -1
- helm/benchmark/window_services/ai21_window_service.py +22 -33
- helm/benchmark/window_services/cohere_window_service.py +1 -63
- helm/benchmark/window_services/default_window_service.py +2 -44
- helm/benchmark/window_services/encoder_decoder_window_service.py +0 -11
- helm/benchmark/window_services/ice_window_service.py +0 -34
- helm/benchmark/window_services/image_generation/__init__.py +0 -0
- helm/benchmark/window_services/image_generation/clip_window_service.py +15 -0
- helm/benchmark/window_services/image_generation/lexica_search_window_service.py +9 -0
- helm/benchmark/window_services/image_generation/openai_dalle_window_service.py +9 -0
- helm/benchmark/window_services/image_generation/test_clip_window_service.py +29 -0
- helm/benchmark/window_services/image_generation/test_openai_dalle_window_service.py +30 -0
- helm/benchmark/window_services/local_window_service.py +21 -4
- helm/benchmark/window_services/test_anthropic_window_service.py +2 -1
- helm/benchmark/window_services/test_bloom_window_service.py +2 -1
- helm/benchmark/window_services/test_cohere_window_service.py +2 -1
- helm/benchmark/window_services/test_flan_t5_window_service.py +2 -1
- helm/benchmark/window_services/test_gpt2_window_service.py +2 -2
- helm/benchmark/window_services/test_gpt4_window_service.py +2 -1
- helm/benchmark/window_services/test_gptj_window_service.py +3 -2
- helm/benchmark/window_services/test_gptneox_window_service.py +3 -2
- helm/benchmark/window_services/test_ice_window_service.py +2 -1
- helm/benchmark/window_services/test_openai_window_service.py +2 -1
- helm/benchmark/window_services/test_opt_window_service.py +3 -2
- helm/benchmark/window_services/test_palmyra_window_service.py +2 -1
- helm/benchmark/window_services/test_t0pp_window_service.py +2 -1
- helm/benchmark/window_services/test_t511b_window_service.py +2 -1
- helm/benchmark/window_services/test_ul2_window_service.py +2 -1
- helm/benchmark/window_services/test_utils.py +3 -2
- helm/benchmark/window_services/test_yalm_window_service.py +2 -1
- helm/benchmark/window_services/window_service.py +42 -0
- helm/benchmark/window_services/window_service_factory.py +4 -1
- helm/benchmark/window_services/yalm_window_service.py +0 -27
- helm/clients/__init__.py +0 -0
- helm/{proxy/clients → clients}/ai21_client.py +3 -9
- helm/clients/aleph_alpha_client.py +112 -0
- helm/{proxy/clients → clients}/anthropic_client.py +233 -18
- helm/{proxy/clients → clients}/auto_client.py +59 -31
- helm/clients/bedrock_client.py +128 -0
- helm/clients/bedrock_utils.py +72 -0
- helm/{proxy/clients → clients}/client.py +65 -7
- helm/clients/clip_score_client.py +49 -0
- helm/clients/clip_scorers/__init__.py +0 -0
- helm/clients/clip_scorers/base_clip_scorer.py +18 -0
- helm/clients/clip_scorers/clip_scorer.py +50 -0
- helm/clients/clip_scorers/multilingual_clip_scorer.py +50 -0
- helm/{proxy/clients → clients}/cohere_client.py +4 -11
- helm/clients/gcs_client.py +82 -0
- helm/{proxy/clients → clients}/google_client.py +5 -5
- helm/clients/google_translate_client.py +35 -0
- helm/{proxy/clients → clients}/http_model_client.py +5 -7
- helm/{proxy/clients → clients}/huggingface_client.py +43 -64
- helm/clients/image_generation/__init__.py +0 -0
- helm/clients/image_generation/adobe_vision_client.py +78 -0
- helm/clients/image_generation/aleph_alpha_image_generation_client.py +98 -0
- helm/clients/image_generation/cogview2/__init__.py +0 -0
- helm/clients/image_generation/cogview2/coglm_strategy.py +96 -0
- helm/clients/image_generation/cogview2/coglm_utils.py +82 -0
- helm/clients/image_generation/cogview2/sr_pipeline/__init__.py +15 -0
- helm/clients/image_generation/cogview2/sr_pipeline/direct_sr.py +96 -0
- helm/clients/image_generation/cogview2/sr_pipeline/dsr_model.py +254 -0
- helm/clients/image_generation/cogview2/sr_pipeline/dsr_sampling.py +190 -0
- helm/clients/image_generation/cogview2/sr_pipeline/iterative_sr.py +141 -0
- helm/clients/image_generation/cogview2/sr_pipeline/itersr_model.py +269 -0
- helm/clients/image_generation/cogview2/sr_pipeline/itersr_sampling.py +120 -0
- helm/clients/image_generation/cogview2/sr_pipeline/sr_group.py +42 -0
- helm/clients/image_generation/cogview2_client.py +191 -0
- helm/clients/image_generation/dalle2_client.py +192 -0
- helm/clients/image_generation/dalle3_client.py +108 -0
- helm/clients/image_generation/dalle_mini/__init__.py +3 -0
- helm/clients/image_generation/dalle_mini/data.py +442 -0
- helm/clients/image_generation/dalle_mini/model/__init__.py +5 -0
- helm/clients/image_generation/dalle_mini/model/configuration.py +175 -0
- helm/clients/image_generation/dalle_mini/model/modeling.py +1834 -0
- helm/clients/image_generation/dalle_mini/model/partitions.py +84 -0
- helm/clients/image_generation/dalle_mini/model/processor.py +63 -0
- helm/clients/image_generation/dalle_mini/model/text.py +251 -0
- helm/clients/image_generation/dalle_mini/model/tokenizer.py +9 -0
- helm/clients/image_generation/dalle_mini/model/utils.py +29 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/__init__.py +1 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/configuration_vqgan.py +40 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/convert_pt_model_to_jax.py +107 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/modeling_flax_vqgan.py +610 -0
- helm/clients/image_generation/dalle_mini_client.py +190 -0
- helm/clients/image_generation/deep_floyd_client.py +78 -0
- helm/clients/image_generation/huggingface_diffusers_client.py +249 -0
- helm/clients/image_generation/image_generation_client_utils.py +9 -0
- helm/clients/image_generation/lexica_client.py +86 -0
- helm/clients/image_generation/mindalle/__init__.py +0 -0
- helm/clients/image_generation/mindalle/models/__init__.py +216 -0
- helm/clients/image_generation/mindalle/models/stage1/__init__.py +0 -0
- helm/clients/image_generation/mindalle/models/stage1/layers.py +312 -0
- helm/clients/image_generation/mindalle/models/stage1/vqgan.py +103 -0
- helm/clients/image_generation/mindalle/models/stage2/__init__.py +0 -0
- helm/clients/image_generation/mindalle/models/stage2/layers.py +144 -0
- helm/clients/image_generation/mindalle/models/stage2/transformer.py +268 -0
- helm/clients/image_generation/mindalle/models/tokenizer.py +30 -0
- helm/clients/image_generation/mindalle/utils/__init__.py +3 -0
- helm/clients/image_generation/mindalle/utils/config.py +129 -0
- helm/clients/image_generation/mindalle/utils/sampling.py +149 -0
- helm/clients/image_generation/mindalle/utils/utils.py +89 -0
- helm/clients/image_generation/mindalle_client.py +115 -0
- helm/clients/image_generation/nudity_check_client.py +64 -0
- helm/clients/image_generation/together_image_generation_client.py +111 -0
- helm/{proxy/clients → clients}/lit_gpt_client.py +4 -4
- helm/{proxy/clients → clients}/megatron_client.py +5 -5
- helm/clients/mistral_client.py +134 -0
- helm/clients/moderation_api_client.py +109 -0
- helm/clients/open_lm_client.py +43 -0
- helm/clients/openai_client.py +301 -0
- helm/{proxy/clients → clients}/palmyra_client.py +6 -8
- helm/{proxy/clients → clients}/perspective_api_client.py +7 -8
- helm/clients/simple_client.py +64 -0
- helm/{proxy/clients → clients}/test_auto_client.py +13 -15
- helm/clients/test_client.py +100 -0
- helm/{proxy/clients → clients}/test_huggingface_client.py +15 -16
- helm/clients/test_simple_client.py +19 -0
- helm/{proxy/clients → clients}/test_together_client.py +20 -8
- helm/{proxy/clients → clients}/together_client.py +104 -73
- helm/clients/vertexai_client.py +400 -0
- helm/clients/vision_language/__init__.py +0 -0
- helm/clients/vision_language/huggingface_vision2seq_client.py +145 -0
- helm/clients/vision_language/huggingface_vlm_client.py +111 -0
- helm/{proxy/clients → clients}/vision_language/idefics_client.py +54 -49
- helm/clients/vision_language/open_flamingo/__init__.py +2 -0
- helm/clients/vision_language/open_flamingo/src/__init__.py +0 -0
- helm/clients/vision_language/open_flamingo/src/factory.py +147 -0
- helm/clients/vision_language/open_flamingo/src/flamingo.py +337 -0
- helm/clients/vision_language/open_flamingo/src/flamingo_lm.py +155 -0
- helm/clients/vision_language/open_flamingo/src/helpers.py +267 -0
- helm/clients/vision_language/open_flamingo/src/utils.py +47 -0
- helm/clients/vision_language/open_flamingo_client.py +155 -0
- helm/clients/vision_language/qwen_vlm_client.py +171 -0
- helm/clients/vllm_client.py +46 -0
- helm/common/cache.py +16 -4
- helm/common/cache_backend_config.py +47 -0
- helm/common/clip_score_request.py +41 -0
- helm/common/file_caches/__init__.py +0 -0
- helm/common/file_caches/file_cache.py +16 -0
- helm/common/file_caches/local_file_cache.py +61 -0
- helm/common/file_caches/test_local_file_cache.py +25 -0
- helm/common/file_upload_request.py +27 -0
- helm/common/general.py +1 -1
- helm/common/image_generation_parameters.py +25 -0
- helm/common/images_utils.py +33 -3
- helm/common/key_value_store.py +35 -4
- helm/common/media_object.py +13 -0
- helm/common/moderations_api_request.py +71 -0
- helm/common/mongo_key_value_store.py +3 -3
- helm/common/multimodal_request_utils.py +31 -0
- helm/common/nudity_check_request.py +29 -0
- helm/common/request.py +15 -17
- helm/common/test_general.py +6 -0
- helm/common/tokenization_request.py +1 -1
- helm/config/model_deployments.yaml +1159 -538
- helm/config/model_metadata.yaml +868 -41
- helm/config/tokenizer_configs.yaml +149 -43
- helm/proxy/accounts.py +31 -4
- helm/proxy/critique/mechanical_turk_critique_importer.py +3 -0
- helm/proxy/critique/model_critique_client.py +8 -6
- helm/proxy/example_queries.py +29 -17
- helm/proxy/server.py +70 -5
- helm/proxy/services/remote_service.py +31 -0
- helm/proxy/services/server_service.py +96 -16
- helm/proxy/services/service.py +30 -0
- helm/proxy/services/test_remote_service.py +4 -3
- helm/proxy/services/test_service.py +0 -12
- helm/proxy/test_accounts.py +32 -0
- helm/proxy/token_counters/auto_token_counter.py +37 -37
- helm/proxy/token_counters/test_auto_token_counter.py +164 -0
- helm/proxy/token_counters/token_counter.py +3 -5
- helm/tokenizers/__init__.py +0 -0
- helm/{proxy/tokenizers → tokenizers}/ai21_tokenizer.py +3 -3
- helm/{proxy/tokenizers → tokenizers}/anthropic_tokenizer.py +1 -1
- helm/{proxy/tokenizers → tokenizers}/auto_tokenizer.py +6 -9
- helm/{proxy/tokenizers → tokenizers}/cohere_tokenizer.py +1 -1
- helm/{proxy/tokenizers → tokenizers}/http_model_tokenizer.py +3 -3
- helm/{proxy/tokenizers → tokenizers}/huggingface_tokenizer.py +7 -26
- helm/tokenizers/simple_tokenizer.py +33 -0
- helm/{proxy/tokenizers → tokenizers}/test_anthropic_tokenizer.py +1 -1
- helm/{proxy/tokenizers → tokenizers}/test_huggingface_tokenizer.py +3 -0
- helm/tokenizers/test_simple_tokenizer.py +33 -0
- helm/{proxy/tokenizers → tokenizers}/vertexai_tokenizer.py +1 -1
- helm/{proxy/tokenizers → tokenizers}/yalm_tokenizer.py +5 -3
- helm/tokenizers/yalm_tokenizer_data/__init__.py +0 -0
- helm/tokenizers/yalm_tokenizer_data/voc_100b.sp +0 -0
- helm/{proxy/tokenizers → tokenizers}/yalm_tokenizer_data/yalm_tokenizer.py +1 -1
- crfm_helm-0.4.0.dist-info/RECORD +0 -397
- helm/benchmark/run_specs.py +0 -2762
- helm/benchmark/test_model_deployment_definition.py +0 -92
- helm/benchmark/test_model_properties.py +0 -1570
- helm/benchmark/vlm_run_specs.py +0 -97
- helm/benchmark/window_services/flan_t5_window_service.py +0 -29
- helm/benchmark/window_services/gpt2_window_service.py +0 -32
- helm/benchmark/window_services/huggingface_window_service.py +0 -60
- helm/benchmark/window_services/t0pp_window_service.py +0 -35
- helm/benchmark/window_services/t511b_window_service.py +0 -30
- helm/benchmark/window_services/test_mt_nlg_window_service.py +0 -48
- helm/benchmark/window_services/ul2_window_service.py +0 -30
- helm/benchmark/window_services/wider_ai21_window_service.py +0 -24
- helm/common/cache_utils.py +0 -14
- helm/proxy/clients/aleph_alpha_client.py +0 -95
- helm/proxy/clients/goose_ai_client.py +0 -99
- helm/proxy/clients/microsoft_client.py +0 -180
- helm/proxy/clients/openai_client.py +0 -206
- helm/proxy/clients/simple_client.py +0 -60
- helm/proxy/clients/test_client.py +0 -49
- helm/proxy/clients/vertexai_client.py +0 -115
- helm/proxy/token_counters/ai21_token_counter.py +0 -20
- helm/proxy/token_counters/cohere_token_counter.py +0 -13
- helm/proxy/token_counters/free_token_counter.py +0 -12
- helm/proxy/token_counters/gooseai_token_counter.py +0 -24
- helm/proxy/token_counters/openai_token_counter.py +0 -22
- helm/proxy/token_counters/test_ai21_token_counter.py +0 -88
- helm/proxy/token_counters/test_openai_token_counter.py +0 -81
- helm/proxy/tokenizers/simple_tokenizer.py +0 -32
- {crfm_helm-0.4.0.dist-info → crfm_helm-0.5.1.dist-info}/LICENSE +0 -0
- {crfm_helm-0.4.0.dist-info → crfm_helm-0.5.1.dist-info}/entry_points.txt +0 -0
- {crfm_helm-0.4.0.dist-info → crfm_helm-0.5.1.dist-info}/top_level.txt +0 -0
- /helm/{proxy/clients → benchmark/annotation}/__init__.py +0 -0
- /helm/{proxy/clients/vision_language → benchmark/annotation/image2structure}/__init__.py +0 -0
- /helm/{proxy/tokenizers → benchmark/metrics/image_generation}/__init__.py +0 -0
- /helm/{proxy/tokenizers/yalm_tokenizer_data → benchmark/metrics/image_generation/detectors}/__init__.py +0 -0
- /helm/{proxy/clients → clients}/ai21_utils.py +0 -0
- /helm/{proxy/clients → clients}/cohere_utils.py +0 -0
- /helm/{proxy/clients → clients}/lit_gpt_generate.py +0 -0
- /helm/{proxy/clients → clients}/toxicity_classifier_client.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/aleph_alpha_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/caching_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/ice_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/lit_gpt_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/test_ice_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/test_yalm_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/tiktoken_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/yalm_tokenizer_data/test_yalm_tokenizer.py +0 -0
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
@File : inference_cogview2.py
|
|
4
|
+
@Time : 2021/10/10 16:31:34
|
|
5
|
+
@Author : Ming Ding
|
|
6
|
+
@Contact : dm18@mails.tsinghua.edu.cn
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
# here put the import lib
|
|
10
|
+
import torch
|
|
11
|
+
from icetk import icetk as tokenizer
|
|
12
|
+
|
|
13
|
+
from .dsr_sampling import filling_sequence_dsr, IterativeEntfilterStrategy
|
|
14
|
+
from .dsr_model import DsrModel
|
|
15
|
+
from helm.common.optional_dependencies import handle_module_not_found_error
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class DirectSuperResolution:
|
|
19
|
+
def __init__(self, args, path, max_bz=4, shared_transformer=None):
|
|
20
|
+
try:
|
|
21
|
+
from SwissArmyTransformer.training.model_io import load_checkpoint
|
|
22
|
+
except ModuleNotFoundError as e:
|
|
23
|
+
handle_module_not_found_error(e, ["heim"])
|
|
24
|
+
|
|
25
|
+
args.load = path
|
|
26
|
+
args.kernel_size = 5
|
|
27
|
+
args.kernel_size2 = 5
|
|
28
|
+
args.new_sequence_length = 4624
|
|
29
|
+
args.layout = [96, 496, 4096]
|
|
30
|
+
|
|
31
|
+
model = DsrModel(args, transformer=shared_transformer)
|
|
32
|
+
if args.fp16:
|
|
33
|
+
model = model.half()
|
|
34
|
+
|
|
35
|
+
load_checkpoint(model, args) # on cpu
|
|
36
|
+
model.eval()
|
|
37
|
+
self.model = model.cuda() if torch.cuda.is_available() else model
|
|
38
|
+
|
|
39
|
+
# save cpu weights
|
|
40
|
+
self.saved_weights = dict((k, v.cpu()) for k, v in model.named_parameters() if "transformer" in k)
|
|
41
|
+
|
|
42
|
+
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
|
|
43
|
+
|
|
44
|
+
self.strategy = IterativeEntfilterStrategy(
|
|
45
|
+
invalid_slices, temperature=args.temp_all_dsr, topk=args.topk_dsr, temperature2=args.temp_cluster_dsr
|
|
46
|
+
) # temperature not used
|
|
47
|
+
self.max_bz = max_bz
|
|
48
|
+
|
|
49
|
+
def _restore_transformer_from_cpu(self, non_blocking=False):
|
|
50
|
+
for k, v in self.model.named_parameters():
|
|
51
|
+
if k in self.saved_weights:
|
|
52
|
+
v.copy_(self.saved_weights[k], non_blocking=non_blocking)
|
|
53
|
+
|
|
54
|
+
def __call__(self, text_tokens, image_tokens, enhance=False):
|
|
55
|
+
try:
|
|
56
|
+
from PIL import ImageEnhance, Image
|
|
57
|
+
except ModuleNotFoundError as e:
|
|
58
|
+
handle_module_not_found_error(e, ["heim"])
|
|
59
|
+
|
|
60
|
+
if len(text_tokens.shape) == 1:
|
|
61
|
+
text_tokens.unsqueeze_(0)
|
|
62
|
+
if len(image_tokens.shape) == 1:
|
|
63
|
+
image_tokens.unsqueeze_(0)
|
|
64
|
+
|
|
65
|
+
if enhance:
|
|
66
|
+
new_image_tokens = []
|
|
67
|
+
for small_img in image_tokens:
|
|
68
|
+
decoded = tokenizer.decode(image_ids=small_img).squeeze(0)
|
|
69
|
+
ndarr = decoded.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
|
70
|
+
image_pil_raw = ImageEnhance.Sharpness(Image.fromarray(ndarr))
|
|
71
|
+
small_img2 = tokenizer.encode(image_pil=image_pil_raw.enhance(1.0), image_size=160).view(-1)
|
|
72
|
+
new_image_tokens.append(small_img2)
|
|
73
|
+
image_tokens = torch.stack(new_image_tokens)
|
|
74
|
+
|
|
75
|
+
seq = torch.cat((text_tokens, image_tokens), dim=1)
|
|
76
|
+
seq1 = (
|
|
77
|
+
torch.tensor([tokenizer["<start_of_image>"]] * 3601, device=image_tokens.device)
|
|
78
|
+
.unsqueeze(0)
|
|
79
|
+
.expand(text_tokens.shape[0], -1)
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
self._restore_transformer_from_cpu()
|
|
83
|
+
model = self.model
|
|
84
|
+
|
|
85
|
+
output_list = []
|
|
86
|
+
for tim in range(max(text_tokens.shape[0] // self.max_bz, 1)):
|
|
87
|
+
output1 = filling_sequence_dsr(
|
|
88
|
+
model,
|
|
89
|
+
seq[tim * self.max_bz : (tim + 1) * self.max_bz],
|
|
90
|
+
seq1[tim * self.max_bz : (tim + 1) * self.max_bz],
|
|
91
|
+
warmup_steps=1,
|
|
92
|
+
block_hw=(1, 0),
|
|
93
|
+
strategy=self.strategy,
|
|
94
|
+
)
|
|
95
|
+
output_list.extend(output1[1:])
|
|
96
|
+
return torch.cat(output_list, dim=0)
|
|
@@ -0,0 +1,254 @@
|
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
@File : cuda2d_model.py
|
|
4
|
+
@Time : 2021/10/02 01:36:32
|
|
5
|
+
@Author : Ming Ding
|
|
6
|
+
@Contact : dm18@mails.tsinghua.edu.cn
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
# here put the import lib
|
|
10
|
+
import math
|
|
11
|
+
import torch
|
|
12
|
+
import torch.nn.functional as F
|
|
13
|
+
|
|
14
|
+
from helm.common.optional_dependencies import handle_module_not_found_error
|
|
15
|
+
|
|
16
|
+
try:
|
|
17
|
+
from SwissArmyTransformer.model.base_model import BaseModel, BaseMixin
|
|
18
|
+
from SwissArmyTransformer.mpu.utils import sqrt
|
|
19
|
+
from SwissArmyTransformer.mpu import ColumnParallelLinear, RowParallelLinear
|
|
20
|
+
from SwissArmyTransformer.model.transformer import unscaled_init_method, split_tensor_along_last_dim
|
|
21
|
+
from SwissArmyTransformer.ops.local_attention_function import f_similar, f_weighting
|
|
22
|
+
except ModuleNotFoundError as e:
|
|
23
|
+
handle_module_not_found_error(e, ["heim"])
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class PositionEmbeddingMixin(BaseMixin):
|
|
27
|
+
def __init__(
|
|
28
|
+
self, additional_sequence_length, hidden_size, init_method_std=0.02, reinit_slice=slice(512, 512 + 400)
|
|
29
|
+
):
|
|
30
|
+
super(PositionEmbeddingMixin, self).__init__()
|
|
31
|
+
self.reinit_slice = reinit_slice
|
|
32
|
+
self.position_embeddings = torch.nn.Embedding(additional_sequence_length, hidden_size)
|
|
33
|
+
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
|
|
34
|
+
|
|
35
|
+
def reinit(self, parent_model=None):
|
|
36
|
+
old_weights = self.transformer.position_embeddings.weight.data[self.reinit_slice]
|
|
37
|
+
old_len, hidden_size = old_weights.shape
|
|
38
|
+
assert hidden_size == self.position_embeddings.weight.shape[-1]
|
|
39
|
+
old_edge, new_edge = sqrt(old_len), sqrt(self.position_embeddings.weight.shape[-2])
|
|
40
|
+
assert new_edge % old_edge == 0
|
|
41
|
+
self.position_embeddings.weight.data.view(
|
|
42
|
+
new_edge // old_edge, old_edge, new_edge // old_edge, old_edge, hidden_size
|
|
43
|
+
).copy_(old_weights.view(1, old_edge, 1, old_edge, hidden_size))
|
|
44
|
+
# self.position_embeddings.weight.data.view(-1, old_len, hidden_size).copy_(old_weights)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class AttentionMixin(BaseMixin):
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
num_layers,
|
|
51
|
+
hidden_size,
|
|
52
|
+
init_method=unscaled_init_method(0.02),
|
|
53
|
+
output_layer_init_method=unscaled_init_method(0.02),
|
|
54
|
+
):
|
|
55
|
+
super(AttentionMixin, self).__init__()
|
|
56
|
+
self.num_layers = num_layers # replace attention in the LAST n layers
|
|
57
|
+
self.query_key_value = torch.nn.ModuleList(
|
|
58
|
+
[
|
|
59
|
+
ColumnParallelLinear(
|
|
60
|
+
hidden_size, 3 * hidden_size, stride=3, gather_output=False, init_method=init_method
|
|
61
|
+
)
|
|
62
|
+
for layer_id in range(num_layers)
|
|
63
|
+
]
|
|
64
|
+
)
|
|
65
|
+
self.dense = torch.nn.ModuleList(
|
|
66
|
+
[
|
|
67
|
+
RowParallelLinear(
|
|
68
|
+
hidden_size, hidden_size, input_is_parallel=True, init_method=output_layer_init_method
|
|
69
|
+
)
|
|
70
|
+
for layer_id in range(num_layers)
|
|
71
|
+
]
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
def reinit(self, parent_model=None):
|
|
75
|
+
start_layer = len(self.transformer.layers) - self.num_layers
|
|
76
|
+
assert start_layer >= 0
|
|
77
|
+
for layer_id in range(self.num_layers):
|
|
78
|
+
old_attention = self.transformer.layers[start_layer + layer_id].attention
|
|
79
|
+
self.query_key_value[layer_id].weight.data.copy_(old_attention.query_key_value.weight.data)
|
|
80
|
+
self.query_key_value[layer_id].bias.data.copy_(old_attention.query_key_value.bias.data)
|
|
81
|
+
self.dense[layer_id].weight.data.copy_(old_attention.dense.weight.data)
|
|
82
|
+
self.dense[layer_id].bias.data.copy_(old_attention.dense.bias.data)
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
class DsrModel(BaseModel):
|
|
86
|
+
def __init__(self, args, transformer=None):
|
|
87
|
+
super().__init__(args, transformer=transformer)
|
|
88
|
+
self.original_sequence_length = args.max_sequence_length
|
|
89
|
+
additional_seqlen = args.new_sequence_length - args.max_sequence_length
|
|
90
|
+
self.add_mixin("extra_position_embedding", PositionEmbeddingMixin(additional_seqlen, args.hidden_size))
|
|
91
|
+
self.add_mixin("attention_plus", AttentionMixin(num_layers=args.num_layers, hidden_size=args.hidden_size))
|
|
92
|
+
self.layout = args.layout
|
|
93
|
+
# [PAD]... [ROI1] text ... [BOI1] {layout[0]} 1024 {layout[1]} [EOI1] 4095 {layout[2]}
|
|
94
|
+
self.kernel_size = args.kernel_size
|
|
95
|
+
self.kernel_size2 = args.kernel_size2
|
|
96
|
+
self.log_attention_weights = None
|
|
97
|
+
|
|
98
|
+
def position_embedding_forward(self, position_ids, **kw_args):
|
|
99
|
+
position = position_ids[..., : self.layout[1]]
|
|
100
|
+
position_plus = position_ids[..., self.layout[1] :] - self.original_sequence_length
|
|
101
|
+
position_embeddings = torch.cat(
|
|
102
|
+
(
|
|
103
|
+
self.transformer.position_embeddings(position),
|
|
104
|
+
self.get_mixin("extra_position_embedding").position_embeddings(position_plus),
|
|
105
|
+
),
|
|
106
|
+
dim=-2,
|
|
107
|
+
)
|
|
108
|
+
return position_embeddings
|
|
109
|
+
|
|
110
|
+
def attention_forward(self, hidden_states, mask, layer_id=None, log_attention_weights=None, **kw_args):
|
|
111
|
+
attn_module = self.transformer.layers[layer_id].attention
|
|
112
|
+
# attention_plus on all layers
|
|
113
|
+
query_key_value_plus = self.get_mixin("attention_plus").query_key_value[layer_id]
|
|
114
|
+
dense_plus = self.get_mixin("attention_plus").dense[layer_id]
|
|
115
|
+
# split two parts
|
|
116
|
+
hidden_states_plus = hidden_states[:, self.layout[1] :]
|
|
117
|
+
hidden_states = hidden_states[:, : self.layout[1]]
|
|
118
|
+
# base model qkv
|
|
119
|
+
mixed_raw_layer = attn_module.query_key_value(hidden_states)
|
|
120
|
+
q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer, 3)
|
|
121
|
+
# cuda2d model qkv
|
|
122
|
+
mixed_raw_layer = query_key_value_plus(hidden_states_plus)
|
|
123
|
+
q1, k1, v1 = split_tensor_along_last_dim(mixed_raw_layer, 3)
|
|
124
|
+
|
|
125
|
+
dropout_fn = attn_module.attention_dropout if self.training else None
|
|
126
|
+
|
|
127
|
+
# cuda2d attention
|
|
128
|
+
context_layer0, context_layer1 = sparse_attention_2d_light(
|
|
129
|
+
q0,
|
|
130
|
+
k0,
|
|
131
|
+
v0,
|
|
132
|
+
q1,
|
|
133
|
+
k1,
|
|
134
|
+
v1,
|
|
135
|
+
mask,
|
|
136
|
+
n_head=attn_module.num_attention_heads_per_partition,
|
|
137
|
+
text_len=self.layout[0],
|
|
138
|
+
kernel_size=self.kernel_size,
|
|
139
|
+
kernel_size2=self.kernel_size2,
|
|
140
|
+
attention_dropout=dropout_fn,
|
|
141
|
+
log_attention_weights=log_attention_weights,
|
|
142
|
+
add_scalar=(kw_args["add_scalar"] if "add_scalar" in kw_args else 0),
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
output_0 = attn_module.dense(context_layer0)
|
|
146
|
+
output_1 = dense_plus(context_layer1)
|
|
147
|
+
output = torch.cat((output_0, output_1), dim=1)
|
|
148
|
+
|
|
149
|
+
return output
|
|
150
|
+
|
|
151
|
+
def final_forward(self, logits, **kwargs):
|
|
152
|
+
logits_parallel = logits
|
|
153
|
+
logits_parallel = torch.nn.functional.linear(
|
|
154
|
+
logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float()
|
|
155
|
+
)
|
|
156
|
+
# logits_parallel = torch.nn.functional.linear(logits_parallel, self.transformer.word_embeddings.weight[:20000])
|
|
157
|
+
return logits_parallel
|
|
158
|
+
|
|
159
|
+
def disable_untrainable_params(self):
|
|
160
|
+
self.transformer.requires_grad_(False)
|
|
161
|
+
|
|
162
|
+
@classmethod
|
|
163
|
+
def add_model_specific_args(cls, parser):
|
|
164
|
+
group = parser.add_argument_group("Cuda2dModel", "cuda2d model configurations")
|
|
165
|
+
group.add_argument("--kernel-size", type=int, default=5)
|
|
166
|
+
group.add_argument("--kernel-size2", type=int, default=5)
|
|
167
|
+
group.add_argument("--layout", type=str, default="96,496,4096")
|
|
168
|
+
group.add_argument("--new-sequence-length", type=int, default=4096)
|
|
169
|
+
return parser
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
def sparse_attention_2d_light(
|
|
173
|
+
q0,
|
|
174
|
+
k0,
|
|
175
|
+
v0,
|
|
176
|
+
q1,
|
|
177
|
+
k1,
|
|
178
|
+
v1,
|
|
179
|
+
attention_mask,
|
|
180
|
+
n_head,
|
|
181
|
+
text_len,
|
|
182
|
+
kernel_size=9,
|
|
183
|
+
kernel_size2=7,
|
|
184
|
+
attention_dropout=None,
|
|
185
|
+
log_attention_weights=None,
|
|
186
|
+
add_scalar=0,
|
|
187
|
+
**kwargs
|
|
188
|
+
):
|
|
189
|
+
"""
|
|
190
|
+
q0, k0, v0: [batch_size, 1088, hidden_size]
|
|
191
|
+
q1, k1, v1: [batch_size, 4096, h2]
|
|
192
|
+
n_head: int
|
|
193
|
+
attention_mask: [batch_size, 1088, 1088]
|
|
194
|
+
"""
|
|
195
|
+
b, s0, h0 = q0.shape
|
|
196
|
+
b, s1, h1 = q1.shape
|
|
197
|
+
h, l0, l1 = h0 // n_head, sqrt(s0 - text_len), sqrt(s1)
|
|
198
|
+
|
|
199
|
+
q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
|
200
|
+
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
|
|
201
|
+
k0T = k0.reshape(b, s0, n_head, h).permute(0, 2, 3, 1)
|
|
202
|
+
|
|
203
|
+
# standard attention for level 0
|
|
204
|
+
attention_scores = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T)
|
|
205
|
+
|
|
206
|
+
if log_attention_weights is not None:
|
|
207
|
+
attention_scores += log_attention_weights
|
|
208
|
+
attention_scores = torch.mul(attention_scores, attention_mask) - 10000.0 * (1.0 - attention_mask)
|
|
209
|
+
|
|
210
|
+
attention_probs0 = F.softmax(attention_scores, dim=-1)
|
|
211
|
+
|
|
212
|
+
# local attention for level 1
|
|
213
|
+
q1 = (
|
|
214
|
+
(q1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1) / math.sqrt(h1 // n_head))
|
|
215
|
+
.contiguous()
|
|
216
|
+
.view(b * n_head, h1 // n_head, l1, l1)
|
|
217
|
+
)
|
|
218
|
+
k1 = k1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b * n_head, h1 // n_head, l1, l1)
|
|
219
|
+
v1 = v1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b * n_head, h1 // n_head, l1, l1)
|
|
220
|
+
# scores_1_to_1 = f_similar(q1, k1, kernel_size*2-1, kernel_size, True)
|
|
221
|
+
scores_1_to_1 = f_similar(q1, k1, kernel_size * 2 - 1, kernel_size, False)
|
|
222
|
+
|
|
223
|
+
# cross attention
|
|
224
|
+
k0T = k0T[..., -(l0**2) :].reshape(b * n_head, h, l0, l0).contiguous()
|
|
225
|
+
scores_1_to_0 = f_similar(q1, k0T, kernel_size2, kernel_size2, False) # [b*n_head, l1, l1, field]
|
|
226
|
+
scores_1 = torch.cat(
|
|
227
|
+
(
|
|
228
|
+
scores_1_to_0.view(b * n_head, -1, scores_1_to_0.shape[3]) + add_scalar,
|
|
229
|
+
scores_1_to_1.view(b * n_head, -1, scores_1_to_1.shape[3]),
|
|
230
|
+
),
|
|
231
|
+
dim=-1,
|
|
232
|
+
)
|
|
233
|
+
attention_probs1 = F.softmax(scores_1, dim=-1)
|
|
234
|
+
|
|
235
|
+
if attention_dropout is not None:
|
|
236
|
+
# with get_cuda_rng_tracker().fork():
|
|
237
|
+
attention_probs0 = attention_dropout(attention_probs0)
|
|
238
|
+
attention_probs1 = attention_dropout(attention_probs1)
|
|
239
|
+
|
|
240
|
+
# weighting for level 0
|
|
241
|
+
context0 = torch.matmul(attention_probs0, v0) # [b, n_head, s0, h]
|
|
242
|
+
# weighting for level 1
|
|
243
|
+
probs_1_to_1 = attention_probs1[:, :, -scores_1_to_1.shape[3] :].view_as(scores_1_to_1)
|
|
244
|
+
# context1_to_1 = f_weighting(v1, probs_1_to_1.contiguous(), kernel_size*2-1, kernel_size, True)
|
|
245
|
+
context1_to_1 = f_weighting(v1, probs_1_to_1.contiguous(), kernel_size * 2 - 1, kernel_size, False)
|
|
246
|
+
|
|
247
|
+
context1 = context1_to_1.view(b, n_head * h, l1**2)
|
|
248
|
+
# weighting for cross attention
|
|
249
|
+
probs_1_to_0 = attention_probs1[:, :, : scores_1_to_0.shape[3]].view_as(scores_1_to_0)
|
|
250
|
+
v0_part = v0[:, :, -(l0**2) :].transpose(-1, -2).contiguous().view(b * n_head, h, l0, l0)
|
|
251
|
+
context1_to_0 = f_weighting(v0_part, probs_1_to_0.contiguous(), kernel_size2, kernel_size2, False)
|
|
252
|
+
context1_to_0 = context1_to_0.view(b, n_head * h, l1**2)
|
|
253
|
+
context1 = context1 + context1_to_0
|
|
254
|
+
return context0.transpose(1, 2).reshape(b, s0, h0), context1.transpose(-1, -2)
|
|
@@ -0,0 +1,190 @@
|
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
@File : cuda2d_sampling.py
|
|
4
|
+
@Time : 2021/10/09 00:46:04
|
|
5
|
+
@Author : Ming Ding
|
|
6
|
+
@Contact : dm18@mails.tsinghua.edu.cn
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
# here put the import lib
|
|
10
|
+
import os
|
|
11
|
+
import math
|
|
12
|
+
import torch
|
|
13
|
+
import torch.nn.functional as F
|
|
14
|
+
import numpy as np
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def top_k_logits_(logits, top_k=0, filter_value=-float("Inf")):
|
|
18
|
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
|
19
|
+
logits[indices_to_remove] = filter_value
|
|
20
|
+
return logits
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class IterativeEntfilterStrategy:
|
|
24
|
+
def __init__(self, invalid_slices=[], temperature=1.0, topk=6, temperature2=0.9):
|
|
25
|
+
self.invalid_slices = invalid_slices
|
|
26
|
+
self.temperature = temperature
|
|
27
|
+
self.topk = topk
|
|
28
|
+
self.cluster_labels = torch.tensor(
|
|
29
|
+
np.load(f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}/cluster_label.npy"),
|
|
30
|
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
|
31
|
+
dtype=torch.long,
|
|
32
|
+
)
|
|
33
|
+
self.temperature2 = temperature2
|
|
34
|
+
|
|
35
|
+
def forward(self, logits_, tokens, temperature=None):
|
|
36
|
+
# In interative strategy, logits are of shape [batch_size, seq_length, hidden_size]
|
|
37
|
+
if temperature is None:
|
|
38
|
+
temperature = self.temperature
|
|
39
|
+
|
|
40
|
+
logits = logits_.float() / temperature
|
|
41
|
+
for invalid_slice in self.invalid_slices:
|
|
42
|
+
logits[..., invalid_slice] = -float("Inf")
|
|
43
|
+
logits = logits.view(-1, logits.shape[-1])
|
|
44
|
+
|
|
45
|
+
rprobs = F.softmax(logits.float(), dim=-1)
|
|
46
|
+
c = self.cluster_labels.expand(*rprobs.shape)
|
|
47
|
+
cprobs = torch.zeros(logits.shape[0], 500, device=logits.device).scatter_add_(1, c, rprobs)
|
|
48
|
+
|
|
49
|
+
best_scores, best_clusters = cprobs.topk(self.topk)
|
|
50
|
+
bz = logits.shape[0]
|
|
51
|
+
best_scores = best_scores / best_scores.sum(dim=-1, keepdim=True)
|
|
52
|
+
sampled_ids = torch.multinomial(best_scores, num_samples=1)
|
|
53
|
+
selected_clusters = torch.gather(best_clusters, dim=1, index=sampled_ids)
|
|
54
|
+
selected_mask = (
|
|
55
|
+
self.cluster_labels.unsqueeze(0).expand(bz, -1) != selected_clusters
|
|
56
|
+
) # cluster_labels [1, 20000] \in [0,500)
|
|
57
|
+
logits[selected_mask] = -65504
|
|
58
|
+
# for i in range(bz):
|
|
59
|
+
# selected_cluster = \
|
|
60
|
+
# best_clusters[i][torch.multinomial(best_scores[i] / best_scores[i].sum(), num_samples=1)]
|
|
61
|
+
# logits[i, self.cluster_labels != selected_cluster] = -65504
|
|
62
|
+
|
|
63
|
+
# logits = top_k_logits(logits, self.topk, self.top_p)
|
|
64
|
+
probs = F.softmax(logits.float() / self.temperature2, dim=-1) # float is essetial, due to a bug in Pytorch
|
|
65
|
+
pred = torch.multinomial(probs, num_samples=1).view(*logits_.shape[:2])
|
|
66
|
+
|
|
67
|
+
assert tokens.shape[1] == pred.shape[1] + 1
|
|
68
|
+
tokens = torch.cat((tokens[:, :1], pred), dim=1)
|
|
69
|
+
return tokens
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
# class IterativeEntfilterStrategy:
|
|
73
|
+
# def __init__(self, invalid_slices=[], temperature=1., topk=40):
|
|
74
|
+
# self.invalid_slices = invalid_slices
|
|
75
|
+
# self.temperature = temperature
|
|
76
|
+
# self.topk = topk
|
|
77
|
+
|
|
78
|
+
# def forward(self, logits, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None):
|
|
79
|
+
# # In interative strategy, logits are of shape [batch_size, seq_length, hidden_size]
|
|
80
|
+
# if temperature is None:
|
|
81
|
+
# temperature = self.temperature
|
|
82
|
+
|
|
83
|
+
# logits = logits.float() / temperature
|
|
84
|
+
# for invalid_slice in self.invalid_slices:
|
|
85
|
+
# logits[..., invalid_slice] = -float('Inf')
|
|
86
|
+
|
|
87
|
+
# top_k_logits_(logits, self.topk)
|
|
88
|
+
# probs = F.softmax(logits, dim=-1)
|
|
89
|
+
# pred = torch.multinomial(probs.view(-1, logits.shape[-1]), num_samples=1).view(*logits.shape[:2], 1)
|
|
90
|
+
# pred.squeeze_(-1)
|
|
91
|
+
|
|
92
|
+
# assert tokens.shape[1] == pred.shape[1] + 1
|
|
93
|
+
# tokens = torch.cat((tokens[:, :1], pred), dim=1)
|
|
94
|
+
# return tokens
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def filling_sequence_dsr(
|
|
98
|
+
model,
|
|
99
|
+
seq0,
|
|
100
|
+
seq1,
|
|
101
|
+
warmup_steps=3,
|
|
102
|
+
block_hw=(4, 4),
|
|
103
|
+
strategy=IterativeEntfilterStrategy(topk=10),
|
|
104
|
+
):
|
|
105
|
+
"""
|
|
106
|
+
seq: [PAD]... [ROI1] text ... [BOI1] {layout[0]} 1024 {layout[1]} [EOI1]
|
|
107
|
+
4095 {layout[2]} final_token.
|
|
108
|
+
Attention:
|
|
109
|
+
The sampling temperature are changing, temporally we hard code them here.
|
|
110
|
+
The temperature in the strategy is not used.
|
|
111
|
+
"""
|
|
112
|
+
assert hasattr(model, "layout")
|
|
113
|
+
layout = model.layout
|
|
114
|
+
assert len(seq0.shape) == 2 and len(seq1.shape) == 2 and seq0.shape[0] == seq1.shape[0]
|
|
115
|
+
assert len(layout) == 3
|
|
116
|
+
assert seq1.shape[1] == layout[-1] - layout[-2] + 1
|
|
117
|
+
assert (seq1 >= 0).all() and (seq0 >= 0).all()
|
|
118
|
+
device = seq0.device
|
|
119
|
+
# concat and pad sequences
|
|
120
|
+
batch_size = seq0.shape[0]
|
|
121
|
+
n_pad = layout[1] - seq0.shape[1]
|
|
122
|
+
assert n_pad > 0, "You should truncate long input before filling."
|
|
123
|
+
seq = torch.cat(
|
|
124
|
+
(torch.tensor([0] * n_pad, device=device, dtype=seq0.dtype).unsqueeze(0).expand(batch_size, n_pad), seq0, seq1),
|
|
125
|
+
dim=1,
|
|
126
|
+
) # [b, layout[-1]+1]
|
|
127
|
+
assert seq.shape[1] == layout[-1] + 1
|
|
128
|
+
|
|
129
|
+
# build initial tokens, attention_mask, and position_ids
|
|
130
|
+
tokens = seq.clone()
|
|
131
|
+
attention_mask = torch.ones(layout[1], layout[1]).to(device)
|
|
132
|
+
attention_mask[: layout[0], layout[0] :] = 0
|
|
133
|
+
attention_mask[n_pad:, :n_pad] = 0
|
|
134
|
+
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16
|
|
135
|
+
position_ids = torch.cat(
|
|
136
|
+
(
|
|
137
|
+
torch.zeros(n_pad, dtype=torch.long),
|
|
138
|
+
torch.arange(0, layout[0] - n_pad),
|
|
139
|
+
torch.arange(513, 513 + layout[1] - layout[0]),
|
|
140
|
+
torch.arange(1024, 1024 + layout[2] - layout[1]),
|
|
141
|
+
)
|
|
142
|
+
).to(device)
|
|
143
|
+
log_attention_weights = torch.zeros(layout[1], layout[1], device=device).type_as(next(model.parameters()))
|
|
144
|
+
log_attention_weights[layout[0] :, n_pad : layout[0]] = 0.0
|
|
145
|
+
|
|
146
|
+
# prepare for interation
|
|
147
|
+
unfixed = tokens < 0 # just init an all-False tensor
|
|
148
|
+
unfixed[:, -layout[-1] + layout[-2] :] = True
|
|
149
|
+
|
|
150
|
+
ll, rr = block_hw
|
|
151
|
+
edge_len = int(math.sqrt(layout[-1] - layout[-2]) + 1e-4)
|
|
152
|
+
num_steps = warmup_steps + ll - 1 + rr
|
|
153
|
+
# interative refining
|
|
154
|
+
|
|
155
|
+
# unfixed[..., -(layout[-1] - layout[-2]):].view(
|
|
156
|
+
# batch_size, edge_len//ll, ll, edge_len//rr, rr)[:, :, :, :, -1] = False
|
|
157
|
+
|
|
158
|
+
ret = []
|
|
159
|
+
ret.append(tokens[:, layout[-2] + 1 :].clone())
|
|
160
|
+
for step_cnt in range(1, num_steps + 1):
|
|
161
|
+
if step_cnt <= warmup_steps:
|
|
162
|
+
logits, *_dump = model(
|
|
163
|
+
tokens[:, :-1], position_ids, attention_mask, log_attention_weights=log_attention_weights
|
|
164
|
+
)
|
|
165
|
+
real_temp = 1.0
|
|
166
|
+
new_tokens = strategy.forward(logits, tokens, real_temp)
|
|
167
|
+
tokens[unfixed] = new_tokens[unfixed]
|
|
168
|
+
else:
|
|
169
|
+
logits, *_dump = model(
|
|
170
|
+
tokens[:, :-1], position_ids, attention_mask, log_attention_weights=log_attention_weights
|
|
171
|
+
)
|
|
172
|
+
real_temp = 1.0
|
|
173
|
+
new_tokens = strategy.forward(logits, tokens, real_temp, entfilter=1.3, filter_topk=5, temperature2=0.6)
|
|
174
|
+
# tokens[unfixed] = new_tokens[unfixed]
|
|
175
|
+
# fixed tokens (update unfixed)
|
|
176
|
+
unfixed2 = tokens > 10000000
|
|
177
|
+
for x in range(min(ll, step_cnt - warmup_steps)):
|
|
178
|
+
y = step_cnt - warmup_steps - x - 1
|
|
179
|
+
if y < rr:
|
|
180
|
+
unfixed[..., -(layout[-1] - layout[-2]) :].view(batch_size, edge_len // ll, ll, edge_len // rr, rr)[
|
|
181
|
+
:, :, x, :, y
|
|
182
|
+
] = False
|
|
183
|
+
unfixed2[..., -(layout[-1] - layout[-2]) :].view(
|
|
184
|
+
batch_size, edge_len // ll, ll, edge_len // rr, rr
|
|
185
|
+
)[:, :, x, :, y] = True
|
|
186
|
+
tokens[unfixed2] = new_tokens[unfixed2]
|
|
187
|
+
|
|
188
|
+
ret.append(tokens[:, layout[-2] + 1 :].clone())
|
|
189
|
+
|
|
190
|
+
return ret
|
|
@@ -0,0 +1,141 @@
|
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
@File : iterative_sr.py
|
|
4
|
+
@Time : 2022/03/02 15:57:45
|
|
5
|
+
@Author : Ming Ding
|
|
6
|
+
@Contact : dm18@mails.tsinghua.edu.cn
|
|
7
|
+
"""
|
|
8
|
+
import torch
|
|
9
|
+
from icetk import icetk as tokenizer
|
|
10
|
+
|
|
11
|
+
from .itersr_sampling import filling_sequence_itersr, IterativeEntfilterStrategy
|
|
12
|
+
from .itersr_model import ItersrModel
|
|
13
|
+
from helm.common.optional_dependencies import handle_module_not_found_error
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class IterativeSuperResolution:
|
|
17
|
+
def __init__(self, args, path, max_bz=4, shared_transformer=None):
|
|
18
|
+
try:
|
|
19
|
+
from SwissArmyTransformer.training.model_io import load_checkpoint
|
|
20
|
+
except ModuleNotFoundError as e:
|
|
21
|
+
handle_module_not_found_error(e, ["heim"])
|
|
22
|
+
|
|
23
|
+
args.load = path
|
|
24
|
+
args.kernel_size = 5
|
|
25
|
+
args.kernel_size2 = 5
|
|
26
|
+
args.new_sequence_length = 4624
|
|
27
|
+
args.layout = [16, 3616]
|
|
28
|
+
|
|
29
|
+
model = ItersrModel(args, transformer=shared_transformer)
|
|
30
|
+
if args.fp16:
|
|
31
|
+
model = model.half()
|
|
32
|
+
|
|
33
|
+
load_checkpoint(model, args) # on cpu
|
|
34
|
+
model.eval()
|
|
35
|
+
self.model = model.cuda() if torch.cuda.is_available() else model
|
|
36
|
+
|
|
37
|
+
# save cpu weights
|
|
38
|
+
self.saved_weights = dict((k, v.cpu()) for k, v in model.named_parameters() if "transformer" in k)
|
|
39
|
+
|
|
40
|
+
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
|
|
41
|
+
|
|
42
|
+
self.strategy = IterativeEntfilterStrategy(
|
|
43
|
+
invalid_slices, temperature=args.temp_all_itersr, topk=args.topk_itersr
|
|
44
|
+
)
|
|
45
|
+
self.max_bz = max_bz
|
|
46
|
+
|
|
47
|
+
def _restore_transformer_from_cpu(self, non_blocking=False):
|
|
48
|
+
for k, v in self.model.named_parameters():
|
|
49
|
+
if k in self.saved_weights:
|
|
50
|
+
v.copy_(self.saved_weights[k])
|
|
51
|
+
|
|
52
|
+
def __call__(self, text_tokens, image_tokens, enhance=False, input_mask=None):
|
|
53
|
+
try:
|
|
54
|
+
from PIL import ImageEnhance, Image
|
|
55
|
+
except ModuleNotFoundError as e:
|
|
56
|
+
handle_module_not_found_error(e, ["heim"])
|
|
57
|
+
|
|
58
|
+
if len(text_tokens.shape) == 1:
|
|
59
|
+
text_tokens.unsqueeze_(0)
|
|
60
|
+
text_tokens = text_tokens.clone()[..., :16]
|
|
61
|
+
if len(image_tokens.shape) == 1:
|
|
62
|
+
image_tokens.unsqueeze_(0)
|
|
63
|
+
if enhance:
|
|
64
|
+
new_image_tokens = []
|
|
65
|
+
for big_img in image_tokens:
|
|
66
|
+
decoded = tokenizer.decode(image_ids=big_img).squeeze(0)
|
|
67
|
+
ndarr = decoded.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
|
68
|
+
image_pil_raw = ImageEnhance.Sharpness(Image.fromarray(ndarr))
|
|
69
|
+
big_img2 = tokenizer.encode(image_pil=image_pil_raw.enhance(1.5), image_size=480).view(-1)
|
|
70
|
+
new_image_tokens.append(big_img2)
|
|
71
|
+
image_tokens = torch.stack(new_image_tokens)
|
|
72
|
+
|
|
73
|
+
self._restore_transformer_from_cpu()
|
|
74
|
+
model = self.model
|
|
75
|
+
|
|
76
|
+
output_list = []
|
|
77
|
+
for tim in range(max(text_tokens.shape[0] // self.max_bz, 1)):
|
|
78
|
+
big_img = image_tokens[tim * self.max_bz : (tim + 1) * self.max_bz]
|
|
79
|
+
text_seq = text_tokens[tim * self.max_bz : (tim + 1) * self.max_bz]
|
|
80
|
+
mask_raw = (
|
|
81
|
+
torch.tensor(
|
|
82
|
+
[
|
|
83
|
+
-1,
|
|
84
|
+
0,
|
|
85
|
+
1,
|
|
86
|
+
2,
|
|
87
|
+
3,
|
|
88
|
+
4,
|
|
89
|
+
0,
|
|
90
|
+
-1,
|
|
91
|
+
2,
|
|
92
|
+
-1,
|
|
93
|
+
-2,
|
|
94
|
+
5,
|
|
95
|
+
1,
|
|
96
|
+
-2,
|
|
97
|
+
3,
|
|
98
|
+
4,
|
|
99
|
+
5,
|
|
100
|
+
6,
|
|
101
|
+
2,
|
|
102
|
+
3,
|
|
103
|
+
4,
|
|
104
|
+
5,
|
|
105
|
+
-1,
|
|
106
|
+
1,
|
|
107
|
+
3,
|
|
108
|
+
-1,
|
|
109
|
+
-2,
|
|
110
|
+
0,
|
|
111
|
+
-1,
|
|
112
|
+
2,
|
|
113
|
+
4,
|
|
114
|
+
5,
|
|
115
|
+
6,
|
|
116
|
+
1,
|
|
117
|
+
3,
|
|
118
|
+
-2,
|
|
119
|
+
]
|
|
120
|
+
)
|
|
121
|
+
.view(1, 6, 1, 6)
|
|
122
|
+
.expand(10, 6, 10, 6)
|
|
123
|
+
.reshape(-1)
|
|
124
|
+
.contiguous()
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
topks = [60, 40, 40, 40, 20, 20, 10]
|
|
128
|
+
|
|
129
|
+
for mask_ratio in range(1, 7):
|
|
130
|
+
self.strategy.topk = topks[mask_ratio]
|
|
131
|
+
mask = mask_raw.to(big_img.device) >= mask_ratio
|
|
132
|
+
if input_mask is not None:
|
|
133
|
+
mask = mask & input_mask
|
|
134
|
+
big_img.masked_fill_(mask, tokenizer["<start_of_image>"])
|
|
135
|
+
seq1 = big_img
|
|
136
|
+
output1 = filling_sequence_itersr(
|
|
137
|
+
model, text_seq, seq1, warmup_steps=1, block_hw=(1, 0), strategy=self.strategy
|
|
138
|
+
)
|
|
139
|
+
big_img = output1
|
|
140
|
+
output_list.append(output1.clone())
|
|
141
|
+
return torch.cat(output_list, dim=0)
|