crfm-helm 0.3.0__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {crfm_helm-0.3.0.dist-info → crfm_helm-0.5.0.dist-info}/METADATA +144 -36
- crfm_helm-0.5.0.dist-info/RECORD +642 -0
- {crfm_helm-0.3.0.dist-info → crfm_helm-0.5.0.dist-info}/WHEEL +1 -1
- helm/benchmark/adaptation/adapter_spec.py +37 -2
- helm/benchmark/adaptation/adapters/adapter.py +4 -42
- helm/benchmark/adaptation/adapters/adapter_factory.py +24 -27
- helm/benchmark/adaptation/adapters/binary_ranking_adapter.py +1 -0
- helm/benchmark/adaptation/adapters/generation_adapter.py +2 -0
- helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +21 -4
- helm/benchmark/adaptation/adapters/language_modeling_adapter.py +12 -5
- helm/benchmark/adaptation/adapters/multimodal/generation_multimodal_adapter.py +1 -0
- helm/benchmark/adaptation/adapters/multimodal/in_context_learning_multimodal_adapter.py +1 -0
- helm/benchmark/adaptation/adapters/multimodal/multiple_choice_joint_multimodal_adapter.py +104 -0
- helm/benchmark/adaptation/adapters/multimodal/test_in_context_learning_multimodal_adapter.py +5 -1
- helm/benchmark/adaptation/adapters/multiple_choice_joint_adapter.py +1 -0
- helm/benchmark/adaptation/adapters/multiple_choice_separate_adapter.py +1 -0
- helm/benchmark/adaptation/adapters/test_adapter.py +2 -1
- helm/benchmark/adaptation/adapters/test_generation_adapter.py +59 -14
- helm/benchmark/adaptation/adapters/test_language_modeling_adapter.py +40 -5
- helm/benchmark/adaptation/adapters/test_multiple_choice_joint_adapter.py +78 -10
- helm/benchmark/adaptation/common_adapter_specs.py +376 -0
- helm/benchmark/adaptation/prompt.py +7 -1
- helm/benchmark/adaptation/request_state.py +6 -1
- helm/benchmark/adaptation/scenario_state.py +6 -2
- helm/benchmark/annotation/annotator.py +43 -0
- helm/benchmark/annotation/annotator_factory.py +61 -0
- helm/benchmark/annotation/image2structure/image_compiler_annotator.py +88 -0
- helm/benchmark/annotation/image2structure/latex_compiler_annotator.py +59 -0
- helm/benchmark/annotation/image2structure/lilypond_compiler_annotator.py +84 -0
- helm/benchmark/annotation/image2structure/webpage_compiler_annotator.py +132 -0
- helm/benchmark/annotation/test_annotator_factory.py +26 -0
- helm/benchmark/annotation/test_dummy_annotator.py +44 -0
- helm/benchmark/annotation_executor.py +124 -0
- helm/benchmark/augmentations/cleva_perturbation.py +7 -14
- helm/benchmark/augmentations/contraction_expansion_perturbation.py +3 -3
- helm/benchmark/augmentations/contrast_sets_perturbation.py +0 -3
- helm/benchmark/augmentations/data_augmenter.py +0 -2
- helm/benchmark/augmentations/dialect_perturbation.py +2 -2
- helm/benchmark/augmentations/extra_space_perturbation.py +2 -2
- helm/benchmark/augmentations/filler_words_perturbation.py +2 -2
- helm/benchmark/augmentations/gender_perturbation.py +3 -3
- helm/benchmark/augmentations/lowercase_perturbation.py +2 -2
- helm/benchmark/augmentations/mild_mix_perturbation.py +2 -2
- helm/benchmark/augmentations/misspelling_perturbation.py +2 -2
- helm/benchmark/augmentations/person_name_perturbation.py +0 -7
- helm/benchmark/augmentations/perturbation.py +20 -7
- helm/benchmark/augmentations/perturbation_description.py +1 -1
- helm/benchmark/augmentations/space_perturbation.py +2 -2
- helm/benchmark/augmentations/suffix_perturbation.py +29 -0
- helm/benchmark/augmentations/synonym_perturbation.py +2 -2
- helm/benchmark/augmentations/test_perturbation.py +11 -7
- helm/benchmark/augmentations/translate_perturbation.py +30 -0
- helm/benchmark/augmentations/typos_perturbation.py +2 -2
- helm/benchmark/config_registry.py +38 -0
- helm/benchmark/executor.py +46 -16
- helm/benchmark/huggingface_registration.py +37 -7
- helm/benchmark/metrics/basic_metrics.py +172 -641
- helm/benchmark/metrics/bbq_metrics.py +3 -4
- helm/benchmark/metrics/bias_metrics.py +6 -6
- helm/benchmark/metrics/classification_metrics.py +11 -8
- helm/benchmark/metrics/cleva_accuracy_metrics.py +8 -5
- helm/benchmark/metrics/cleva_harms_metrics.py +2 -2
- helm/benchmark/metrics/code_metrics.py +4 -3
- helm/benchmark/metrics/code_metrics_helper.py +0 -2
- helm/benchmark/metrics/common_metric_specs.py +167 -0
- helm/benchmark/metrics/decodingtrust_fairness_metrics.py +72 -0
- helm/benchmark/metrics/decodingtrust_ood_knowledge_metrics.py +66 -0
- helm/benchmark/metrics/decodingtrust_privacy_metrics.py +101 -0
- helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +202 -0
- helm/benchmark/metrics/disinformation_metrics.py +6 -112
- helm/benchmark/metrics/dry_run_metrics.py +5 -3
- helm/benchmark/metrics/efficiency_metrics.py +206 -0
- helm/benchmark/metrics/evaluate_instances_metric.py +59 -0
- helm/benchmark/metrics/evaluate_reference_metrics.py +376 -0
- helm/benchmark/metrics/image_generation/aesthetics_metrics.py +54 -0
- helm/benchmark/metrics/image_generation/aesthetics_scorer.py +66 -0
- helm/benchmark/metrics/image_generation/clip_score_metrics.py +73 -0
- helm/benchmark/metrics/image_generation/denoised_runtime_metric.py +42 -0
- helm/benchmark/metrics/image_generation/detection_metrics.py +57 -0
- helm/benchmark/metrics/image_generation/detectors/base_detector.py +8 -0
- helm/benchmark/metrics/image_generation/detectors/vitdet.py +178 -0
- helm/benchmark/metrics/image_generation/efficiency_metrics.py +41 -0
- helm/benchmark/metrics/image_generation/fidelity_metrics.py +168 -0
- helm/benchmark/metrics/image_generation/fractal_dimension/__init__.py +0 -0
- helm/benchmark/metrics/image_generation/fractal_dimension/fractal_dimension_util.py +63 -0
- helm/benchmark/metrics/image_generation/fractal_dimension/test_fractal_dimension_util.py +33 -0
- helm/benchmark/metrics/image_generation/fractal_dimension_metric.py +50 -0
- helm/benchmark/metrics/image_generation/gender_metrics.py +58 -0
- helm/benchmark/metrics/image_generation/image_critique_metrics.py +284 -0
- helm/benchmark/metrics/image_generation/lpips_metrics.py +82 -0
- helm/benchmark/metrics/image_generation/multi_scale_ssim_metrics.py +82 -0
- helm/benchmark/metrics/image_generation/nsfw_detector.py +96 -0
- helm/benchmark/metrics/image_generation/nsfw_metrics.py +103 -0
- helm/benchmark/metrics/image_generation/nudity_metrics.py +38 -0
- helm/benchmark/metrics/image_generation/photorealism_critique_metrics.py +153 -0
- helm/benchmark/metrics/image_generation/psnr_metrics.py +78 -0
- helm/benchmark/metrics/image_generation/q16/__init__.py +0 -0
- helm/benchmark/metrics/image_generation/q16/q16_toxicity_detector.py +90 -0
- helm/benchmark/metrics/image_generation/q16/test_q16.py +18 -0
- helm/benchmark/metrics/image_generation/q16_toxicity_metrics.py +48 -0
- helm/benchmark/metrics/image_generation/skin_tone_metrics.py +164 -0
- helm/benchmark/metrics/image_generation/uiqi_metrics.py +92 -0
- helm/benchmark/metrics/image_generation/watermark/__init__.py +0 -0
- helm/benchmark/metrics/image_generation/watermark/test_watermark_detector.py +16 -0
- helm/benchmark/metrics/image_generation/watermark/watermark_detector.py +87 -0
- helm/benchmark/metrics/image_generation/watermark_metrics.py +48 -0
- helm/benchmark/metrics/instruction_following_critique_metrics.py +3 -1
- helm/benchmark/metrics/language_modeling_metrics.py +99 -0
- helm/benchmark/metrics/machine_translation_metrics.py +5 -5
- helm/benchmark/metrics/metric.py +93 -172
- helm/benchmark/metrics/metric_name.py +0 -1
- helm/benchmark/metrics/metric_service.py +16 -0
- helm/benchmark/metrics/paraphrase_generation_metrics.py +3 -4
- helm/benchmark/metrics/ranking_metrics.py +6 -7
- helm/benchmark/metrics/reference_metric.py +148 -0
- helm/benchmark/metrics/summac/model_summac.py +0 -2
- helm/benchmark/metrics/summarization_metrics.py +8 -8
- helm/benchmark/metrics/test_classification_metrics.py +9 -6
- helm/benchmark/metrics/test_disinformation_metrics.py +78 -0
- helm/benchmark/metrics/test_evaluate_reference_metrics.py +30 -0
- helm/benchmark/metrics/test_metric.py +2 -2
- helm/benchmark/metrics/tokens/auto_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/gooseai_token_cost_estimator.py +13 -3
- helm/benchmark/metrics/tokens/openai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_ai21_token_cost_estimator.py +2 -0
- helm/benchmark/metrics/tokens/test_openai_token_cost_estimator.py +9 -2
- helm/benchmark/metrics/toxicity_metrics.py +1 -1
- helm/benchmark/metrics/toxicity_utils.py +23 -0
- helm/benchmark/metrics/unitxt_metrics.py +81 -0
- helm/benchmark/metrics/vision_language/__init__.py +0 -0
- helm/benchmark/metrics/vision_language/emd_utils.py +341 -0
- helm/benchmark/metrics/vision_language/image_metrics.py +450 -0
- helm/benchmark/metrics/vision_language/image_utils.py +100 -0
- helm/benchmark/model_deployment_registry.py +164 -41
- helm/benchmark/model_metadata_registry.py +181 -35
- helm/benchmark/multi_gpu_runner.py +133 -0
- helm/benchmark/presentation/contamination.py +3 -3
- helm/benchmark/presentation/create_plots.py +8 -7
- helm/benchmark/presentation/run_display.py +50 -17
- helm/benchmark/presentation/schema.py +28 -46
- helm/benchmark/presentation/summarize.py +213 -96
- helm/benchmark/presentation/table.py +8 -8
- helm/benchmark/presentation/test_contamination.py +2 -2
- helm/benchmark/presentation/test_run_entry.py +14 -9
- helm/benchmark/presentation/test_summarize.py +5 -0
- helm/benchmark/run.py +66 -54
- helm/benchmark/run_expander.py +342 -31
- helm/benchmark/run_spec.py +93 -0
- helm/benchmark/run_spec_factory.py +162 -0
- helm/benchmark/run_specs/__init__.py +0 -0
- helm/benchmark/{run_specs.py → run_specs/classic_run_specs.py} +217 -1330
- helm/benchmark/run_specs/cleva_run_specs.py +277 -0
- helm/benchmark/run_specs/decodingtrust_run_specs.py +314 -0
- helm/benchmark/run_specs/heim_run_specs.py +623 -0
- helm/benchmark/run_specs/instruction_following_run_specs.py +129 -0
- helm/benchmark/run_specs/lite_run_specs.py +307 -0
- helm/benchmark/run_specs/simple_run_specs.py +104 -0
- helm/benchmark/run_specs/unitxt_run_specs.py +42 -0
- helm/benchmark/run_specs/vlm_run_specs.py +501 -0
- helm/benchmark/runner.py +116 -69
- helm/benchmark/runner_config_registry.py +21 -0
- helm/benchmark/scenarios/bbq_scenario.py +1 -1
- helm/benchmark/scenarios/bold_scenario.py +2 -2
- helm/benchmark/scenarios/cleva_scenario.py +43 -46
- helm/benchmark/scenarios/code_scenario.py +3 -2
- helm/benchmark/scenarios/commonsense_scenario.py +171 -191
- helm/benchmark/scenarios/decodingtrust_adv_demonstration_scenario.py +169 -0
- helm/benchmark/scenarios/decodingtrust_adv_robustness_scenario.py +121 -0
- helm/benchmark/scenarios/decodingtrust_fairness_scenario.py +77 -0
- helm/benchmark/scenarios/decodingtrust_machine_ethics_scenario.py +324 -0
- helm/benchmark/scenarios/decodingtrust_ood_robustness_scenario.py +204 -0
- helm/benchmark/scenarios/decodingtrust_privacy_scenario.py +559 -0
- helm/benchmark/scenarios/decodingtrust_stereotype_bias_scenario.py +67 -0
- helm/benchmark/scenarios/decodingtrust_toxicity_prompts_scenario.py +78 -0
- helm/benchmark/scenarios/dialogue_scenarios.py +0 -1
- helm/benchmark/scenarios/entity_matching_scenario.py +1 -1
- helm/benchmark/scenarios/image_generation/__init__.py +0 -0
- helm/benchmark/scenarios/image_generation/common_syntactic_processes_scenario.py +105 -0
- helm/benchmark/scenarios/image_generation/cub200_scenario.py +95 -0
- helm/benchmark/scenarios/image_generation/daily_dalle_scenario.py +124 -0
- helm/benchmark/scenarios/image_generation/demographic_stereotypes_scenario.py +82 -0
- helm/benchmark/scenarios/image_generation/detection_scenario.py +83 -0
- helm/benchmark/scenarios/image_generation/draw_bench_scenario.py +74 -0
- helm/benchmark/scenarios/image_generation/i2p_scenario.py +57 -0
- helm/benchmark/scenarios/image_generation/landing_page_scenario.py +46 -0
- helm/benchmark/scenarios/image_generation/logos_scenario.py +223 -0
- helm/benchmark/scenarios/image_generation/magazine_cover_scenario.py +91 -0
- helm/benchmark/scenarios/image_generation/mental_disorders_scenario.py +46 -0
- helm/benchmark/scenarios/image_generation/mscoco_scenario.py +91 -0
- helm/benchmark/scenarios/image_generation/paint_skills_scenario.py +72 -0
- helm/benchmark/scenarios/image_generation/parti_prompts_scenario.py +94 -0
- helm/benchmark/scenarios/image_generation/radiology_scenario.py +42 -0
- helm/benchmark/scenarios/image_generation/relational_understanding_scenario.py +52 -0
- helm/benchmark/scenarios/image_generation/time_most_significant_historical_figures_scenario.py +124 -0
- helm/benchmark/scenarios/image_generation/winoground_scenario.py +62 -0
- helm/benchmark/scenarios/imdb_scenario.py +0 -1
- helm/benchmark/scenarios/legalbench_scenario.py +123 -0
- helm/benchmark/scenarios/live_qa_scenario.py +94 -0
- helm/benchmark/scenarios/lm_entry_scenario.py +185 -0
- helm/benchmark/scenarios/lsat_qa_scenario.py +4 -2
- helm/benchmark/scenarios/math_scenario.py +19 -2
- helm/benchmark/scenarios/medication_qa_scenario.py +60 -0
- helm/benchmark/scenarios/numeracy_scenario.py +3 -3
- helm/benchmark/scenarios/opinions_qa_scenario.py +6 -10
- helm/benchmark/scenarios/raft_scenario.py +2 -6
- helm/benchmark/scenarios/scenario.py +14 -2
- helm/benchmark/scenarios/simple_scenarios.py +122 -1
- helm/benchmark/scenarios/test_math_scenario.py +22 -0
- helm/benchmark/scenarios/test_scenario.py +6 -3
- helm/benchmark/scenarios/test_simple_scenarios.py +50 -0
- helm/benchmark/scenarios/thai_exam_scenario.py +135 -0
- helm/benchmark/scenarios/the_pile_scenario.py +6 -7
- helm/benchmark/scenarios/unitxt_scenario.py +56 -0
- helm/benchmark/scenarios/verifiability_judgment_scenario.py +3 -1
- helm/benchmark/scenarios/vicuna_scenario.py +1 -1
- helm/benchmark/scenarios/vision_language/bingo_scenario.py +103 -0
- helm/benchmark/scenarios/vision_language/hateful_memes_scenario.py +92 -0
- helm/benchmark/scenarios/vision_language/heim_human_eval_scenario.py +113 -0
- helm/benchmark/scenarios/vision_language/image2structure/__init__.py +0 -0
- helm/benchmark/scenarios/vision_language/image2structure/chart2csv_scenario.py +55 -0
- helm/benchmark/scenarios/vision_language/image2structure/image2structure_scenario.py +214 -0
- helm/benchmark/scenarios/vision_language/image2structure/latex_scenario.py +25 -0
- helm/benchmark/scenarios/vision_language/image2structure/musicsheet_scenario.py +20 -0
- helm/benchmark/scenarios/vision_language/image2structure/utils_latex.py +347 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage/__init__.py +0 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage/driver.py +84 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage/jekyll_server.py +182 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage/utils.py +31 -0
- helm/benchmark/scenarios/vision_language/image2structure/webpage_scenario.py +225 -0
- helm/benchmark/scenarios/vision_language/mementos_scenario.py +124 -0
- helm/benchmark/scenarios/vision_language/mme_scenario.py +145 -0
- helm/benchmark/scenarios/vision_language/mmmu_scenario.py +187 -0
- helm/benchmark/scenarios/vision_language/multipanelvqa_scenario.py +169 -0
- helm/benchmark/scenarios/vision_language/pope_scenario.py +104 -0
- helm/benchmark/scenarios/vision_language/seed_bench_scenario.py +129 -0
- helm/benchmark/scenarios/vision_language/unicorn_scenario.py +108 -0
- helm/benchmark/scenarios/vision_language/viz_wiz_scenario.py +107 -0
- helm/benchmark/scenarios/vision_language/vqa_scenario.py +1 -1
- helm/benchmark/scenarios/wmt_14_scenario.py +18 -18
- helm/benchmark/server.py +59 -2
- helm/benchmark/slurm_jobs.py +12 -0
- helm/benchmark/slurm_runner.py +79 -51
- helm/benchmark/static/benchmarking.js +3 -4
- helm/benchmark/static/contamination.yaml +1 -1
- helm/benchmark/static/images/organizations/together.png +0 -0
- helm/benchmark/static/json-urls.js +4 -0
- helm/benchmark/static/{schema.yaml → schema_classic.yaml} +346 -930
- helm/benchmark/static/schema_instruction_following.yaml +210 -0
- helm/benchmark/static/schema_lite.yaml +824 -0
- helm/benchmark/static/schema_mmlu.yaml +1507 -0
- helm/benchmark/static/schema_unitxt.yaml +428 -0
- helm/benchmark/static/schema_vlm.yaml +576 -0
- helm/benchmark/static_build/assets/01-694cb9b7.png +0 -0
- helm/benchmark/static_build/assets/ai21-0eb91ec3.png +0 -0
- helm/benchmark/static_build/assets/aleph-alpha-7ce10034.png +0 -0
- helm/benchmark/static_build/assets/anthropic-70d8bc39.png +0 -0
- helm/benchmark/static_build/assets/bigscience-7f0400c0.png +0 -0
- helm/benchmark/static_build/assets/cohere-3550c6cb.png +0 -0
- helm/benchmark/static_build/assets/crfm-logo-74391ab8.png +0 -0
- helm/benchmark/static_build/assets/eleutherai-b9451114.png +0 -0
- helm/benchmark/static_build/assets/google-06d997ad.png +0 -0
- helm/benchmark/static_build/assets/heim-logo-3e5e3aa4.png +0 -0
- helm/benchmark/static_build/assets/helm-logo-simple-2ed5400b.png +0 -0
- helm/benchmark/static_build/assets/helmhero-28e90f4d.png +0 -0
- helm/benchmark/static_build/assets/index-5088afcb.css +1 -0
- helm/benchmark/static_build/assets/index-d839df55.js +9 -0
- helm/benchmark/static_build/assets/meta-5580e9f1.png +0 -0
- helm/benchmark/static_build/assets/microsoft-f5ee5016.png +0 -0
- helm/benchmark/static_build/assets/mistral-18e1be23.png +0 -0
- helm/benchmark/static_build/assets/nvidia-86fa75c1.png +0 -0
- helm/benchmark/static_build/assets/openai-3f8653e4.png +0 -0
- helm/benchmark/static_build/assets/react-d4a0b69b.js +85 -0
- helm/benchmark/static_build/assets/recharts-6d337683.js +97 -0
- helm/benchmark/static_build/assets/tii-24de195c.png +0 -0
- helm/benchmark/static_build/assets/together-a665a35b.png +0 -0
- helm/benchmark/static_build/assets/tremor-54a99cc4.js +10 -0
- helm/benchmark/static_build/assets/tsinghua-keg-97d4b395.png +0 -0
- helm/benchmark/static_build/assets/vhelm-framework-cde7618a.png +0 -0
- helm/benchmark/static_build/assets/vhelm-model-6d812526.png +0 -0
- helm/benchmark/static_build/assets/yandex-38e09d70.png +0 -0
- helm/benchmark/static_build/config.js +4 -0
- helm/benchmark/static_build/index.html +20 -0
- helm/benchmark/test_data_preprocessor.py +3 -3
- helm/benchmark/test_model_deployment_definition.py +90 -0
- helm/benchmark/test_run_expander.py +1 -1
- helm/benchmark/tokenizer_config_registry.py +10 -14
- helm/benchmark/window_services/ai21_window_service.py +22 -33
- helm/benchmark/window_services/cohere_window_service.py +1 -63
- helm/benchmark/window_services/default_window_service.py +2 -35
- helm/benchmark/window_services/encoder_decoder_window_service.py +0 -11
- helm/benchmark/window_services/ice_window_service.py +0 -34
- helm/benchmark/window_services/image_generation/__init__.py +0 -0
- helm/benchmark/window_services/image_generation/clip_window_service.py +15 -0
- helm/benchmark/window_services/image_generation/lexica_search_window_service.py +9 -0
- helm/benchmark/window_services/image_generation/openai_dalle_window_service.py +9 -0
- helm/benchmark/window_services/image_generation/test_clip_window_service.py +29 -0
- helm/benchmark/window_services/image_generation/test_openai_dalle_window_service.py +30 -0
- helm/benchmark/window_services/local_window_service.py +21 -4
- helm/benchmark/window_services/no_decoding_window_service.py +32 -0
- helm/benchmark/window_services/test_anthropic_window_service.py +2 -1
- helm/benchmark/window_services/test_bloom_window_service.py +2 -1
- helm/benchmark/window_services/test_cohere_window_service.py +2 -1
- helm/benchmark/window_services/test_flan_t5_window_service.py +2 -1
- helm/benchmark/window_services/test_gpt2_window_service.py +2 -2
- helm/benchmark/window_services/test_gpt4_window_service.py +2 -1
- helm/benchmark/window_services/test_gptj_window_service.py +3 -2
- helm/benchmark/window_services/test_gptneox_window_service.py +3 -2
- helm/benchmark/window_services/test_ice_window_service.py +2 -1
- helm/benchmark/window_services/test_openai_window_service.py +2 -1
- helm/benchmark/window_services/test_opt_window_service.py +3 -2
- helm/benchmark/window_services/test_palmyra_window_service.py +2 -1
- helm/benchmark/window_services/test_t0pp_window_service.py +2 -1
- helm/benchmark/window_services/test_t511b_window_service.py +2 -1
- helm/benchmark/window_services/test_ul2_window_service.py +2 -1
- helm/benchmark/window_services/test_utils.py +3 -2
- helm/benchmark/window_services/test_yalm_window_service.py +2 -1
- helm/benchmark/window_services/window_service.py +42 -0
- helm/benchmark/window_services/window_service_factory.py +24 -269
- helm/benchmark/window_services/yalm_window_service.py +0 -27
- helm/clients/__init__.py +0 -0
- helm/{proxy/clients → clients}/ai21_client.py +5 -12
- helm/clients/aleph_alpha_client.py +112 -0
- helm/{proxy/clients → clients}/anthropic_client.py +213 -24
- helm/clients/auto_client.py +215 -0
- helm/clients/bedrock_client.py +128 -0
- helm/clients/bedrock_utils.py +72 -0
- helm/{proxy/clients → clients}/client.py +67 -55
- helm/clients/clip_score_client.py +49 -0
- helm/clients/clip_scorers/__init__.py +0 -0
- helm/clients/clip_scorers/base_clip_scorer.py +18 -0
- helm/clients/clip_scorers/clip_scorer.py +50 -0
- helm/clients/clip_scorers/multilingual_clip_scorer.py +50 -0
- helm/{proxy/clients → clients}/cohere_client.py +6 -17
- helm/clients/gcs_client.py +82 -0
- helm/{proxy/clients → clients}/google_client.py +7 -8
- helm/clients/google_translate_client.py +35 -0
- helm/{proxy/clients → clients}/http_model_client.py +6 -10
- helm/{proxy/clients → clients}/huggingface_client.py +134 -92
- helm/clients/image_generation/__init__.py +0 -0
- helm/clients/image_generation/adobe_vision_client.py +78 -0
- helm/clients/image_generation/aleph_alpha_image_generation_client.py +98 -0
- helm/clients/image_generation/cogview2/__init__.py +0 -0
- helm/clients/image_generation/cogview2/coglm_strategy.py +96 -0
- helm/clients/image_generation/cogview2/coglm_utils.py +82 -0
- helm/clients/image_generation/cogview2/sr_pipeline/__init__.py +15 -0
- helm/clients/image_generation/cogview2/sr_pipeline/direct_sr.py +96 -0
- helm/clients/image_generation/cogview2/sr_pipeline/dsr_model.py +254 -0
- helm/clients/image_generation/cogview2/sr_pipeline/dsr_sampling.py +190 -0
- helm/clients/image_generation/cogview2/sr_pipeline/iterative_sr.py +141 -0
- helm/clients/image_generation/cogview2/sr_pipeline/itersr_model.py +269 -0
- helm/clients/image_generation/cogview2/sr_pipeline/itersr_sampling.py +120 -0
- helm/clients/image_generation/cogview2/sr_pipeline/sr_group.py +42 -0
- helm/clients/image_generation/cogview2_client.py +191 -0
- helm/clients/image_generation/dalle2_client.py +192 -0
- helm/clients/image_generation/dalle3_client.py +108 -0
- helm/clients/image_generation/dalle_mini/__init__.py +3 -0
- helm/clients/image_generation/dalle_mini/data.py +442 -0
- helm/clients/image_generation/dalle_mini/model/__init__.py +5 -0
- helm/clients/image_generation/dalle_mini/model/configuration.py +175 -0
- helm/clients/image_generation/dalle_mini/model/modeling.py +1834 -0
- helm/clients/image_generation/dalle_mini/model/partitions.py +84 -0
- helm/clients/image_generation/dalle_mini/model/processor.py +63 -0
- helm/clients/image_generation/dalle_mini/model/text.py +251 -0
- helm/clients/image_generation/dalle_mini/model/tokenizer.py +9 -0
- helm/clients/image_generation/dalle_mini/model/utils.py +29 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/__init__.py +1 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/configuration_vqgan.py +40 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/convert_pt_model_to_jax.py +107 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/modeling_flax_vqgan.py +610 -0
- helm/clients/image_generation/dalle_mini_client.py +190 -0
- helm/clients/image_generation/deep_floyd_client.py +78 -0
- helm/clients/image_generation/huggingface_diffusers_client.py +249 -0
- helm/clients/image_generation/image_generation_client_utils.py +9 -0
- helm/clients/image_generation/lexica_client.py +86 -0
- helm/clients/image_generation/mindalle/__init__.py +0 -0
- helm/clients/image_generation/mindalle/models/__init__.py +216 -0
- helm/clients/image_generation/mindalle/models/stage1/__init__.py +0 -0
- helm/clients/image_generation/mindalle/models/stage1/layers.py +312 -0
- helm/clients/image_generation/mindalle/models/stage1/vqgan.py +103 -0
- helm/clients/image_generation/mindalle/models/stage2/__init__.py +0 -0
- helm/clients/image_generation/mindalle/models/stage2/layers.py +144 -0
- helm/clients/image_generation/mindalle/models/stage2/transformer.py +268 -0
- helm/clients/image_generation/mindalle/models/tokenizer.py +30 -0
- helm/clients/image_generation/mindalle/utils/__init__.py +3 -0
- helm/clients/image_generation/mindalle/utils/config.py +129 -0
- helm/clients/image_generation/mindalle/utils/sampling.py +149 -0
- helm/clients/image_generation/mindalle/utils/utils.py +89 -0
- helm/clients/image_generation/mindalle_client.py +115 -0
- helm/clients/image_generation/nudity_check_client.py +64 -0
- helm/clients/image_generation/together_image_generation_client.py +111 -0
- helm/{proxy/clients → clients}/lit_gpt_client.py +7 -5
- helm/{proxy/clients → clients}/megatron_client.py +13 -7
- helm/clients/mistral_client.py +134 -0
- helm/clients/moderation_api_client.py +109 -0
- helm/clients/open_lm_client.py +43 -0
- helm/clients/openai_client.py +302 -0
- helm/{proxy/clients → clients}/palmyra_client.py +15 -12
- helm/{proxy/clients → clients}/perspective_api_client.py +7 -8
- helm/clients/simple_client.py +64 -0
- helm/{proxy/clients → clients}/test_auto_client.py +15 -15
- helm/clients/test_client.py +100 -0
- helm/clients/test_huggingface_client.py +70 -0
- helm/clients/test_simple_client.py +19 -0
- helm/{proxy/clients → clients}/test_together_client.py +23 -12
- helm/{proxy/clients → clients}/together_client.py +18 -71
- helm/clients/vertexai_client.py +391 -0
- helm/clients/vision_language/__init__.py +0 -0
- helm/clients/vision_language/huggingface_vlm_client.py +104 -0
- helm/{proxy/clients → clients}/vision_language/idefics_client.py +59 -52
- helm/clients/vision_language/open_flamingo/__init__.py +2 -0
- helm/clients/vision_language/open_flamingo/src/__init__.py +0 -0
- helm/clients/vision_language/open_flamingo/src/factory.py +147 -0
- helm/clients/vision_language/open_flamingo/src/flamingo.py +337 -0
- helm/clients/vision_language/open_flamingo/src/flamingo_lm.py +155 -0
- helm/clients/vision_language/open_flamingo/src/helpers.py +267 -0
- helm/clients/vision_language/open_flamingo/src/utils.py +47 -0
- helm/clients/vision_language/open_flamingo_client.py +155 -0
- helm/clients/vision_language/qwen_vlm_client.py +171 -0
- helm/clients/vllm_client.py +46 -0
- helm/common/cache.py +24 -179
- helm/common/cache_backend_config.py +47 -0
- helm/common/clip_score_request.py +41 -0
- helm/common/concurrency.py +32 -0
- helm/common/credentials_utils.py +28 -0
- helm/common/file_caches/__init__.py +0 -0
- helm/common/file_caches/file_cache.py +16 -0
- helm/common/file_caches/local_file_cache.py +61 -0
- helm/common/file_caches/test_local_file_cache.py +25 -0
- helm/common/file_upload_request.py +27 -0
- helm/common/general.py +29 -10
- helm/common/image_generation_parameters.py +25 -0
- helm/common/images_utils.py +24 -1
- helm/common/key_value_store.py +113 -0
- helm/common/media_object.py +13 -0
- helm/common/moderations_api_request.py +71 -0
- helm/common/mongo_key_value_store.py +88 -0
- helm/common/multimodal_request_utils.py +31 -0
- helm/common/nudity_check_request.py +29 -0
- helm/common/object_spec.py +2 -2
- helm/common/request.py +36 -27
- helm/common/test_general.py +6 -0
- helm/common/tokenization_request.py +6 -3
- helm/config/__init__.py +0 -0
- helm/config/model_deployments.yaml +1942 -0
- helm/config/model_metadata.yaml +2201 -0
- helm/config/tokenizer_configs.yaml +362 -0
- helm/proxy/accounts.py +31 -4
- helm/proxy/critique/mechanical_turk_critique_importer.py +3 -0
- helm/proxy/critique/model_critique_client.py +13 -5
- helm/proxy/example_queries.py +29 -17
- helm/proxy/retry.py +8 -2
- helm/proxy/server.py +77 -5
- helm/proxy/services/remote_service.py +31 -0
- helm/proxy/services/server_service.py +103 -20
- helm/proxy/services/service.py +34 -2
- helm/proxy/services/test_remote_service.py +7 -6
- helm/proxy/services/test_service.py +27 -18
- helm/proxy/test_accounts.py +32 -0
- helm/proxy/token_counters/auto_token_counter.py +37 -37
- helm/proxy/token_counters/test_auto_token_counter.py +164 -0
- helm/proxy/token_counters/token_counter.py +3 -5
- helm/py.typed +0 -0
- helm/tokenizers/__init__.py +0 -0
- helm/{proxy/tokenizers → tokenizers}/ai21_tokenizer.py +3 -3
- helm/{proxy/tokenizers → tokenizers}/aleph_alpha_tokenizer.py +3 -1
- helm/{proxy/tokenizers → tokenizers}/anthropic_tokenizer.py +17 -11
- helm/tokenizers/auto_tokenizer.py +93 -0
- helm/{proxy/tokenizers → tokenizers}/caching_tokenizer.py +8 -2
- helm/{proxy/tokenizers → tokenizers}/cohere_tokenizer.py +1 -1
- helm/{proxy/tokenizers → tokenizers}/http_model_tokenizer.py +3 -3
- helm/{proxy/tokenizers → tokenizers}/huggingface_tokenizer.py +56 -60
- helm/tokenizers/simple_tokenizer.py +33 -0
- helm/tokenizers/test_anthropic_tokenizer.py +82 -0
- helm/tokenizers/test_huggingface_tokenizer.py +136 -0
- helm/tokenizers/test_simple_tokenizer.py +33 -0
- helm/tokenizers/vertexai_tokenizer.py +97 -0
- helm/{proxy/tokenizers → tokenizers}/yalm_tokenizer.py +5 -3
- helm/tokenizers/yalm_tokenizer_data/__init__.py +0 -0
- helm/tokenizers/yalm_tokenizer_data/voc_100b.sp +0 -0
- helm/{proxy/tokenizers → tokenizers}/yalm_tokenizer_data/yalm_tokenizer.py +1 -1
- crfm_helm-0.3.0.dist-info/RECORD +0 -396
- helm/benchmark/vlm_run_specs.py +0 -71
- helm/benchmark/window_services/anthropic_window_service.py +0 -68
- helm/benchmark/window_services/bloom_window_service.py +0 -35
- helm/benchmark/window_services/flan_t5_window_service.py +0 -29
- helm/benchmark/window_services/gpt2_window_service.py +0 -32
- helm/benchmark/window_services/gptj_window_service.py +0 -38
- helm/benchmark/window_services/gptneox_window_service.py +0 -41
- helm/benchmark/window_services/http_model_window_service.py +0 -28
- helm/benchmark/window_services/huggingface_window_service.py +0 -59
- helm/benchmark/window_services/lit_gpt_window_service.py +0 -27
- helm/benchmark/window_services/llama_window_service.py +0 -28
- helm/benchmark/window_services/luminous_window_service.py +0 -67
- helm/benchmark/window_services/megatron_window_service.py +0 -10
- helm/benchmark/window_services/mt_nlg_window_service.py +0 -27
- helm/benchmark/window_services/openai_window_service.py +0 -13
- helm/benchmark/window_services/opt_window_service.py +0 -35
- helm/benchmark/window_services/palmyra_window_service.py +0 -45
- helm/benchmark/window_services/remote_window_service.py +0 -48
- helm/benchmark/window_services/santacoder_window_service.py +0 -27
- helm/benchmark/window_services/starcoder_window_service.py +0 -27
- helm/benchmark/window_services/t0pp_window_service.py +0 -35
- helm/benchmark/window_services/t511b_window_service.py +0 -30
- helm/benchmark/window_services/test_mt_nlg_window_service.py +0 -48
- helm/benchmark/window_services/ul2_window_service.py +0 -30
- helm/benchmark/window_services/wider_ai21_window_service.py +0 -24
- helm/benchmark/window_services/wider_openai_window_service.py +0 -52
- helm/proxy/clients/aleph_alpha_client.py +0 -99
- helm/proxy/clients/auto_client.py +0 -461
- helm/proxy/clients/goose_ai_client.py +0 -100
- helm/proxy/clients/microsoft_client.py +0 -182
- helm/proxy/clients/openai_client.py +0 -206
- helm/proxy/clients/remote_model_registry.py +0 -28
- helm/proxy/clients/simple_client.py +0 -61
- helm/proxy/clients/test_anthropic_client.py +0 -63
- helm/proxy/clients/test_client.py +0 -31
- helm/proxy/clients/test_huggingface_client.py +0 -87
- helm/proxy/models.py +0 -963
- helm/proxy/test_models.py +0 -27
- helm/proxy/token_counters/ai21_token_counter.py +0 -20
- helm/proxy/token_counters/cohere_token_counter.py +0 -13
- helm/proxy/token_counters/free_token_counter.py +0 -12
- helm/proxy/token_counters/gooseai_token_counter.py +0 -24
- helm/proxy/token_counters/openai_token_counter.py +0 -22
- helm/proxy/token_counters/test_ai21_token_counter.py +0 -86
- helm/proxy/token_counters/test_openai_token_counter.py +0 -79
- helm/proxy/tokenizers/simple_tokenizer.py +0 -32
- helm/proxy/tokenizers/test_huggingface_tokenizer.py +0 -56
- {crfm_helm-0.3.0.dist-info → crfm_helm-0.5.0.dist-info}/LICENSE +0 -0
- {crfm_helm-0.3.0.dist-info → crfm_helm-0.5.0.dist-info}/entry_points.txt +0 -0
- {crfm_helm-0.3.0.dist-info → crfm_helm-0.5.0.dist-info}/top_level.txt +0 -0
- /helm/{proxy/clients → benchmark/annotation}/__init__.py +0 -0
- /helm/{proxy/clients/vision_language → benchmark/annotation/image2structure}/__init__.py +0 -0
- /helm/{proxy/tokenizers → benchmark/metrics/image_generation}/__init__.py +0 -0
- /helm/{proxy/tokenizers/yalm_tokenizer_data → benchmark/metrics/image_generation/detectors}/__init__.py +0 -0
- /helm/{proxy/clients → clients}/ai21_utils.py +0 -0
- /helm/{proxy/clients → clients}/cohere_utils.py +0 -0
- /helm/{proxy/clients → clients}/lit_gpt_generate.py +0 -0
- /helm/{proxy/clients → clients}/toxicity_classifier_client.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/ice_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/lit_gpt_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/test_ice_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/test_yalm_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/tiktoken_tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/tokenizer.py +0 -0
- /helm/{proxy/tokenizers → tokenizers}/yalm_tokenizer_data/test_yalm_tokenizer.py +0 -0
|
@@ -0,0 +1,824 @@
|
|
|
1
|
+
---
|
|
2
|
+
############################################################
|
|
3
|
+
adapter:
|
|
4
|
+
- name: method
|
|
5
|
+
description: The high-level strategy for converting instances into a prompt for the language model.
|
|
6
|
+
values:
|
|
7
|
+
- name: generation
|
|
8
|
+
description: Given the input, the model generates the output free-form.
|
|
9
|
+
- name: multiple_choice_joint
|
|
10
|
+
description: Given the input, the model selects from multiple-choice options (A., B., C., D., E.).
|
|
11
|
+
- name: multiple_choice_separate_original
|
|
12
|
+
description: For each answer choice, the model assigns the input and answer choice a probability, returning the answer with maximum probability.
|
|
13
|
+
- name: multiple_choice_separate_calibrated
|
|
14
|
+
description: For each answer choice, the model assigns the input and answer choice a probability, returning the answer with maximum probability when calibrated by answer choice probability.
|
|
15
|
+
- name: language_modeling
|
|
16
|
+
description: Given the input, the model assigns the sequence a probability.
|
|
17
|
+
- name: instructions
|
|
18
|
+
description: The description of the task that is included at the very beginning of the prompt.
|
|
19
|
+
- name: global_prefix
|
|
20
|
+
description: The string that is prepended to the prompt.
|
|
21
|
+
- name: global_suffix
|
|
22
|
+
description: The string that is appended to the prompt.
|
|
23
|
+
- name: instance_prefix
|
|
24
|
+
description: The string that is included before each instance (e.g., '\n\n').
|
|
25
|
+
- name: input_prefix
|
|
26
|
+
description: The string that is included before each input (e.g., 'Question:').
|
|
27
|
+
- name: input_suffix
|
|
28
|
+
description: The string that is included after each input (e.g., '\n').
|
|
29
|
+
- name: reference_prefix
|
|
30
|
+
description: The string that is included before each reference (for multiple-choice questions).
|
|
31
|
+
- name: reference_suffix
|
|
32
|
+
description: The string that is included after each reference (for multiple-choice questions).
|
|
33
|
+
- name: output_prefix
|
|
34
|
+
description: The string that is included before the correct answer/predicted output (e.g., 'Answer:').
|
|
35
|
+
- name: output_suffix
|
|
36
|
+
description: The string that is included after the correct answer/predicted output (e.g., '\n').
|
|
37
|
+
- name: substitutions
|
|
38
|
+
description: A list of regular expression substitutions (e.g., replacing '\n' with ';\n') to perform at the very end on the prompt.
|
|
39
|
+
- name: max_train_instances
|
|
40
|
+
description: Maximum number of training instances to include in the prompt (currently by randomly sampling).
|
|
41
|
+
- name: max_eval_instances
|
|
42
|
+
description: Maximum number of instances to evaluate on (over all splits - test, valid, etc.).
|
|
43
|
+
- name: num_outputs
|
|
44
|
+
description: Maximum number of possible outputs to generate by sampling multiple outputs.
|
|
45
|
+
- name: num_train_trials
|
|
46
|
+
description: Number of trials, where in each trial we choose an independent, random set of training instances. Used to compute variance.
|
|
47
|
+
- name: sample_train
|
|
48
|
+
description: If true, randomly sample N training examples; if false, select N consecutive training examples
|
|
49
|
+
- name: model
|
|
50
|
+
description: Name of the language model (<creator_organization>/<model name>) to send requests to.
|
|
51
|
+
- name: model_deployment
|
|
52
|
+
description: Name of the language model deployment (<host_organization>/<model name>) to send requests to.
|
|
53
|
+
- name: temperature
|
|
54
|
+
description: Temperature parameter used in generation.
|
|
55
|
+
- name: max_tokens
|
|
56
|
+
description: Maximum number of tokens to generate.
|
|
57
|
+
- name: stop_sequences
|
|
58
|
+
description: List of sequences, where we stop generation if we encounter any of them.
|
|
59
|
+
- name: random
|
|
60
|
+
description: Random seed (string), which guarantees reproducibility.
|
|
61
|
+
- name: multi_label
|
|
62
|
+
description: If true, for instances with multiple correct reference, the gold answer should be considered to be all of the correct references rather than any of the correct references.
|
|
63
|
+
|
|
64
|
+
############################################################
|
|
65
|
+
metrics:
|
|
66
|
+
# Infrastructure metrics:
|
|
67
|
+
- name: num_perplexity_tokens
|
|
68
|
+
display_name: '# tokens'
|
|
69
|
+
description: Average number of tokens in the predicted output (for language modeling, the input too).
|
|
70
|
+
- name: num_bytes
|
|
71
|
+
display_name: '# bytes'
|
|
72
|
+
description: Average number of bytes in the predicted output (for language modeling, the input too).
|
|
73
|
+
|
|
74
|
+
- name: num_references
|
|
75
|
+
display_name: '# ref'
|
|
76
|
+
description: Number of references.
|
|
77
|
+
- name: num_train_trials
|
|
78
|
+
display_name: '# trials'
|
|
79
|
+
description: Number of trials, where in each trial we choose an independent, random set of training instances.
|
|
80
|
+
- name: estimated_num_tokens_cost
|
|
81
|
+
display_name: 'cost'
|
|
82
|
+
description: An estimate of the number of tokens (including prompt and output completions) needed to perform the request.
|
|
83
|
+
- name: num_prompt_tokens
|
|
84
|
+
display_name: '# prompt tokens'
|
|
85
|
+
description: Number of tokens in the prompt.
|
|
86
|
+
- name: num_prompt_characters
|
|
87
|
+
display_name: '# prompt chars'
|
|
88
|
+
description: Number of characters in the prompt.
|
|
89
|
+
- name: num_completion_tokens
|
|
90
|
+
display_name: '# completion tokens'
|
|
91
|
+
description: Actual number of completion tokens (over all completions).
|
|
92
|
+
- name: num_output_tokens
|
|
93
|
+
display_name: '# output tokens'
|
|
94
|
+
description: Actual number of output tokens.
|
|
95
|
+
- name: max_num_output_tokens
|
|
96
|
+
display_name: 'Max output tokens'
|
|
97
|
+
description: Maximum number of output tokens (overestimate since we might stop earlier due to stop sequences).
|
|
98
|
+
- name: num_requests
|
|
99
|
+
display_name: '# requests'
|
|
100
|
+
description: Number of distinct API requests.
|
|
101
|
+
- name: num_instances
|
|
102
|
+
display_name: '# eval'
|
|
103
|
+
description: Number of evaluation instances.
|
|
104
|
+
- name: num_train_instances
|
|
105
|
+
display_name: '# train'
|
|
106
|
+
description: Number of training instances (e.g., in-context examples).
|
|
107
|
+
- name: prompt_truncated
|
|
108
|
+
display_name: truncated
|
|
109
|
+
description: Fraction of instances where the prompt itself was truncated (implies that there were no in-context examples).
|
|
110
|
+
- name: finish_reason_length
|
|
111
|
+
display_name: finish b/c length
|
|
112
|
+
description: Fraction of instances where the the output was terminated because of the max tokens limit.
|
|
113
|
+
- name: finish_reason_stop
|
|
114
|
+
display_name: finish b/c stop
|
|
115
|
+
description: Fraction of instances where the the output was terminated because of the stop sequences.
|
|
116
|
+
- name: finish_reason_endoftext
|
|
117
|
+
display_name: finish b/c endoftext
|
|
118
|
+
description: Fraction of instances where the the output was terminated because the end of text token was generated.
|
|
119
|
+
- name: finish_reason_unknown
|
|
120
|
+
display_name: finish b/c unknown
|
|
121
|
+
description: Fraction of instances where the the output was terminated for unknown reasons.
|
|
122
|
+
- name: num_completions
|
|
123
|
+
display_name: '# completions'
|
|
124
|
+
description: Number of completions.
|
|
125
|
+
- name: predicted_index
|
|
126
|
+
display_name: Predicted index
|
|
127
|
+
description: Integer index of the reference (0, 1, ...) that was predicted by the model (for multiple-choice).
|
|
128
|
+
|
|
129
|
+
# Accuracy metrics:
|
|
130
|
+
- name: exact_match
|
|
131
|
+
display_name: Exact match
|
|
132
|
+
short_display_name: EM
|
|
133
|
+
description: Fraction of instances that the predicted output matches a correct reference exactly.
|
|
134
|
+
lower_is_better: false
|
|
135
|
+
- name: quasi_exact_match
|
|
136
|
+
display_name: Quasi-exact match
|
|
137
|
+
short_display_name: EM
|
|
138
|
+
description: Fraction of instances that the predicted output matches a correct reference up to light processing.
|
|
139
|
+
lower_is_better: false
|
|
140
|
+
- name: prefix_exact_match
|
|
141
|
+
display_name: Prefix exact match
|
|
142
|
+
short_display_name: PEM
|
|
143
|
+
description: Fraction of instances that the predicted output matches the prefix of a correct reference exactly.
|
|
144
|
+
lower_is_better: false
|
|
145
|
+
- name: quasi_prefix_exact_match
|
|
146
|
+
# TODO: should call this prefix_quasi_exact_match
|
|
147
|
+
display_name: Prefix quasi-exact match
|
|
148
|
+
short_display_name: PEM
|
|
149
|
+
description: Fraction of instances that the predicted output matches the prefix of a correct reference up to light processing.
|
|
150
|
+
lower_is_better: false
|
|
151
|
+
|
|
152
|
+
- name: exact_match@5
|
|
153
|
+
display_name: Exact match @5
|
|
154
|
+
short_display_name: EM@5
|
|
155
|
+
description: Fraction of instances where at least one predicted output among the top 5 matches a correct reference exactly.
|
|
156
|
+
lower_is_better: false
|
|
157
|
+
- name: quasi_exact_match@5
|
|
158
|
+
display_name: Quasi-exact match @5
|
|
159
|
+
short_display_name: EM@5
|
|
160
|
+
description: Fraction of instances where at least one predicted output among the top 5 matches a correct reference up to light processing.
|
|
161
|
+
lower_is_better: false
|
|
162
|
+
- name: prefix_exact_match@5
|
|
163
|
+
display_name: Prefix exact match @5
|
|
164
|
+
short_display_name: PEM@5
|
|
165
|
+
description: Fraction of instances that the predicted output among the top 5 matches the prefix of a correct reference exactly.
|
|
166
|
+
lower_is_better: false
|
|
167
|
+
- name: quasi_prefix_exact_match@5
|
|
168
|
+
display_name: Prefix quasi-exact match @5
|
|
169
|
+
short_display_name: PEM@5
|
|
170
|
+
description: Fraction of instances that the predicted output among the top 5 matches the prefix of a correct reference up to light processing.
|
|
171
|
+
lower_is_better: false
|
|
172
|
+
|
|
173
|
+
- name: logprob
|
|
174
|
+
display_name: Log probability
|
|
175
|
+
short_display_name: Logprob
|
|
176
|
+
description: Predicted output's average log probability (input's log prob for language modeling).
|
|
177
|
+
lower_is_better: false
|
|
178
|
+
- name: logprob_per_byte
|
|
179
|
+
display_name: Log probability / byte
|
|
180
|
+
short_display_name: Logprob/byte
|
|
181
|
+
description: Predicted output's average log probability normalized by the number of bytes.
|
|
182
|
+
lower_is_better: false
|
|
183
|
+
- name: bits_per_byte
|
|
184
|
+
display_name: Bits/byte
|
|
185
|
+
short_display_name: BPB
|
|
186
|
+
lower_is_better: true
|
|
187
|
+
description: Average number of bits per byte according to model probabilities.
|
|
188
|
+
- name: perplexity
|
|
189
|
+
display_name: Perplexity
|
|
190
|
+
short_display_name: PPL
|
|
191
|
+
lower_is_better: true
|
|
192
|
+
description: Perplexity of the output completion (effective branching factor per output token).
|
|
193
|
+
- name: rouge_1
|
|
194
|
+
display_name: ROUGE-1
|
|
195
|
+
description: Average ROUGE score [(Lin, 2004)](https://aclanthology.org/W04-1013/) based on 1-gram overlap.
|
|
196
|
+
lower_is_better: false
|
|
197
|
+
- name: rouge_2
|
|
198
|
+
display_name: ROUGE-2
|
|
199
|
+
description: Average ROUGE score [(Lin, 2004)](https://aclanthology.org/W04-1013/) based on 2-gram overlap.
|
|
200
|
+
lower_is_better: false
|
|
201
|
+
- name: rouge_l
|
|
202
|
+
display_name: ROUGE-L
|
|
203
|
+
description: Average ROUGE score [(Lin, 2004)](https://aclanthology.org/W04-1013/) based on longest common subsequence overlap.
|
|
204
|
+
lower_is_better: false
|
|
205
|
+
- name: bleu_1
|
|
206
|
+
display_name: BLEU-1
|
|
207
|
+
description: Average BLEU score [(Papineni et al., 2002)](https://aclanthology.org/P02-1040/) based on 1-gram overlap.
|
|
208
|
+
lower_is_better: false
|
|
209
|
+
- name: bleu_4
|
|
210
|
+
display_name: BLEU-4
|
|
211
|
+
description: Average BLEU score [(Papineni et al., 2002)](https://aclanthology.org/P02-1040/) based on 4-gram overlap.
|
|
212
|
+
lower_is_better: false
|
|
213
|
+
- name: f1_set_match
|
|
214
|
+
display_name: F1 (set match)
|
|
215
|
+
short_display_name: F1
|
|
216
|
+
description: Average F1 score in terms of set overlap between the model predicted set and correct reference set.
|
|
217
|
+
lower_is_better: false
|
|
218
|
+
- name: f1_score
|
|
219
|
+
display_name: F1
|
|
220
|
+
description: Average F1 score in terms of word overlap between the model output and correct reference.
|
|
221
|
+
lower_is_better: false
|
|
222
|
+
- name: classification_macro_f1
|
|
223
|
+
display_name: Macro-F1
|
|
224
|
+
description: Population-level macro-averaged F1 score.
|
|
225
|
+
lower_is_better: false
|
|
226
|
+
- name: classification_micro_f1
|
|
227
|
+
display_name: Micro-F1
|
|
228
|
+
description: Population-level micro-averaged F1 score.
|
|
229
|
+
lower_is_better: false
|
|
230
|
+
- name: absolute_value_difference
|
|
231
|
+
display_name: Absolute difference
|
|
232
|
+
short_display_name: Diff.
|
|
233
|
+
lower_is_better: true
|
|
234
|
+
description: Average absolute difference between the model output (converted to a number) and the correct reference.
|
|
235
|
+
- name: distance
|
|
236
|
+
display_name: Geometric distance
|
|
237
|
+
short_display_name: Dist.
|
|
238
|
+
lower_is_better: true
|
|
239
|
+
description: Average gometric distance between the model output (as a point) and the correct reference (as a curve).
|
|
240
|
+
- name: percent_valid
|
|
241
|
+
display_name: Valid fraction
|
|
242
|
+
short_display_name: Valid
|
|
243
|
+
description: Fraction of valid model outputs (as a number).
|
|
244
|
+
lower_is_better: false
|
|
245
|
+
- name: NDCG@10
|
|
246
|
+
display_name: NDCG@10
|
|
247
|
+
description: Normalized discounted cumulative gain at 10 in information retrieval.
|
|
248
|
+
lower_is_better: false
|
|
249
|
+
- name: RR@10
|
|
250
|
+
display_name: RR@10
|
|
251
|
+
description: Mean reciprocal rank at 10 in information retrieval.
|
|
252
|
+
lower_is_better: false
|
|
253
|
+
- name: NDCG@20
|
|
254
|
+
display_name: NDCG@20
|
|
255
|
+
description: Normalized discounted cumulative gain at 20 in information retrieval.
|
|
256
|
+
lower_is_better: false
|
|
257
|
+
- name: RR@20
|
|
258
|
+
display_name: RR@20
|
|
259
|
+
description: Mean reciprocal rank at 20 in information retrieval.
|
|
260
|
+
lower_is_better: false
|
|
261
|
+
- name: math_equiv
|
|
262
|
+
display_name: Equivalent
|
|
263
|
+
description: Fraction of model outputs that are mathematically equivalent to the correct reference.
|
|
264
|
+
lower_is_better: false
|
|
265
|
+
- name: math_equiv_chain_of_thought
|
|
266
|
+
display_name: Equivalent (CoT)
|
|
267
|
+
description: Fraction of model outputs that are mathematically equivalent to the correct reference when using chain-of-thought prompting.
|
|
268
|
+
lower_is_better: false
|
|
269
|
+
- name: exact_match_indicator
|
|
270
|
+
display_name: Exact match (final)
|
|
271
|
+
short_display_name: EM
|
|
272
|
+
description: Fraction of instances that the predicted output matches a correct reference exactly, ignoring text preceding the specified indicator (e.g., space).
|
|
273
|
+
lower_is_better: false
|
|
274
|
+
- name: final_number_exact_match
|
|
275
|
+
display_name: Exact match (final number)
|
|
276
|
+
short_display_name: EM
|
|
277
|
+
description: Fraction of instances that the predicted output matches a correct reference exactly, ignoring text preceding the specified indicator.
|
|
278
|
+
lower_is_better: false
|
|
279
|
+
- name: exact_set_match
|
|
280
|
+
display_name: Exact match (at sets)
|
|
281
|
+
short_display_name: EM
|
|
282
|
+
description: Fraction of instances that the predicted output matches a correct reference exactly as sets.
|
|
283
|
+
lower_is_better: false
|
|
284
|
+
- name: iou_set_match
|
|
285
|
+
display_name: Intersection over union (as sets)
|
|
286
|
+
short_display_name: IoU
|
|
287
|
+
description: Intersection over union in terms of set overlap between the model predicted set and correct reference set.
|
|
288
|
+
lower_is_better: false
|
|
289
|
+
|
|
290
|
+
# Summarization metrics
|
|
291
|
+
- name: summac
|
|
292
|
+
display_name: SummaC
|
|
293
|
+
description: Faithfulness scores based on the SummaC method of [Laban et al. (2022)](https://aclanthology.org/2022.tacl-1.10/).
|
|
294
|
+
lower_is_better: false
|
|
295
|
+
- name: QAFactEval
|
|
296
|
+
display_name: QAFactEval
|
|
297
|
+
description: Faithfulness scores based on the SummaC method of [Laban et al. (2022)](https://aclanthology.org/2022.tacl-1.10/).
|
|
298
|
+
lower_is_better: false
|
|
299
|
+
- name: summarization_coverage
|
|
300
|
+
display_name: Coverage
|
|
301
|
+
description: Extent to which the model-generated summaries are extractive fragments from the source document [(Grusky et al., 2018)](https://aclanthology.org/N18-1065/).
|
|
302
|
+
- name: summarization_density
|
|
303
|
+
display_name: Density
|
|
304
|
+
description: Extent to which the model-generated summaries are extractive summaries based on the source document [(Grusky et al., 2018)](https://aclanthology.org/N18-1065/).
|
|
305
|
+
- name: summarization_compression
|
|
306
|
+
display_name: Compression
|
|
307
|
+
description: Extent to which the model-generated summaries are compressed relative to the source document [(Grusky et al., 2018)](https://aclanthology.org/N18-1065/).
|
|
308
|
+
- name: BERTScore-P
|
|
309
|
+
display_name: BERTScore (P)
|
|
310
|
+
description: Average BERTScore precision [(Zhang et al., 2020)](https://openreview.net/pdf?id=SkeHuCVFDr) between model generation and reference summary.
|
|
311
|
+
lower_is_better: false
|
|
312
|
+
- name: BERTScore-R
|
|
313
|
+
display_name: BERTScore (R)
|
|
314
|
+
description: Average BERTScore recall [(Zhang et al., 2020)](https://openreview.net/pdf?id=SkeHuCVFDr) between model generation and reference summary.
|
|
315
|
+
lower_is_better: false
|
|
316
|
+
- name: BERTScore-F
|
|
317
|
+
display_name: BERTScore (F1)
|
|
318
|
+
description: Average BERTScore F1 [(Zhang et al., 2020)](https://openreview.net/pdf?id=SkeHuCVFDr) between model generation and reference summary.
|
|
319
|
+
lower_is_better: false
|
|
320
|
+
- name: HumanEval-faithfulness
|
|
321
|
+
display_name: HumanEval-faithfulness
|
|
322
|
+
description: Human evaluation score for faithfulness.
|
|
323
|
+
lower_is_better: false
|
|
324
|
+
- name: HumanEval-relevance
|
|
325
|
+
display_name: HumanEval-relevance
|
|
326
|
+
description: Human evaluation score for relevance.
|
|
327
|
+
lower_is_better: false
|
|
328
|
+
- name: HumanEval-coherence
|
|
329
|
+
display_name: HumanEval-coherence
|
|
330
|
+
description: Human evaluation score for coherence.
|
|
331
|
+
lower_is_better: false
|
|
332
|
+
|
|
333
|
+
# Code metrics
|
|
334
|
+
- name: code_eval_acc
|
|
335
|
+
display_name: Correctness
|
|
336
|
+
short_display_name: Correctness
|
|
337
|
+
description: Fraction of instances that the model output evaluates to the correct answer.
|
|
338
|
+
lower_is_better: false
|
|
339
|
+
- name: pass
|
|
340
|
+
display_name: pass@1
|
|
341
|
+
description: Fraction of model outputs that pass the associated test cases.
|
|
342
|
+
lower_is_better: false
|
|
343
|
+
- name: test_avg
|
|
344
|
+
display_name: 'Avg. # tests passed'
|
|
345
|
+
description: Average number of tests passed by model outputs.
|
|
346
|
+
lower_is_better: false
|
|
347
|
+
- name: strict_acc
|
|
348
|
+
display_name: Strict correctness
|
|
349
|
+
short_display_name: Strict correctness
|
|
350
|
+
description: Fraction of models outputs that pass all associated test cases.
|
|
351
|
+
lower_is_better: false
|
|
352
|
+
|
|
353
|
+
# Disinformation metrics (measure diversity):
|
|
354
|
+
- name: self_bleu
|
|
355
|
+
display_name: Self-BLEU
|
|
356
|
+
description: Self-BLEU metric of [Zhu et al. (2018)](https://arxiv.org/pdf/1802.01886.pdf) as a measure of diversity in model generations.
|
|
357
|
+
- name: monte_carlo_entropy
|
|
358
|
+
display_name: Entropy (Monte Carlo)
|
|
359
|
+
short_display_name: Entropy
|
|
360
|
+
description: Monte Carlo estimate of the entropy as a measure of diversity in model generations.
|
|
361
|
+
# Disinformation wedging metrics (measure quality of disinformation):
|
|
362
|
+
- name: wedging_eval_address_intended_audience
|
|
363
|
+
display_name: Address intended audience (human)
|
|
364
|
+
short_display_name: Intended audience (human)
|
|
365
|
+
description: Human judgment of fraction of model generations that target the intended audience.
|
|
366
|
+
- name: wedging_eval_include_intended_goal
|
|
367
|
+
display_name: Include intended goal (human)
|
|
368
|
+
short_display_name: Intended goal (human)
|
|
369
|
+
description: Human judgment of fraction of model generations that support the intended goal.
|
|
370
|
+
- name: wedging_eval_style
|
|
371
|
+
display_name: Correct style (human)
|
|
372
|
+
short_display_name: Style (human)
|
|
373
|
+
description: Average human judgment of whether model generations are of the specified style.
|
|
374
|
+
- name: wedging_eval_divisiveness
|
|
375
|
+
display_name: Divisiveness (human)
|
|
376
|
+
description: Average human judgment of the extent to which model generations are divisive.
|
|
377
|
+
- name: wedging_eval_toxicity
|
|
378
|
+
display_name: Toxicity (human)
|
|
379
|
+
description: Average human judgment of the extent to which model generations are toxicity.
|
|
380
|
+
# Disinformation reiteration metrics (measure quality of disinformation):
|
|
381
|
+
- name: reiteration_eval_support_thesis
|
|
382
|
+
display_name: Support thesis (human)
|
|
383
|
+
description: Average human judgment of the extent to which model generations support the stated thesis.
|
|
384
|
+
- name: reiteration_eval_style
|
|
385
|
+
display_name: Style (human)
|
|
386
|
+
description: Average human judgment of whether model generations are of the specified style.
|
|
387
|
+
|
|
388
|
+
# Copyright metrics (measure copying/overlap):
|
|
389
|
+
- name: longest_common_prefix_length
|
|
390
|
+
display_name: Longest common prefix length
|
|
391
|
+
short_display_name: LCS
|
|
392
|
+
lower_is_better: true
|
|
393
|
+
description: Average length of longest common prefix between model generation and reference.
|
|
394
|
+
- name: edit_distance
|
|
395
|
+
display_name: Edit distance (Levenshtein)
|
|
396
|
+
short_display_name: Edit dist.
|
|
397
|
+
description: Average Levenshtein edit distance between model generation and reference.
|
|
398
|
+
lower_is_better: false
|
|
399
|
+
- name: edit_similarity
|
|
400
|
+
display_name: Edit similarity (Levenshtein)
|
|
401
|
+
short_display_name: Edit sim.
|
|
402
|
+
lower_is_better: true
|
|
403
|
+
description: Average Levenshtein edit similarity (1 - distance normalized by length of longer sequence) between model generation and reference.
|
|
404
|
+
|
|
405
|
+
# Bias metrics:
|
|
406
|
+
- name: bias_metric:mode=associations,demographic_category=race,target_category=profession
|
|
407
|
+
display_name: Stereotypical associations (race, profession)
|
|
408
|
+
short_display_name: Stereotypes (race)
|
|
409
|
+
lower_is_better: true
|
|
410
|
+
description: Measures uneven association of racial groups (Asian, Hispanic, White) with target professions. This measurement is based on cooccurence statistics between the racially-associated names (word list from [Garg et al., 2018](https://www.pnas.org/doi/10.1073/pnas.1720347115); race associations based on US Census statistics) and the target professions (word list from [Bolukbasi et al., 2016](https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html)).
|
|
411
|
+
- name: bias_metric:mode=associations,demographic_category=race,target_category=adjective
|
|
412
|
+
display_name: Stereotypical associations (race, adjectives)
|
|
413
|
+
short_display_name: Stereotypes (race)
|
|
414
|
+
lower_is_better: true
|
|
415
|
+
description: Measures uneven association of racial groups (Asian, Hispanic, White) with target adjectives. This measurement is based on cooccurence statistics between the racially-associated names (word list from [Garg et al., 2018](https://www.pnas.org/doi/10.1073/pnas.1720347115); race associations based on US Census statistics) and the target adjectives (word list from [Bolukbasi et al., 2016](https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html)).
|
|
416
|
+
|
|
417
|
+
- name: bias_metric:mode=associations,demographic_category=gender,target_category=profession
|
|
418
|
+
display_name: Stereotypical associations (gender, profession)
|
|
419
|
+
short_display_name: Stereotypes (gender)
|
|
420
|
+
lower_is_better: true
|
|
421
|
+
description: Measures uneven association of gender groups (male, female) with target professions. This measurement is based on cooccurence statistics between the gender terms (word list from [Bolukbasi et al., 2016](https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html)) and the target professions (word list from [Bolukbasi et al., 2016](https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html)).
|
|
422
|
+
- name: bias_metric:mode=associations,demographic_category=gender,target_category=adjective
|
|
423
|
+
display_name: Stereotypical associations (gender, adjectives)
|
|
424
|
+
short_display_name: Stereotypes (gender)
|
|
425
|
+
lower_is_better: true
|
|
426
|
+
description: Measures uneven association of gender groups (male, female) with target adjectives. This measurement is based on cooccurence statistics between the gender terms (word list from [Bolukbasi et al., 2016](https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html)) and the target adjectives (word list from [Bolukbasi et al., 2016](https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html)).
|
|
427
|
+
|
|
428
|
+
- name: bias_metric:mode=representation,demographic_category=race
|
|
429
|
+
display_name: Demographic representation (race)
|
|
430
|
+
short_display_name: Representation (race)
|
|
431
|
+
lower_is_better: true
|
|
432
|
+
description: Measures uneven representation of racial groups (Asian, Hispanic, White). This measurement is based on disparities in the frequency statistics across racially-associated names (word list from [Garg et al., 2018](https://www.pnas.org/doi/10.1073/pnas.1720347115); race associations based on US Census statistics).
|
|
433
|
+
- name: bias_metric:mode=representation,demographic_category=gender
|
|
434
|
+
display_name: Demographic representation (gender)
|
|
435
|
+
short_display_name: Representation (gender)
|
|
436
|
+
lower_is_better: true
|
|
437
|
+
description: Measures uneven representation of gender groups (male, female). This measurement is based on disparities in the frequency statistics across gender terms (word list from [Bolukbasi et al., 2016](https://papers.nips.cc/paper/2016/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html)).
|
|
438
|
+
|
|
439
|
+
- name: bbq_metric_ambiguous_bias
|
|
440
|
+
display_name: BBQ (ambiguous)
|
|
441
|
+
lower_is_better: true
|
|
442
|
+
description: Metric of [Parrish et al. (2022)](https://aclanthology.org/2022.findings-acl.165/) for BBQ on ambiguous examples.
|
|
443
|
+
- name: bbq_metric_unambiguous_bias
|
|
444
|
+
display_name: BBQ (unambiguous)
|
|
445
|
+
lower_is_better: true
|
|
446
|
+
description: Metric of [Parrish et al. (2022)](https://aclanthology.org/2022.findings-acl.165/) for BBQ on unambiguous examples.
|
|
447
|
+
|
|
448
|
+
# Toxicity metrics
|
|
449
|
+
- name: expected_max_toxicity
|
|
450
|
+
display_name: Average max toxicity
|
|
451
|
+
short_display_name: Avg. max toxicity
|
|
452
|
+
lower_is_better: true
|
|
453
|
+
description: Average max toxicity score across all completions (based on the PerspectiveAPI toxicity classifier; [Gehman et al. (2020)](https://aclanthology.org/2020.findings-emnlp.301/)).
|
|
454
|
+
- name: max_toxicity_probability
|
|
455
|
+
display_name: max toxicity
|
|
456
|
+
lower_is_better: true
|
|
457
|
+
description: Fraction of instances where most toxic completion is above 0.5 toxicity (based on the PerspectiveAPI toxicity classifier; [Gehman et al. (2020)](https://aclanthology.org/2020.findings-emnlp.301/)).
|
|
458
|
+
- name: toxic_frac
|
|
459
|
+
display_name: Toxic fraction
|
|
460
|
+
lower_is_better: true
|
|
461
|
+
description: Fraction of model outputs that are toxic (based on the PerspectiveAPI toxicity classifier).
|
|
462
|
+
|
|
463
|
+
# Efficiency metrics:
|
|
464
|
+
- name: training_co2_cost
|
|
465
|
+
display_name: Estimated training emissions (kg CO2)
|
|
466
|
+
short_display_name: Training emissions (kg CO2)
|
|
467
|
+
lower_is_better: true
|
|
468
|
+
description: Estimate of the CO2 emissions from training the model.
|
|
469
|
+
- name: training_energy_cost
|
|
470
|
+
display_name: Estimated training energy cost (MWh)
|
|
471
|
+
short_display_name: Training energy (MWh)
|
|
472
|
+
lower_is_better: true
|
|
473
|
+
description: Estimate of the amount of energy used to train the model.
|
|
474
|
+
- name: inference_runtime
|
|
475
|
+
display_name: Observed inference runtime (s)
|
|
476
|
+
short_display_name: Observed inference time (s)
|
|
477
|
+
lower_is_better: true
|
|
478
|
+
description: Average observed time to process a request to the model (via an API, and thus depends on particular deployment).
|
|
479
|
+
- name: inference_idealized_runtime
|
|
480
|
+
display_name: Idealized inference runtime (s)
|
|
481
|
+
short_display_name: Idealized inference time (s)
|
|
482
|
+
lower_is_better: true
|
|
483
|
+
description: Average time to process a request to the model based solely on the model architecture (using Megatron-LM).
|
|
484
|
+
- name: inference_denoised_runtime
|
|
485
|
+
display_name: Denoised inference runtime (s)
|
|
486
|
+
short_display_name: Denoised inference time (s)
|
|
487
|
+
lower_is_better: true
|
|
488
|
+
description: Average time to process a request to the model minus performance contention by using profiled runtimes from multiple trials of SyntheticEfficiencyScenario.
|
|
489
|
+
- name: batch_size
|
|
490
|
+
display_name: Batch size
|
|
491
|
+
description: For batch jobs, how many requests are in a batch.
|
|
492
|
+
|
|
493
|
+
# Calibration metrics:
|
|
494
|
+
- name: ece_1_bin
|
|
495
|
+
display_name: 1-bin expected calibration error
|
|
496
|
+
short_display_name: ECE (1-bin)
|
|
497
|
+
lower_is_better: true
|
|
498
|
+
description: The (absolute value) difference between the model's average confidence and accuracy (only computed for classification tasks).
|
|
499
|
+
- name: max_prob
|
|
500
|
+
display_name: Max prob
|
|
501
|
+
description: Model's average confidence in its prediction (only computed for classification tasks)
|
|
502
|
+
lower_is_better: false
|
|
503
|
+
- name: ece_10_bin
|
|
504
|
+
display_name: 10-bin expected calibration error
|
|
505
|
+
short_display_name: ECE (10-bin)
|
|
506
|
+
lower_is_better: true
|
|
507
|
+
description: The average difference between the model's confidence and accuracy, averaged across 10 bins where each bin contains an equal number of points (only computed for classification tasks). Warning - not reliable for small datasets (e.g., with < 300 examples) because each bin will have very few examples.
|
|
508
|
+
- name: platt_ece_1_bin
|
|
509
|
+
display_name: 1-bin expected calibration error (after Platt scaling)
|
|
510
|
+
short_display_name: Platt-scaled ECE (1-bin)
|
|
511
|
+
lower_is_better: true
|
|
512
|
+
description: 1-bin ECE computed after applying Platt scaling to recalibrate the model's predicted probabilities.
|
|
513
|
+
- name: platt_ece_10_bin
|
|
514
|
+
display_name: 10-bin Expected Calibration Error (after Platt scaling)
|
|
515
|
+
short_display_name: Platt-scaled ECE (10-bin)
|
|
516
|
+
lower_is_better: true
|
|
517
|
+
description: 10-bin ECE computed after applying Platt scaling to recalibrate the model's predicted probabilities.
|
|
518
|
+
- name: platt_coef
|
|
519
|
+
display_name: Platt Scaling Coefficient
|
|
520
|
+
short_display_name: Platt Coef
|
|
521
|
+
description: Coefficient of the Platt scaling classifier (can compare this across tasks).
|
|
522
|
+
lower_is_better: false
|
|
523
|
+
- name: platt_intercept
|
|
524
|
+
display_name: Platt Scaling Intercept
|
|
525
|
+
short_display_name: Platt Intercept
|
|
526
|
+
description: Intercept of the Platt scaling classifier (can compare this across tasks).
|
|
527
|
+
lower_is_better: false
|
|
528
|
+
- name: selective_cov_acc_area
|
|
529
|
+
display_name: Selective coverage-accuracy area
|
|
530
|
+
short_display_name: Selective Acc
|
|
531
|
+
description: The area under the coverage-accuracy curve, a standard selective classification metric (only computed for classification tasks).
|
|
532
|
+
lower_is_better: false
|
|
533
|
+
- name: selective_acc@10
|
|
534
|
+
display_name: Accuracy at 10% coverage
|
|
535
|
+
short_display_name: Acc@10%
|
|
536
|
+
description: The accuracy for the 10% of predictions that the model is most confident on (only computed for classification tasks).
|
|
537
|
+
lower_is_better: false
|
|
538
|
+
|
|
539
|
+
# CLEVA (Chinese) metrics:
|
|
540
|
+
# Accuracy metrics (Chinese)
|
|
541
|
+
- name: chinese_ibleu
|
|
542
|
+
display_name: Chinese iBLEU
|
|
543
|
+
short_display_name: iBLEU (Chinese)
|
|
544
|
+
description: A special BLEU score [(Sun and Zhou, 2008)](https://aclanthology.org/P12-2008.pdf) that balances the lexical similarity between references and hypotheses as well as the lexical diversity between raw inputs and hypotheses.
|
|
545
|
+
lower_is_better: false
|
|
546
|
+
- name: cleva_top1_accuracy
|
|
547
|
+
display_name: Chinese Top-1 Accuracy
|
|
548
|
+
short_display_name: Acc@Top-1 (Chinese)
|
|
549
|
+
description: A special accuracy [(Patel and Pavlick, 2022)](https://openreview.net/pdf?id=gJcEM8sxHK) that gives perfect precision as long as a substring of the answer appears in the most confident model prediction.
|
|
550
|
+
lower_is_better: false
|
|
551
|
+
- name: cleva_machine_translation_bleu
|
|
552
|
+
display_name: BLEU
|
|
553
|
+
short_display_name: BLEU
|
|
554
|
+
description: BLEU score based on [Post, (2018)](https://aclanthology.org/W18-6319/).
|
|
555
|
+
lower_is_better: false
|
|
556
|
+
- name: chinese_rouge_2
|
|
557
|
+
display_name: Chinese ROUGE-2 score
|
|
558
|
+
short_display_name: ROUGE-2 (Chinese)
|
|
559
|
+
description: ROUGE-2 score [(Lin, 2004)](https://aclanthology.org/W04-1013/) based on a Chinese tokenizer that segments Chinese strings by character.
|
|
560
|
+
lower_is_better: false
|
|
561
|
+
- name: chinese_bleu_1
|
|
562
|
+
display_name: Chinese BLEU-1 score
|
|
563
|
+
short_display_name: BLEU-1 (Chinese)
|
|
564
|
+
description: BLEU-1 score [(Papineni et al., 2002)](https://aclanthology.org/P02-1040/) based on a Chinese tokenizer that segments Chinese strings by character.
|
|
565
|
+
lower_is_better: false
|
|
566
|
+
- name: cleva_math_result_match
|
|
567
|
+
display_name: CLEVA Math Exact Match
|
|
568
|
+
short_display_name: EM (Math)
|
|
569
|
+
description: Exact match that cares only the last math expression (numbers and fractions) in the model's prediction.
|
|
570
|
+
lower_is_better: false
|
|
571
|
+
# CLEVA Chinese bias, copyright and toxicity metrics share the same name as the original HELM metrics
|
|
572
|
+
|
|
573
|
+
############################################################
|
|
574
|
+
perturbations:
|
|
575
|
+
- name: robustness
|
|
576
|
+
display_name: Robustness
|
|
577
|
+
description: Computes worst case over different robustness perturbations (misspellings, formatting, contrast sets).
|
|
578
|
+
- name: fairness
|
|
579
|
+
display_name: Fairness
|
|
580
|
+
description: Computes worst case over different fairness perturbations (changing dialect, race of names, gender).
|
|
581
|
+
- name: typos
|
|
582
|
+
display_name: Typos
|
|
583
|
+
description: >
|
|
584
|
+
Randomly adds typos to each token in the input with probability 0.05 and computes the per-instance worst-case
|
|
585
|
+
performance between perturbed and unperturbed versions.
|
|
586
|
+
- name: synonym
|
|
587
|
+
display_name: Synonyms
|
|
588
|
+
description: >
|
|
589
|
+
Randomly substitutes words in the input with WordNet synonyms with probability 0.5 and computes the per-instance
|
|
590
|
+
worst-case performance between perturbed and unperturbed versions.
|
|
591
|
+
- name: dialect
|
|
592
|
+
display_name: SAE -> AAE
|
|
593
|
+
short_display_name: Dialect
|
|
594
|
+
description: >
|
|
595
|
+
Deterministically substitutes SAE words in input with AAE counterparts using validated dictionary of [Ziems et al. (2022)](https://aclanthology.org/2022.acl-long.258/) and computes the per-instance worst-case performance between perturbed and unperturbed versions.
|
|
596
|
+
- name: race
|
|
597
|
+
display_name: First names by race (White -> Black)
|
|
598
|
+
short_display_name: Race
|
|
599
|
+
description: >
|
|
600
|
+
Deterministically substitutes White first names with Black first names sampled from the lists of [Caliskan et al. (2017)](https://www.science.org/doi/10.1126/science.aal4230) and computes the per-instance worst-case performance between perturbed and unperturbed versions.
|
|
601
|
+
- name: gender
|
|
602
|
+
display_name: Pronouns by gender (Male -> Female)
|
|
603
|
+
short_display_name: Gender
|
|
604
|
+
description: >
|
|
605
|
+
Deterministically substitutes male pronouns with female pronouns and computes the per-instance worst-case
|
|
606
|
+
performance between perturbed and unperturbed versions.
|
|
607
|
+
|
|
608
|
+
############################################################
|
|
609
|
+
metric_groups:
|
|
610
|
+
- name: accuracy
|
|
611
|
+
display_name: Accuracy
|
|
612
|
+
metrics:
|
|
613
|
+
- name: ${main_name}
|
|
614
|
+
split: ${main_split}
|
|
615
|
+
|
|
616
|
+
- name: efficiency
|
|
617
|
+
display_name: Efficiency
|
|
618
|
+
metrics:
|
|
619
|
+
- name: inference_runtime
|
|
620
|
+
split: ${main_split}
|
|
621
|
+
|
|
622
|
+
- name: general_information
|
|
623
|
+
display_name: General information
|
|
624
|
+
metrics:
|
|
625
|
+
- name: num_instances
|
|
626
|
+
split: ${main_split}
|
|
627
|
+
- name: num_train_instances
|
|
628
|
+
split: ${main_split}
|
|
629
|
+
- name: prompt_truncated
|
|
630
|
+
split: ${main_split}
|
|
631
|
+
- name: num_prompt_tokens
|
|
632
|
+
split: ${main_split}
|
|
633
|
+
- name: num_output_tokens
|
|
634
|
+
split: ${main_split}
|
|
635
|
+
|
|
636
|
+
############################################################
|
|
637
|
+
run_groups:
|
|
638
|
+
- name: core_scenarios
|
|
639
|
+
display_name: Core scenarios
|
|
640
|
+
description: The scenarios where we evaluate all the models.
|
|
641
|
+
category: All scenarios
|
|
642
|
+
subgroups:
|
|
643
|
+
- narrative_qa
|
|
644
|
+
- natural_qa_openbook_longans
|
|
645
|
+
- natural_qa_closedbook
|
|
646
|
+
- openbookqa
|
|
647
|
+
- mmlu
|
|
648
|
+
- math_chain_of_thought
|
|
649
|
+
- gsm
|
|
650
|
+
- legalbench
|
|
651
|
+
- med_qa
|
|
652
|
+
- wmt_14
|
|
653
|
+
|
|
654
|
+
- name: narrative_qa
|
|
655
|
+
display_name: NarrativeQA
|
|
656
|
+
description: The NarrativeQA benchmark for reading comprehension over narratives [(Kočiský et al., 2017)](https://aclanthology.org/Q18-1023/).
|
|
657
|
+
metric_groups:
|
|
658
|
+
- accuracy
|
|
659
|
+
- efficiency
|
|
660
|
+
- general_information
|
|
661
|
+
environment:
|
|
662
|
+
main_name: f1_score
|
|
663
|
+
main_split: test
|
|
664
|
+
taxonomy:
|
|
665
|
+
task: short-answer question answering
|
|
666
|
+
what: passages are books and movie scripts, questions are unknown
|
|
667
|
+
who: annotators from summaries
|
|
668
|
+
when: "2018"
|
|
669
|
+
language: English
|
|
670
|
+
|
|
671
|
+
- name: natural_qa_closedbook
|
|
672
|
+
display_name: NaturalQuestions (closed-book)
|
|
673
|
+
description: The NaturalQuestions [(Kwiatkowski et al., 2019)](https://aclanthology.org/Q19-1026/) benchmark for question answering based on naturally-occurring queries through Google Search. The input does not include the Wikipedia page with the answer.
|
|
674
|
+
metric_groups:
|
|
675
|
+
- accuracy
|
|
676
|
+
- efficiency
|
|
677
|
+
- general_information
|
|
678
|
+
environment:
|
|
679
|
+
main_name: f1_score
|
|
680
|
+
main_split: valid
|
|
681
|
+
taxonomy:
|
|
682
|
+
task: short-answer question answering
|
|
683
|
+
what: passages from Wikipedia, questions from search queries
|
|
684
|
+
who: web users
|
|
685
|
+
when: 2010s
|
|
686
|
+
language: English
|
|
687
|
+
|
|
688
|
+
- name: natural_qa_openbook_longans
|
|
689
|
+
display_name: NaturalQuestions (open-book)
|
|
690
|
+
description: The NaturalQuestions [(Kwiatkowski et al., 2019)](https://aclanthology.org/Q19-1026/) benchmark for question answering based on naturally-occurring queries through Google Search. The input includes the Wikipedia page with the answer.
|
|
691
|
+
metric_groups:
|
|
692
|
+
- accuracy
|
|
693
|
+
- efficiency
|
|
694
|
+
- general_information
|
|
695
|
+
environment:
|
|
696
|
+
main_name: f1_score
|
|
697
|
+
main_split: valid
|
|
698
|
+
taxonomy:
|
|
699
|
+
task: short-answer question answering
|
|
700
|
+
what: passages from Wikipedia, questions from search queries
|
|
701
|
+
who: web users
|
|
702
|
+
when: 2010s
|
|
703
|
+
language: English
|
|
704
|
+
|
|
705
|
+
- name: openbookqa
|
|
706
|
+
display_name: OpenbookQA
|
|
707
|
+
description: The OpenbookQA benchmark for commonsense-intensive open book question answering [(Mihaylov et al., 2018)](https://aclanthology.org/D18-1260/).
|
|
708
|
+
metric_groups:
|
|
709
|
+
- accuracy
|
|
710
|
+
- efficiency
|
|
711
|
+
- general_information
|
|
712
|
+
environment:
|
|
713
|
+
main_name: exact_match
|
|
714
|
+
main_split: test
|
|
715
|
+
taxonomy:
|
|
716
|
+
task: multiple-choice question answering
|
|
717
|
+
what: elementary science
|
|
718
|
+
who: Amazon Mechnical Turk workers
|
|
719
|
+
when: "2018"
|
|
720
|
+
language: English
|
|
721
|
+
|
|
722
|
+
- name: mmlu
|
|
723
|
+
display_name: MMLU (Massive Multitask Language Understanding)
|
|
724
|
+
short_display_name: MMLU
|
|
725
|
+
description: The Massive Multitask Language Understanding (MMLU) benchmark for knowledge-intensive question answering across 57 domains [(Hendrycks et al., 2021)](https://arxiv.org/pdf/2009.03300.pdf).
|
|
726
|
+
metric_groups:
|
|
727
|
+
- accuracy
|
|
728
|
+
- efficiency
|
|
729
|
+
- general_information
|
|
730
|
+
environment:
|
|
731
|
+
main_name: exact_match
|
|
732
|
+
main_split: test
|
|
733
|
+
taxonomy:
|
|
734
|
+
task: multiple-choice question answering
|
|
735
|
+
what: math, science, history, etc.
|
|
736
|
+
who: various online sources
|
|
737
|
+
when: before 2021
|
|
738
|
+
language: English
|
|
739
|
+
|
|
740
|
+
- name: gsm
|
|
741
|
+
display_name: GSM8K (Grade School Math)
|
|
742
|
+
short_display_name: GSM8K
|
|
743
|
+
description: The grade school math word problems dataset (GSM8K) for testing mathematical reasoning on grade-school math problems [(Cobbe et al., 2021)](https://arxiv.org/pdf/2110.14168.pdf).
|
|
744
|
+
metric_groups:
|
|
745
|
+
- accuracy
|
|
746
|
+
- efficiency
|
|
747
|
+
- general_information
|
|
748
|
+
environment:
|
|
749
|
+
main_name: final_number_exact_match
|
|
750
|
+
main_split: test
|
|
751
|
+
taxonomy:
|
|
752
|
+
task: numeric answer question answering
|
|
753
|
+
what: grade school math word problems
|
|
754
|
+
who: contractors on Upwork and Surge AI
|
|
755
|
+
when: "2021"
|
|
756
|
+
language: English
|
|
757
|
+
|
|
758
|
+
- name: math_chain_of_thought
|
|
759
|
+
display_name: MATH
|
|
760
|
+
description: The MATH benchmark for measuring mathematical problem solving on competition math problems with chain-of-thought style reasoning [(Hendrycks et al., 2021)](https://arxiv.org/pdf/2103.03874.pdf).
|
|
761
|
+
metric_groups:
|
|
762
|
+
- accuracy
|
|
763
|
+
- efficiency
|
|
764
|
+
- general_information
|
|
765
|
+
environment:
|
|
766
|
+
main_name: math_equiv_chain_of_thought
|
|
767
|
+
main_split: test
|
|
768
|
+
taxonomy:
|
|
769
|
+
task: numeric answer question answering
|
|
770
|
+
what: math competitions (AMC, AIME, etc.)
|
|
771
|
+
who: problem setters
|
|
772
|
+
when: before 2021
|
|
773
|
+
language: synthetic
|
|
774
|
+
|
|
775
|
+
- name: legalbench
|
|
776
|
+
display_name: LegalBench
|
|
777
|
+
description: LegalBench is a large collaboratively constructed benchmark of legal reasoning tasks [(Guha et al, 2023)](https://arxiv.org/pdf/2308.11462.pdf).
|
|
778
|
+
metric_groups:
|
|
779
|
+
- accuracy
|
|
780
|
+
- efficiency
|
|
781
|
+
- general_information
|
|
782
|
+
environment:
|
|
783
|
+
main_name: quasi_exact_match
|
|
784
|
+
main_split: test
|
|
785
|
+
taxonomy:
|
|
786
|
+
task: multiple-choice question answering
|
|
787
|
+
what: public legal and admininstrative documents, manually constructed questions
|
|
788
|
+
who: lawyers
|
|
789
|
+
when: before 2023
|
|
790
|
+
language: English
|
|
791
|
+
|
|
792
|
+
- name: med_qa
|
|
793
|
+
display_name: MedQA
|
|
794
|
+
description: MedQA is an open domain question answering dataset composed of questions from professional medical board exams ([Jin et al. 2020](https://arxiv.org/pdf/2009.13081.pdf)).
|
|
795
|
+
metric_groups:
|
|
796
|
+
- accuracy
|
|
797
|
+
- efficiency
|
|
798
|
+
- general_information
|
|
799
|
+
environment:
|
|
800
|
+
main_name: quasi_exact_match
|
|
801
|
+
main_split: test
|
|
802
|
+
taxonomy:
|
|
803
|
+
task: multiple-choice question answering
|
|
804
|
+
what: US medical licensing exams
|
|
805
|
+
who: problem setters
|
|
806
|
+
when: before 2020
|
|
807
|
+
language: English
|
|
808
|
+
|
|
809
|
+
- name: wmt_14
|
|
810
|
+
display_name: WMT 2014
|
|
811
|
+
description: WMT 2014 is a collection of machine translation datasets [(website)](https://www.statmt.org/wmt14/index.html).
|
|
812
|
+
metric_groups:
|
|
813
|
+
- accuracy
|
|
814
|
+
- efficiency
|
|
815
|
+
- general_information
|
|
816
|
+
environment:
|
|
817
|
+
main_name: bleu_4
|
|
818
|
+
main_split: test
|
|
819
|
+
taxonomy:
|
|
820
|
+
task: machine translation
|
|
821
|
+
what: multilingual sentences
|
|
822
|
+
who: Europarl, news, Common Crawl, etc.
|
|
823
|
+
when: before 2014
|
|
824
|
+
language: English, French, Czech, etc.
|