crewplus 0.2.89__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,144 @@
1
+ Metadata-Version: 2.1
2
+ Name: crewplus
3
+ Version: 0.2.89
4
+ Summary: Base services for CrewPlus AI applications
5
+ Author-Email: Tim Liu <tim@opsmateai.com>
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/your-org/crewplus-base
8
+ Project-URL: Documentation, https://crewplus.readthedocs.io
9
+ Project-URL: Repository, https://github.com/your-org/crewplus-base
10
+ Project-URL: Issues, https://github.com/your-org/crewplus-base/issues
11
+ Requires-Python: <4.0,>=3.11
12
+ Requires-Dist: langchain<1.0.0,>=0.3.25
13
+ Requires-Dist: langchain-openai>=0.3.24
14
+ Requires-Dist: google-genai>=1.21.1
15
+ Requires-Dist: langchain-milvus<0.3.0,>=0.2.1
16
+ Requires-Dist: langfuse<4.0.0,>=3.1.3
17
+ Description-Content-Type: text/markdown
18
+
19
+ # CrewPlus
20
+
21
+ [![PyPI version](https://badge.fury.io/py/crewplus.svg)](https://badge.fury.io/py/crewplus)
22
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
23
+ [![Python Version](https://img.shields.io/pypi/pyversions/crewplus.svg)](https://pypi.org/project/crewplus)
24
+ [![Build Status](https://img.shields.io/travis/com/your-org/crewplus-base.svg)](https://travis-ci.com/your-org/crewplus-base)
25
+
26
+ **CrewPlus** provides the foundational services and core components for building advanced AI applications. It is the heart of the CrewPlus ecosystem, designed for scalability, extensibility, and seamless integration.
27
+
28
+ ## Overview
29
+
30
+ This repository, `crewplus-base`, contains the core `crewplus` Python package. It includes essential building blocks for interacting with large language models, managing vector databases, and handling application configuration. Whether you are building a simple chatbot or a complex multi-agent system, CrewPlus offers the robust foundation you need.
31
+
32
+ ## The CrewPlus Ecosystem
33
+
34
+ CrewPlus is designed as a modular and extensible ecosystem of packages. This allows you to adopt only the components you need for your specific use case.
35
+
36
+ - **`crewplus` (This package):** The core package containing foundational services for chat, model load balancing, and vector stores.
37
+ - **`crewplus-agent`:** crewplus agent core: agentic task planner and executor, with context-aware memory.
38
+ - **`crewplus-ingestion`:** Provides robust pipelines for knowledge ingestion and data processing.
39
+ - **`crewplus-memory`:** Provides agent memory services for Crewplus AI Agents.
40
+ - **`crewplus-integrations`:** A collection of third-party integrations to connect CrewPlus with other services and platforms.
41
+
42
+ ## Features
43
+
44
+ - **Chat Services:** A unified interface for interacting with various chat models (e.g., `GeminiChatModel`, `TracedAzureChatOpenAI`).
45
+ - **Model Load Balancer:** Intelligently distribute requests across multiple LLM endpoints.
46
+ - **Vector DB Services:** working with popular vector stores (e.g. Milvus, Zilliz Cloud) for retrieval-augmented generation (RAG) and agent memory.
47
+ - **Observability & Tracing:** Automatic integration with tracing tools like Langfuse, with an extensible design for adding others (e.g., Helicone, ...).
48
+
49
+
50
+ ## Documentation
51
+
52
+ For detailed guides and API references, please see the `docs/` folder.
53
+
54
+ - **[GeminiChatModel Documentation](./docs/GeminiChatModel.md)**: A comprehensive guide to using the `GeminiChatModel` for text, image, and video understanding.
55
+
56
+ ## Installation
57
+
58
+ To install the core `crewplus` package, run the following command:
59
+
60
+ ```bash
61
+ pip install crewplus
62
+ ```
63
+
64
+ ## Getting Started
65
+
66
+ Here is a simple example of how to use the `GeminiChatModel` to start a conversation with an AI model.
67
+
68
+ ```python
69
+ # main.py
70
+ from crewplus.services import GeminiChatModel
71
+
72
+ # Initialize the llm (API keys are typically handled by the configuration module)
73
+ llm = GeminiChatModel(google_api_key="your-google-api-key")
74
+
75
+ # Start a conversation
76
+ response = llm.chat("Hello, what is CrewPlus?")
77
+
78
+ print(response)
79
+ ```
80
+
81
+ ## Project Structure
82
+
83
+ The `crewplus-base` repository is organized to separate core logic, tests, and documentation.
84
+
85
+ ```
86
+ crewplus-base/ # GitHub repo name
87
+ ├── pyproject.toml
88
+ ├── README.md
89
+ ├── LICENSE
90
+ ├── CHANGELOG.md
91
+ ├── crewplus/ # PyPI package name
92
+ │ └── __init__.py
93
+ │ └── services/
94
+ │ └── __init__.py
95
+ │ └── gemini_chat_model.py
96
+ │ └── azure_chat_model.py
97
+ │ └── model_load_balancer.py
98
+ │ └── tracing_manager.py
99
+ │ └── ...
100
+ │ └── vectorstores/milvus
101
+ │ └── __init__.py
102
+ │ └── schema_milvus.py
103
+ │ └── vdb_service.py
104
+ │ └── utils/
105
+ │ └── __init__.py
106
+ │ └── schema_action.py
107
+ │ └── ...
108
+ ├── tests/
109
+ │ └── ...
110
+ ├── docs/
111
+ │ └── ...
112
+ └── notebooks/
113
+ └── ...
114
+
115
+ ```
116
+
117
+ ## Version Update
118
+
119
+ 0.2.50
120
+ Add async aget_vector_store to enable async vector search
121
+ 0.2.80
122
+ Add FeedbackManager, to support langsmith style feedback with langfuse score
123
+
124
+ ## Deploy to PyPI
125
+
126
+ Clean Previous Build Artifacts:
127
+ Remove the dist/, build/, and *.egg-info/ directories to ensure that no old files are included in the new build.
128
+
129
+ rm -rf dist build *.egg-info
130
+
131
+ ### install deployment tool
132
+ pip install twine
133
+
134
+ ### build package
135
+ python -m build
136
+
137
+ ### deploy to TestPyPI (Test first)
138
+ python -m twine upload --repository testpypi dist/*
139
+
140
+ ### install from TestPyPI
141
+ pip install -i https://test.pypi.org/simple/ crewplus
142
+
143
+ ### Deploy to official PyPI
144
+ python -m twine upload dist/*
@@ -0,0 +1,29 @@
1
+ crewplus-0.2.89.dist-info/METADATA,sha256=GxRIVQAVJF7Y8kHTa0leU5FA5imAcdPhKNYjH9hj1fU,5471
2
+ crewplus-0.2.89.dist-info/WHEEL,sha256=tsUv_t7BDeJeRHaSrczbGeuK-TtDpGsWi_JfpzD255I,90
3
+ crewplus-0.2.89.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ crewplus-0.2.89.dist-info/licenses/LICENSE,sha256=2_NHSHRTKB_cTcT_GXgcenOCtIZku8j343mOgAguTfc,1087
5
+ crewplus/__init__.py,sha256=m46HkZL1Y4toD619NL47Sn2Qe084WFFSFD7e6VoYKZc,284
6
+ crewplus/callbacks/__init__.py,sha256=YG7ieeb91qEjp1zF0-inEN7mjZ7yT_D2yzdWFT8Z1Ws,63
7
+ crewplus/callbacks/async_langfuse_handler.py,sha256=8_p7ctgcmDNQgF5vOqA47I0x-3GWsm7zioZcZHgedZk,7163
8
+ crewplus/services/__init__.py,sha256=o6qtskHvwtAmdb4qiPNENW1ivlOgwLkPBhTVv-qeJ4s,702
9
+ crewplus/services/azure_chat_model.py,sha256=5ZQBr4Vvb518X_768EV2Ax4YnzVqTGLEdugOysLxL8k,6323
10
+ crewplus/services/feedback.md,sha256=4hMdSzQgG6qnprV0FkiyogSfMFj5eMwX4PoxN_xD9tU,3821
11
+ crewplus/services/feedback_manager.py,sha256=vpleLxGa9f0dQbBXqwQfT9SWu8k0BJO40DN5coGdR_k,11652
12
+ crewplus/services/gemini_chat_model.py,sha256=DYqz01H2TIHiCDQesSozVfOsMigno6QGwOtIweg7UHk,40103
13
+ crewplus/services/init_services.py,sha256=tc1ti8Yufo2ixlJpwg8uH0KmoyQ4EqxCOe4uTEWnlRM,2413
14
+ crewplus/services/model_load_balancer.py,sha256=HIx-k-FiizJSF4e88SFxfFVNS93vJR2zrOdU_fg26FU,12826
15
+ crewplus/services/schemas/feedback.py,sha256=M2AIwzW2MWtAbly2xfEFxDcGVk8kMFzZ7jT9swTmbHc,2787
16
+ crewplus/services/tracing_manager.py,sha256=pwNFeA77vnoZMh_AUOnK5TvAaPOOLg5oDnVOe1yUa9A,8502
17
+ crewplus/utils/__init__.py,sha256=2Gk1n5srFJQnFfBuYTxktdtKOVZyNrFcNaZKhXk35Pw,142
18
+ crewplus/utils/schema_action.py,sha256=GDaBoVFQD1rXqrLVSMTfXYW1xcUu7eDcHsn57XBSnIg,422
19
+ crewplus/utils/schema_document_updater.py,sha256=frvffxn2vbi71fHFPoGb9hq7gH2azmmdq17p-Fumnvg,7322
20
+ crewplus/utils/tracing_util.py,sha256=ew5VwjTKcY88P2sveIlGqmsNFR5OJ-DjKAHKQzBoTyE,2449
21
+ crewplus/vectorstores/milvus/__init__.py,sha256=OeYv2rdyG7tcREIjBJPyt2TbE54NvyeRoWMe7LwopRE,245
22
+ crewplus/vectorstores/milvus/milvus_schema_manager.py,sha256=-QRav-hzu-XWeJ_yKUMolal_EyMUspSg-nvh5sqlrlQ,11442
23
+ crewplus/vectorstores/milvus/schema_milvus.py,sha256=wwNpfqsKS0xeozZES40IvB0iNwUtpCall_7Hkg0dL1g,27223
24
+ crewplus/vectorstores/milvus/vdb_service.py,sha256=_jtJLEtURMYhKy_d7Hb6WoUiH_B1L2IbLC5TtGBZrzk,44270
25
+ docs/GeminiChatModel.md,sha256=zZYyl6RmjZTUsKxxMiC9O4yV70MC4TD-IGUmWhIDBKA,8677
26
+ docs/ModelLoadBalancer.md,sha256=aGHES1dcXPz4c7Y8kB5-vsCNJjriH2SWmjBkSGoYKiI,4398
27
+ docs/VDBService.md,sha256=Dw286Rrf_fsi13jyD3Bo4Sy7nZ_G7tYm7d8MZ2j9hxk,9375
28
+ docs/index.md,sha256=3tlc15uR8lzFNM5WjdoZLw0Y9o1P1gwgbEnOdIBspqc,1643
29
+ crewplus-0.2.89.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: pdm-backend (2.4.6)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -0,0 +1,4 @@
1
+ [console_scripts]
2
+
3
+ [gui_scripts]
4
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) Opsmate AI, Inc.
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,247 @@
1
+ # GeminiChatModel Documentation
2
+
3
+ ## 1. Introduction
4
+
5
+ The `GeminiChatModel` is a custom LangChain-compatible chat model that provides a robust interface to Google's Gemini Pro and Flash models. It is designed to handle multimodal inputs, including text, images, and videos, making it a versatile tool for building advanced AI applications.
6
+
7
+ ### Key Features:
8
+ - **LangChain Compatibility**: Seamlessly integrates into the LangChain ecosystem as a `BaseChatModel`.
9
+ - **Multimodal Support**: Natively processes text, images (from URLs, local paths, or base64), and videos (from local paths, Google Cloud URIs, or raw bytes).
10
+ - **Streaming**: Supports streaming for both standard and multimodal responses.
11
+ - **Advanced Configuration**: Allows fine-tuning of generation parameters like temperature, top-p, top-k, and max tokens.
12
+ - **Video Segment Analysis**: Can process specific time ranges within a video using start and end offsets.
13
+
14
+ ## 2. Installation
15
+
16
+ To use the `GeminiChatModel`, you need to install the `crewplus` package. If you are working within the project repository, you can install it in editable mode:
17
+
18
+ ```bash
19
+ pip install crewplus
20
+ ```
21
+
22
+ ## 3. Initialization
23
+
24
+ First, ensure you have set your Google API key as an environment variable:
25
+
26
+ ```bash
27
+ # For Linux/macOS
28
+ export GOOGLE_API_KEY="YOUR_API_KEY"
29
+
30
+ # For Windows PowerShell
31
+ $env:GEMINI_API_KEY = "YOUR_API_KEY"
32
+ ```
33
+
34
+ Then, you can import and initialize the model in your Python code.
35
+
36
+ ```python
37
+ import logging
38
+ from crewplus.services import GeminiChatModel
39
+ from langchain_core.messages import HumanMessage
40
+
41
+ # Optional: Configure a logger for detailed output
42
+ logging.basicConfig(level=logging.INFO)
43
+ test_logger = logging.getLogger(__name__)
44
+
45
+ # Initialize the model
46
+ # You can also pass the google_api_key directly as a parameter
47
+ model = GeminiChatModel(
48
+ model_name="gemini-2.5-flash", # Or "gemini-1.5-pro"
49
+ logger=test_logger,
50
+ temperature=0.0,
51
+ )
52
+ ```
53
+
54
+ ## 4. Basic Usage (Text-only)
55
+
56
+ The model can be used for simple text-based conversations using `.invoke()` or `.stream()`.
57
+
58
+ ```python
59
+ # Using invoke for a single response
60
+ response = model.invoke("Hello, how are you?")
61
+ print(response.content)
62
+
63
+ # Using stream for a chunked response
64
+ print("\n--- Streaming Response ---")
65
+ for chunk in model.stream("Tell me a short story about a brave robot."):
66
+ print(chunk.content, end="", flush=True)
67
+
68
+ # Using astream for an asynchronous chunked response
69
+ import asyncio
70
+
71
+ async def main():
72
+ print("\n--- Async Streaming Response ---")
73
+ async for chunk in model.astream("Tell me a short story about a brave robot."):
74
+ print(chunk.content, end="", flush=True)
75
+
76
+ # To run the async function in a Jupyter Notebook or a script:
77
+ # await main()
78
+ # Or, if not in an async context:
79
+ # asyncio.run(main())
80
+ ```
81
+
82
+ ## 5. Image Understanding
83
+
84
+ `GeminiChatModel` can understand images provided via a URL or as base64 encoded data.
85
+
86
+ ### Example 1: Image from a URL
87
+
88
+ You can provide a direct URL to an image.
89
+
90
+ ```python
91
+ from langchain_core.messages import HumanMessage
92
+
93
+ url_message = HumanMessage(
94
+ content=[
95
+ {"type": "text", "text": "Describe this image:"},
96
+ {
97
+ "type": "image_url",
98
+ "image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
99
+ },
100
+ ]
101
+ )
102
+ url_response = model.invoke([url_message])
103
+ print("Image response (URL):", url_response.content)
104
+ ```
105
+ > **Sample Output:**
106
+ > The image shows a wooden boardwalk stretching into the distance through a field of tall, green grass... The overall impression is one of tranquility and natural beauty.
107
+
108
+ ### Example 2: Local Image (Base64)
109
+
110
+ You can also send a local image file by encoding it in base64.
111
+
112
+ ```python
113
+ import base64
114
+ from langchain_core.messages import HumanMessage
115
+
116
+ image_path = "./notebooks/test_image_202506191.jpg"
117
+ try:
118
+ with open(image_path, "rb") as image_file:
119
+ encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
120
+
121
+ image_message = HumanMessage(
122
+ content=[
123
+ {"type": "text", "text": "Describe this photo and its background story."},
124
+ {
125
+ "type": "image_url",
126
+ "image_url": {
127
+ "url": f"data:image/jpeg;base64,{encoded_string}"
128
+ }
129
+ },
130
+ ]
131
+ )
132
+ image_response = model.invoke([image_message])
133
+ print("Image response (base64):", image_response.content)
134
+ except FileNotFoundError:
135
+ print(f"Image file not found at {image_path}, skipping base64 example.")
136
+
137
+ ### Example 3: Streaming a Multimodal Response
138
+
139
+ Streaming also works with complex, multimodal inputs. This is useful for getting faster time-to-first-token while the model processes all the data.
140
+
141
+ ```python
142
+ # The url_message is from the previous example
143
+ print("\n--- Streaming Multimodal Response ---")
144
+ for chunk in model.stream([url_message]):
145
+ print(chunk.content, end="", flush=True)
146
+ ```
147
+
148
+ ## 6. Video Understanding
149
+
150
+ The model supports video analysis from uploaded files, URIs, and raw bytes.
151
+
152
+ **Important Note:** The Gemini API does **not** support common public video URLs (e.g., YouTube, Loom, or public MP4 links). Videos must be uploaded to Google's servers first to get a processable URI.
153
+
154
+ ### Example 1: Large Video File (>20MB)
155
+
156
+ For large videos, you must first upload the file using the `google-genai` client to get a file object.
157
+
158
+ ```python
159
+ from google import genai
160
+ import os
161
+ from langchain_core.messages import HumanMessage
162
+
163
+ # Initialize the Google GenAI client
164
+ client = genai.Client(api_key=os.environ["GOOGLE_API_KEY"])
165
+
166
+ # Upload the video file
167
+ video_path = "./notebooks/manufacturing_process_tutorial.mp4"
168
+ print("Uploading video... this may take a moment.")
169
+ video_file_obj = client.files.upload(file=video_path)
170
+ print(f"Video uploaded successfully. File name: {video_file_obj.name}")
171
+
172
+ # Use the uploaded file object in the prompt
173
+ video_message = HumanMessage(
174
+ content=[
175
+ {"type": "text", "text": "Summarize this video and provide timestamps for key events."},
176
+ {"type": "video_file", "file": video_file_obj},
177
+ ]
178
+ )
179
+ video_response = model.invoke([video_message])
180
+ print("Video response:", video_response.content)
181
+ ```
182
+
183
+ > **Sample Output:**
184
+ > This video provides a step-by-step guide on how to correct a mis-set sidewall during tire manufacturing...
185
+ > **Timestamps:**
186
+ > * **0:04:** Applying product package to some material
187
+ > * **0:12:** Splice product Together and Prepare some material
188
+ > ...
189
+
190
+ ### Example 2: Video with Time Offsets
191
+
192
+ You can analyze just a specific portion of a video by providing a `start_offset` and `end_offset`. This works with video URIs obtained after uploading.
193
+
194
+ ```python
195
+ # Assuming 'video_file_obj' is available from the previous step
196
+ video_uri = video_file_obj.uri
197
+
198
+ offset_message = HumanMessage(
199
+ content=[
200
+ {"type": "text", "text": "Transcribe the events in this video segment."},
201
+ {
202
+ "type": "video_file",
203
+ "url": video_uri,
204
+ "start_offset": "5s",
205
+ "end_offset": "30s"
206
+ }
207
+ ]
208
+ )
209
+
210
+ print("Streaming response for video segment:")
211
+ for chunk in model.stream([offset_message]):
212
+ print(chunk.content, end="", flush=True)
213
+ ```
214
+ > **Sample Output:**
215
+ > This video demonstrates the process of applying Component A/Component B material to an assembly drum in a manufacturing setting...
216
+ > **Transcription:**
217
+ > **0:05 - 0:12:** A worker is shown applying a material...
218
+ > **0:12 - 0:23:** The worker continues to prepare the material on the drum...
219
+
220
+ ### Example 3: Small Video File (<20MB)
221
+
222
+ For small videos, you can pass the raw bytes directly without a separate upload step.
223
+
224
+ ```python
225
+ from langchain_core.messages import HumanMessage
226
+
227
+ try:
228
+ with open("./notebooks/product_demo_v1.mp4", "rb") as video_file:
229
+ video_bytes = video_file.read()
230
+
231
+ video_message = HumanMessage(
232
+ content=[
233
+ {"type": "text", "text": "What is happening in this video?"},
234
+ {
235
+ "type": "video_file",
236
+ "data": video_bytes,
237
+ "mime_type": "video/mp4" # Mime type is required for raw data
238
+ },
239
+ ]
240
+ )
241
+ video_response = model.invoke([video_message])
242
+ print("Video response (bytes):", video_response.content)
243
+ except FileNotFoundError:
244
+ print("Video file not found.")
245
+ except Exception as e:
246
+ print(f"Video processing with bytes failed: {e}")
247
+ ```
@@ -0,0 +1,134 @@
1
+ # ModelLoadBalancer Documentation
2
+
3
+ ## 1. Introduction
4
+
5
+ The `ModelLoadBalancer` is a utility class designed to manage and provide access to various language models from different providers, such as Azure OpenAI and Google GenAI. It loads model configurations from a JSON file and allows you to retrieve specific models by their deployment name or a combination of provider and type.
6
+
7
+ ### Key Features:
8
+ - **Centralized Model Management**: Manage all your model configurations in a single JSON file.
9
+ - **On-demand Model Loading**: Models are instantiated and loaded when requested.
10
+ - **Provider Agnostic**: Supports multiple model providers.
11
+ - **Flexible Retrieval**: Get models by a unique deployment name.
12
+
13
+ ## 2. Initialization
14
+
15
+ To use the `ModelLoadBalancer`, you need to initialize it with the path to your model configuration file.
16
+
17
+ ```python
18
+ from crewplus.services.model_load_balancer import ModelLoadBalancer
19
+
20
+ # Initialize the balancer with the path to your config file
21
+ config_path = "tests/models_config.json" # Adjust the path as needed
22
+ balancer = ModelLoadBalancer(config_path=config_path)
23
+
24
+ # Load the configurations and instantiate the models
25
+ balancer.load_config()
26
+ ```
27
+
28
+ ## 3. Configuration File
29
+
30
+ The `ModelLoadBalancer` uses a JSON file to configure the available models. Here is an example of what the configuration file looks like. The `deployment_name` is used to retrieve a specific model.
31
+
32
+ ```json
33
+ {
34
+ "models": [
35
+ {
36
+ "id": 3,
37
+ "provider": "azure-openai",
38
+ "type": "inference",
39
+ "deployment_name": "gpt-4.1",
40
+ "api_version": "2025-01-01-preview",
41
+ "api_base": "https://crewplus-eastus2.openai.azure.com",
42
+ "api_key": "your-api-key"
43
+ },
44
+ {
45
+ "id": 7,
46
+ "provider": "google-genai",
47
+ "type": "inference",
48
+ "deployment_name": "gemini-2.5-flash",
49
+ "api_key": "your-google-api-key"
50
+ },
51
+ {
52
+ "id": 8,
53
+ "provider": "google-genai",
54
+ "type": "ingestion",
55
+ "deployment_name": "gemini-2.5-pro",
56
+ "api_key": "your-google-api-key"
57
+ }
58
+ ]
59
+ }
60
+ ```
61
+
62
+ ## 4. Getting a Model
63
+
64
+ You can retrieve a model instance using the `get_model` method and passing the `deployment_name`.
65
+
66
+ ### Get `gemini-2.5-flash`
67
+ ```python
68
+ gemini_flash_model = balancer.get_model(deployment_name="gemini-2.5-flash")
69
+
70
+ # Now you can use the model
71
+ # from langchain_core.messages import HumanMessage
72
+ # response = gemini_flash_model.invoke([HumanMessage(content="Hello!")])
73
+ # print(response.content)
74
+ ```
75
+
76
+ ### Get `gemini-2.5-pro`
77
+ ```python
78
+ gemini_pro_model = balancer.get_model(deployment_name="gemini-2.5-pro")
79
+ ```
80
+
81
+ ### Get `gpt-4.1`
82
+ ```python
83
+ gpt41_model = balancer.get_model(deployment_name="gpt-4.1")
84
+ ```
85
+
86
+ ### Get `o3mini`
87
+ The model `o3mini` is identified by the deployment name `gpt-o3mini-eastus2-RPM25`.
88
+ ```python
89
+ o3mini_model = balancer.get_model(deployment_name="gpt-o3mini-eastus2-RPM25")
90
+ ```
91
+
92
+ ## 5. Global Access with `init_load_balancer`
93
+
94
+ The `init_load_balancer` function provides a convenient singleton pattern for accessing the `ModelLoadBalancer` throughout your application without passing the instance around.
95
+
96
+ First, you initialize the balancer once at the start of your application.
97
+
98
+ ### Initialization
99
+
100
+ You can initialize it in several ways:
101
+
102
+ **1. Default Initialization**
103
+
104
+ This will look for the `MODEL_CONFIG_PATH` environment variable, or use the default path `_config/models_config.json`.
105
+
106
+ ```python
107
+ from crewplus.services.init_services import init_load_balancer
108
+
109
+ init_load_balancer()
110
+ ```
111
+
112
+ **2. Initialization with a Custom Path**
113
+
114
+ You can also provide a direct path to your configuration file.
115
+
116
+ ```python
117
+ from crewplus.services.init_services import init_load_balancer
118
+
119
+ init_load_balancer(config_path="path/to/your/models_config.json")
120
+ ```
121
+
122
+ ### Getting the Balancer and Models
123
+
124
+ Once initialized, you can retrieve the `ModelLoadBalancer` instance from anywhere in your code using `get_model_balancer`.
125
+
126
+ ```python
127
+ from crewplus.services.init_services import get_model_balancer
128
+
129
+ # Get the balancer instance
130
+ balancer = get_model_balancer()
131
+
132
+ # Get a model by deployment name
133
+ gemini_flash_model = balancer.get_model(deployment_name="gemini-2.5-flash")
134
+ ```