crawlo 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of crawlo might be problematic. Click here for more details.

Files changed (68) hide show
  1. crawlo/__init__.py +2 -1
  2. crawlo/__version__.py +1 -1
  3. crawlo/commands/genspider.py +68 -42
  4. crawlo/commands/list.py +102 -93
  5. crawlo/commands/startproject.py +89 -4
  6. crawlo/commands/utils.py +187 -0
  7. crawlo/config.py +280 -0
  8. crawlo/core/engine.py +16 -3
  9. crawlo/core/enhanced_engine.py +190 -0
  10. crawlo/core/scheduler.py +113 -8
  11. crawlo/crawler.py +840 -307
  12. crawlo/downloader/__init__.py +181 -17
  13. crawlo/downloader/aiohttp_downloader.py +15 -2
  14. crawlo/downloader/cffi_downloader.py +11 -1
  15. crawlo/downloader/httpx_downloader.py +14 -3
  16. crawlo/filters/__init__.py +122 -5
  17. crawlo/filters/aioredis_filter.py +128 -36
  18. crawlo/filters/memory_filter.py +99 -32
  19. crawlo/middleware/proxy.py +11 -8
  20. crawlo/middleware/retry.py +40 -5
  21. crawlo/mode_manager.py +201 -0
  22. crawlo/network/__init__.py +17 -3
  23. crawlo/network/request.py +118 -10
  24. crawlo/network/response.py +131 -28
  25. crawlo/pipelines/__init__.py +1 -1
  26. crawlo/pipelines/csv_pipeline.py +317 -0
  27. crawlo/pipelines/json_pipeline.py +219 -0
  28. crawlo/queue/__init__.py +0 -0
  29. crawlo/queue/pqueue.py +37 -0
  30. crawlo/queue/queue_manager.py +304 -0
  31. crawlo/queue/redis_priority_queue.py +192 -0
  32. crawlo/settings/default_settings.py +68 -9
  33. crawlo/spider/__init__.py +576 -66
  34. crawlo/task_manager.py +4 -1
  35. crawlo/templates/project/middlewares.py.tmpl +56 -45
  36. crawlo/templates/project/pipelines.py.tmpl +308 -36
  37. crawlo/templates/project/run.py.tmpl +239 -0
  38. crawlo/templates/project/settings.py.tmpl +211 -17
  39. crawlo/templates/spider/spider.py.tmpl +153 -7
  40. crawlo/utils/controlled_spider_mixin.py +336 -0
  41. crawlo/utils/large_scale_config.py +287 -0
  42. crawlo/utils/large_scale_helper.py +344 -0
  43. crawlo/utils/queue_helper.py +176 -0
  44. crawlo/utils/request_serializer.py +220 -0
  45. crawlo-1.1.2.dist-info/METADATA +567 -0
  46. {crawlo-1.1.1.dist-info → crawlo-1.1.2.dist-info}/RECORD +54 -46
  47. tests/test_final_validation.py +154 -0
  48. tests/test_redis_config.py +29 -0
  49. tests/test_redis_queue.py +225 -0
  50. tests/test_request_serialization.py +71 -0
  51. tests/test_scheduler.py +242 -0
  52. crawlo/pipelines/mysql_batch_pipline.py +0 -273
  53. crawlo/utils/pqueue.py +0 -174
  54. crawlo-1.1.1.dist-info/METADATA +0 -220
  55. examples/baidu_spider/__init__.py +0 -7
  56. examples/baidu_spider/demo.py +0 -94
  57. examples/baidu_spider/items.py +0 -46
  58. examples/baidu_spider/middleware.py +0 -49
  59. examples/baidu_spider/pipeline.py +0 -55
  60. examples/baidu_spider/run.py +0 -27
  61. examples/baidu_spider/settings.py +0 -121
  62. examples/baidu_spider/spiders/__init__.py +0 -7
  63. examples/baidu_spider/spiders/bai_du.py +0 -61
  64. examples/baidu_spider/spiders/miit.py +0 -159
  65. examples/baidu_spider/spiders/sina.py +0 -79
  66. {crawlo-1.1.1.dist-info → crawlo-1.1.2.dist-info}/WHEEL +0 -0
  67. {crawlo-1.1.1.dist-info → crawlo-1.1.2.dist-info}/entry_points.txt +0 -0
  68. {crawlo-1.1.1.dist-info → crawlo-1.1.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,344 @@
1
+ #!/usr/bin/python
2
+ # -*- coding: UTF-8 -*-
3
+ """
4
+ 大规模爬虫优化辅助工具
5
+ """
6
+ import asyncio
7
+ import json
8
+ import time
9
+ from typing import Generator, Iterator, List, Set, Optional, Dict, Any
10
+ from crawlo.utils.log import get_logger
11
+
12
+
13
+ class LargeScaleHelper:
14
+ """大规模爬虫辅助类"""
15
+
16
+ def __init__(self, batch_size: int = 1000, checkpoint_interval: int = 5000):
17
+ self.batch_size = batch_size
18
+ self.checkpoint_interval = checkpoint_interval
19
+ self.logger = get_logger(self.__class__.__name__)
20
+
21
+ def batch_iterator(self, data_source, start_offset: int = 0) -> Generator[List[Any], None, None]:
22
+ """
23
+ 批量迭代器,适用于大量数据的分批处理
24
+
25
+ Args:
26
+ data_source: 数据源(支持多种类型)
27
+ start_offset: 起始偏移量
28
+
29
+ Yields:
30
+ 每批数据的列表
31
+ """
32
+ if hasattr(data_source, '__iter__') and not isinstance(data_source, (str, bytes)):
33
+ # 可迭代对象
34
+ yield from self._iterate_batches(data_source, start_offset)
35
+ elif hasattr(data_source, 'get_batch'):
36
+ # 支持分批获取的数据源
37
+ yield from self._get_batches_from_source(data_source, start_offset)
38
+ elif callable(data_source):
39
+ # 函数形式的数据源
40
+ yield from self._get_batches_from_function(data_source, start_offset)
41
+ else:
42
+ raise ValueError(f"不支持的数据源类型: {type(data_source)}")
43
+
44
+ def _iterate_batches(self, iterable, start_offset: int) -> Generator[List[Any], None, None]:
45
+ """从可迭代对象分批获取数据"""
46
+ iterator = iter(iterable)
47
+
48
+ # 跳过已处理的数据
49
+ for _ in range(start_offset):
50
+ try:
51
+ next(iterator)
52
+ except StopIteration:
53
+ return
54
+
55
+ while True:
56
+ batch = []
57
+ for _ in range(self.batch_size):
58
+ try:
59
+ batch.append(next(iterator))
60
+ except StopIteration:
61
+ if batch:
62
+ yield batch
63
+ return
64
+
65
+ if batch:
66
+ yield batch
67
+
68
+ def _get_batches_from_source(self, data_source, start_offset: int) -> Generator[List[Any], None, None]:
69
+ """从支持分批获取的数据源获取数据"""
70
+ offset = start_offset
71
+
72
+ while True:
73
+ try:
74
+ batch = data_source.get_batch(offset, self.batch_size)
75
+ if not batch:
76
+ break
77
+
78
+ yield batch
79
+ offset += len(batch)
80
+
81
+ if len(batch) < self.batch_size:
82
+ break # 已到达数据末尾
83
+
84
+ except Exception as e:
85
+ self.logger.error(f"获取批次数据失败: {e}")
86
+ break
87
+
88
+ def _get_batches_from_function(self, func, start_offset: int) -> Generator[List[Any], None, None]:
89
+ """从函数获取批次数据"""
90
+ offset = start_offset
91
+
92
+ while True:
93
+ try:
94
+ batch = func(offset, self.batch_size)
95
+ if not batch:
96
+ break
97
+
98
+ yield batch
99
+ offset += len(batch)
100
+
101
+ if len(batch) < self.batch_size:
102
+ break
103
+
104
+ except Exception as e:
105
+ self.logger.error(f"函数获取数据失败: {e}")
106
+ break
107
+
108
+
109
+ class ProgressManager:
110
+ """进度管理器"""
111
+
112
+ def __init__(self, progress_file: str = "spider_progress.json"):
113
+ self.progress_file = progress_file
114
+ self.logger = get_logger(self.__class__.__name__)
115
+
116
+ def load_progress(self) -> Dict[str, Any]:
117
+ """加载进度"""
118
+ try:
119
+ with open(self.progress_file, 'r', encoding='utf-8') as f:
120
+ progress = json.load(f)
121
+ self.logger.info(f"📊 加载进度: {progress}")
122
+ return progress
123
+ except FileNotFoundError:
124
+ self.logger.info("📄 未找到进度文件,从头开始")
125
+ return self._get_default_progress()
126
+ except Exception as e:
127
+ self.logger.error(f"加载进度失败: {e}")
128
+ return self._get_default_progress()
129
+
130
+ def save_progress(self, **kwargs):
131
+ """保存进度"""
132
+ try:
133
+ progress = {
134
+ **kwargs,
135
+ 'timestamp': time.time(),
136
+ 'formatted_time': time.strftime('%Y-%m-%d %H:%M:%S')
137
+ }
138
+
139
+ with open(self.progress_file, 'w', encoding='utf-8') as f:
140
+ json.dump(progress, f, indent=2, ensure_ascii=False)
141
+
142
+ self.logger.debug(f"💾 已保存进度: {progress}")
143
+
144
+ except Exception as e:
145
+ self.logger.error(f"保存进度失败: {e}")
146
+
147
+ def _get_default_progress(self) -> Dict[str, Any]:
148
+ """获取默认进度"""
149
+ return {
150
+ 'batch_num': 0,
151
+ 'processed_count': 0,
152
+ 'skipped_count': 0,
153
+ 'timestamp': time.time()
154
+ }
155
+
156
+
157
+ class MemoryOptimizer:
158
+ """内存优化器"""
159
+
160
+ def __init__(self, max_memory_mb: int = 500):
161
+ self.max_memory_mb = max_memory_mb
162
+ self.logger = get_logger(self.__class__.__name__)
163
+
164
+ def check_memory_usage(self) -> Dict[str, float]:
165
+ """检查内存使用情况"""
166
+ try:
167
+ import psutil
168
+ process = psutil.Process()
169
+ memory_info = process.memory_info()
170
+
171
+ memory_mb = memory_info.rss / 1024 / 1024
172
+ memory_percent = process.memory_percent()
173
+
174
+ return {
175
+ 'memory_mb': memory_mb,
176
+ 'memory_percent': memory_percent,
177
+ 'threshold_mb': self.max_memory_mb
178
+ }
179
+ except ImportError:
180
+ self.logger.warning("psutil 未安装,无法监控内存")
181
+ return {}
182
+ except Exception as e:
183
+ self.logger.error(f"检查内存失败: {e}")
184
+ return {}
185
+
186
+ def should_pause_for_memory(self) -> bool:
187
+ """检查是否应该因内存不足而暂停"""
188
+ memory_info = self.check_memory_usage()
189
+
190
+ if not memory_info:
191
+ return False
192
+
193
+ memory_mb = memory_info.get('memory_mb', 0)
194
+
195
+ if memory_mb > self.max_memory_mb:
196
+ self.logger.warning(f"⚠️ 内存使用过高: {memory_mb:.1f}MB > {self.max_memory_mb}MB")
197
+ return True
198
+
199
+ return False
200
+
201
+ def force_garbage_collection(self):
202
+ """强制垃圾回收"""
203
+ try:
204
+ import gc
205
+ collected = gc.collect()
206
+ self.logger.debug(f"🗑️ 垃圾回收: 清理了 {collected} 个对象")
207
+ except Exception as e:
208
+ self.logger.error(f"垃圾回收失败: {e}")
209
+
210
+
211
+ class DataSourceAdapter:
212
+ """数据源适配器"""
213
+
214
+ @staticmethod
215
+ def from_redis_queue(queue, batch_size: int = 1000):
216
+ """从Redis队列创建批量数据源"""
217
+ def get_batch(offset: int, limit: int) -> List[Dict]:
218
+ try:
219
+ # 如果队列支持范围查询
220
+ if hasattr(queue, 'get_range'):
221
+ return queue.get_range(offset, offset + limit - 1)
222
+
223
+ # 如果队列支持批量获取
224
+ if hasattr(queue, 'get_batch'):
225
+ return queue.get_batch(offset, limit)
226
+
227
+ # 模拟批量获取
228
+ results = []
229
+ for _ in range(limit):
230
+ item = queue.get_nowait() if hasattr(queue, 'get_nowait') else None
231
+ if item:
232
+ results.append(item)
233
+ else:
234
+ break
235
+
236
+ return results
237
+
238
+ except Exception as e:
239
+ print(f"获取批次失败: {e}")
240
+ return []
241
+
242
+ return get_batch
243
+
244
+ @staticmethod
245
+ def from_database(db_helper, query: str, batch_size: int = 1000):
246
+ """从数据库创建批量数据源"""
247
+ def get_batch(offset: int, limit: int) -> List[Dict]:
248
+ try:
249
+ # 添加分页查询
250
+ paginated_query = f"{query} LIMIT {limit} OFFSET {offset}"
251
+ return db_helper.execute_query(paginated_query)
252
+ except Exception as e:
253
+ print(f"数据库查询失败: {e}")
254
+ return []
255
+
256
+ return get_batch
257
+
258
+ @staticmethod
259
+ def from_file(file_path: str, batch_size: int = 1000):
260
+ """从文件创建批量数据源"""
261
+ def get_batch(offset: int, limit: int) -> List[str]:
262
+ try:
263
+ with open(file_path, 'r', encoding='utf-8') as f:
264
+ # 跳过已处理的行
265
+ for _ in range(offset):
266
+ f.readline()
267
+
268
+ # 读取当前批次
269
+ batch = []
270
+ for _ in range(limit):
271
+ line = f.readline()
272
+ if not line:
273
+ break
274
+ batch.append(line.strip())
275
+
276
+ return batch
277
+ except Exception as e:
278
+ print(f"读取文件失败: {e}")
279
+ return []
280
+
281
+ return get_batch
282
+
283
+
284
+ class LargeScaleSpiderMixin:
285
+ """大规模爬虫混入类"""
286
+
287
+ def __init__(self):
288
+ super().__init__()
289
+ self.large_scale_helper = LargeScaleHelper(
290
+ batch_size=getattr(self, 'batch_size', 1000),
291
+ checkpoint_interval=getattr(self, 'checkpoint_interval', 5000)
292
+ )
293
+ self.progress_manager = ProgressManager(
294
+ progress_file=getattr(self, 'progress_file', f"{self.name}_progress.json")
295
+ )
296
+ self.memory_optimizer = MemoryOptimizer(
297
+ max_memory_mb=getattr(self, 'max_memory_mb', 500)
298
+ )
299
+
300
+ def create_streaming_start_requests(self, data_source):
301
+ """创建流式start_requests生成器"""
302
+ progress = self.progress_manager.load_progress()
303
+ start_offset = progress.get('processed_count', 0)
304
+
305
+ processed_count = start_offset
306
+ skipped_count = progress.get('skipped_count', 0)
307
+
308
+ for batch in self.large_scale_helper.batch_iterator(data_source, start_offset):
309
+
310
+ # 内存检查
311
+ if self.memory_optimizer.should_pause_for_memory():
312
+ self.memory_optimizer.force_garbage_collection()
313
+ # 可以添加延迟或其他处理
314
+ asyncio.sleep(1)
315
+
316
+ for item in batch:
317
+ processed_count += 1
318
+
319
+ # 检查进度保存
320
+ if processed_count % self.large_scale_helper.checkpoint_interval == 0:
321
+ self.progress_manager.save_progress(
322
+ processed_count=processed_count,
323
+ skipped_count=skipped_count
324
+ )
325
+
326
+ # 生成请求
327
+ request = self.create_request_from_item(item)
328
+ if request:
329
+ yield request
330
+ else:
331
+ skipped_count += 1
332
+
333
+ # 最终保存进度
334
+ self.progress_manager.save_progress(
335
+ processed_count=processed_count,
336
+ skipped_count=skipped_count,
337
+ completed=True
338
+ )
339
+
340
+ self.logger.info(f"🎉 处理完成!总计: {processed_count}, 跳过: {skipped_count}")
341
+
342
+ def create_request_from_item(self, item):
343
+ """从数据项创建请求(需要子类实现)"""
344
+ raise NotImplementedError("子类必须实现 create_request_from_item 方法")
@@ -0,0 +1,176 @@
1
+ #!/usr/bin/python
2
+ # -*- coding: UTF-8 -*-
3
+ """
4
+ 队列配置辅助工具
5
+ 为用户提供简洁的队列配置接口
6
+ """
7
+ from typing import Dict, Any, Optional
8
+
9
+
10
+ class QueueHelper:
11
+ """队列配置辅助类"""
12
+
13
+ @staticmethod
14
+ def use_memory_queue(max_size: int = 2000) -> Dict[str, Any]:
15
+ """
16
+ 配置使用内存队列
17
+
18
+ Args:
19
+ max_size: 队列最大容量
20
+
21
+ Returns:
22
+ 配置字典
23
+ """
24
+ return {
25
+ 'QUEUE_TYPE': 'memory',
26
+ 'SCHEDULER_MAX_QUEUE_SIZE': max_size,
27
+ }
28
+
29
+ @staticmethod
30
+ def use_redis_queue(
31
+ host: str = "127.0.0.1",
32
+ port: int = 6379,
33
+ password: Optional[str] = None,
34
+ db: int = 0,
35
+ queue_name: str = "crawlo:requests",
36
+ max_retries: int = 3,
37
+ timeout: int = 300
38
+ ) -> Dict[str, Any]:
39
+ """
40
+ 配置使用 Redis 分布式队列
41
+
42
+ Args:
43
+ host: Redis 主机地址
44
+ port: Redis 端口
45
+ password: Redis 密码(可选)
46
+ db: Redis 数据库编号
47
+ queue_name: 队列名称
48
+ max_retries: 最大重试次数
49
+ timeout: 操作超时时间(秒)
50
+
51
+ Returns:
52
+ 配置字典
53
+ """
54
+ if password:
55
+ redis_url = f"redis://:{password}@{host}:{port}/{db}"
56
+ else:
57
+ redis_url = f"redis://{host}:{port}/{db}"
58
+
59
+ return {
60
+ 'QUEUE_TYPE': 'redis',
61
+ 'REDIS_URL': redis_url,
62
+ 'REDIS_HOST': host,
63
+ 'REDIS_PORT': port,
64
+ 'REDIS_PASSWORD': password or '',
65
+ 'REDIS_DB': db,
66
+ 'SCHEDULER_QUEUE_NAME': queue_name,
67
+ 'QUEUE_MAX_RETRIES': max_retries,
68
+ 'QUEUE_TIMEOUT': timeout,
69
+ }
70
+
71
+ @staticmethod
72
+ def auto_queue(
73
+ redis_fallback: bool = True,
74
+ memory_max_size: int = 2000,
75
+ **redis_kwargs
76
+ ) -> Dict[str, Any]:
77
+ """
78
+ 配置自动选择队列类型
79
+
80
+ Args:
81
+ redis_fallback: Redis 不可用时是否回退到内存队列
82
+ memory_max_size: 内存队列最大容量
83
+ **redis_kwargs: Redis 配置参数
84
+
85
+ Returns:
86
+ 配置字典
87
+ """
88
+ config = {
89
+ 'QUEUE_TYPE': 'auto',
90
+ 'SCHEDULER_MAX_QUEUE_SIZE': memory_max_size,
91
+ }
92
+
93
+ # 添加 Redis 配置(用于自动检测)
94
+ if redis_kwargs:
95
+ redis_config = QueueHelper.use_redis_queue(**redis_kwargs)
96
+ config.update(redis_config)
97
+ config['QUEUE_TYPE'] = 'auto' # 确保是自动模式
98
+
99
+ return config
100
+
101
+
102
+ # 预定义的常用配置
103
+ class QueuePresets:
104
+ """预定义的队列配置"""
105
+
106
+ # 开发环境:使用内存队列
107
+ DEVELOPMENT = QueueHelper.use_memory_queue(max_size=1000)
108
+
109
+ # 生产环境:使用 Redis 分布式队列
110
+ PRODUCTION = QueueHelper.use_redis_queue(
111
+ host="127.0.0.1",
112
+ port=6379,
113
+ queue_name="crawlo:production",
114
+ max_retries=5,
115
+ timeout=600
116
+ )
117
+
118
+ # 测试环境:自动选择,Redis 不可用时使用内存队列
119
+ TESTING = QueueHelper.auto_queue(
120
+ redis_fallback=True,
121
+ memory_max_size=500,
122
+ host="127.0.0.1",
123
+ port=6379,
124
+ queue_name="crawlo:testing"
125
+ )
126
+
127
+ # 高性能环境:Redis 集群
128
+ HIGH_PERFORMANCE = QueueHelper.use_redis_queue(
129
+ host="redis-cluster.example.com",
130
+ port=6379,
131
+ queue_name="crawlo:cluster",
132
+ max_retries=10,
133
+ timeout=300
134
+ )
135
+
136
+
137
+ def apply_queue_config(settings_dict: Dict[str, Any], config: Dict[str, Any]) -> None:
138
+ """
139
+ 将队列配置应用到设置字典
140
+
141
+ Args:
142
+ settings_dict: 现有的设置字典
143
+ config: 队列配置字典
144
+ """
145
+ settings_dict.update(config)
146
+
147
+
148
+ # 使用示例和文档
149
+ USAGE_EXAMPLES = """
150
+ # 使用示例:
151
+
152
+ # 1. 在 settings.py 中使用内存队列
153
+ from crawlo.utils.queue_helper import QueueHelper
154
+ apply_queue_config(locals(), QueueHelper.use_memory_queue())
155
+
156
+ # 2. 在 settings.py 中使用 Redis 队列
157
+ apply_queue_config(locals(), QueueHelper.use_redis_queue(
158
+ host="redis.example.com",
159
+ password="your_password"
160
+ ))
161
+
162
+ # 3. 使用预定义配置
163
+ from crawlo.utils.queue_helper import QueuePresets
164
+ apply_queue_config(locals(), QueuePresets.PRODUCTION)
165
+
166
+ # 4. 自动选择队列类型
167
+ apply_queue_config(locals(), QueueHelper.auto_queue(
168
+ host="127.0.0.1",
169
+ port=6379
170
+ ))
171
+
172
+ # 5. 直接在 settings 中配置
173
+ QUEUE_TYPE = 'auto' # 'memory', 'redis', 'auto'
174
+ REDIS_URL = 'redis://127.0.0.1:6379/0'
175
+ SCHEDULER_MAX_QUEUE_SIZE = 2000
176
+ """