cosmopharm 0.0.22__py3-none-any.whl → 0.0.23.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,26 +1,18 @@
1
1
  import numpy as np
2
2
  import numbers
3
+ from numpy.typing import NDArray
4
+ from typing import List, Literal
3
5
 
6
+ from ..components import Component
4
7
  from ..utils.convert import convert
5
8
 
6
9
  class ActModel:
7
10
 
8
- def __init__(self, components: list = []):
9
- self.mix = components
11
+ def __init__(self, components: List[Component]):
12
+ self.mixture = components
10
13
 
11
14
  def lngamma(self, T, x):
12
- pass
13
-
14
- def dlngamma(self, T, x):
15
- # Only binary case
16
- def f(x1):
17
- x = np.array([x1, 1-x1])
18
- return self.lngamma(T, x)#[0]
19
- h, x = 0.0001, x[0]
20
- dy = (f(x+h)-f(x-h))/(2*h)
21
- # Revert direction of dy2_dx2 --> dy2_dx1
22
- dy[1] = dy[1][::-1]
23
- return f(x), dy
15
+ raise NotImplementedError("lngamma() hasn't been implemented yet.")
24
16
 
25
17
  def activity(self, T, x):
26
18
  act = np.log(x) + self.lngamma(T, x)
@@ -28,6 +20,7 @@ class ActModel:
28
20
  return act
29
21
 
30
22
  def gmix(self, T, x):
23
+ is_scalar = np.isscalar(x)
31
24
  # Convert input as needed
32
25
  x = self._convert_input(x)
33
26
  # Create mask to identify columns that don't contain 0 or 1
@@ -38,10 +31,10 @@ class ActModel:
38
31
  _gmix = _x * (np.log(_x) + self.lngamma(T, _x))
39
32
  _gmix = np.sum(_gmix, axis=0)
40
33
  # Initialize gmix array with zeros
41
- gmix = np.zeros(x.shape[1])
34
+ gmix = np.zeros(1 if x.ndim==1 else x.shape[1])
42
35
  # Fill gmix with calculated values where the mask is True
43
36
  gmix[mask] = _gmix
44
- return gmix
37
+ return gmix[0] if is_scalar else gmix
45
38
 
46
39
 
47
40
  # =============================================================================
@@ -74,10 +67,41 @@ class ActModel:
74
67
  """Converts input to a 1-dim ndarray if it's a number or 0-dim ndarray."""
75
68
  if isinstance(x, numbers.Number) or (isinstance(x, np.ndarray) and x.ndim == 0):
76
69
  return np.array([float(x), 1 - float(x)])
77
- elif isinstance(x, np.ndarray) and x.ndim == 1 and len(x) != len(self.mix):
70
+ elif isinstance(x, np.ndarray) and x.ndim == 1 and len(x) != len(self.mixture):
78
71
  return np.array([x, 1 - x])
79
72
  return x
80
73
 
81
- def _convert(self, x, to='weight'):
82
- Mw = np.array([c.Mw for c in self.mix])
83
- return convert(x=np.array([x, 1-x]), Mw=Mw, to=to)[0]
74
+ def _convert(self,
75
+ x : NDArray[np.float64],
76
+ to : Literal['weight', 'mole'] ='weight'
77
+ ) -> NDArray[np.float64]:
78
+ """
79
+ Convert the fraction of a binary mixture between mole fraction and weight fraction.
80
+
81
+ This method is designed for internal use with binary mixtures, where the mixture is defined by two components.
82
+ It uses the 'convert' function to perform the conversion by creating an array with the fractions of both
83
+ components and the molecular weights from the mixture's attributes.
84
+
85
+ Parameters:
86
+ x (NDArray[np.float64]): The mole or weight fraction of the first component of the mixture.
87
+ If converting 'to' weight, 'x' represents mole fractions; if converting 'to' mole,
88
+ 'x' represents weight fractions. This should be a single value or a 1D array of values.
89
+ to (Literal['weight', 'mole'], optional): The target type for the conversion. Defaults to 'weight'.
90
+ Use 'weight' to convert mole fractions to weight fractions,
91
+ and 'mole' to convert weight fractions to mole fractions.
92
+
93
+ Returns:
94
+ NDArray[np.float64]: The converted fraction(s) of the first component in the same shape as 'x'.
95
+ If 'x' is a single value, the return will be a single converted value;
96
+ if 'x' is a 1D array, the return will be a 1D array of converted values.
97
+
98
+ Example:
99
+ >>> mixture = Mixture(components=[component1, component2], Mw=np.array([18.01528, 46.06844]))
100
+ >>> sle = SLE(mix=mixture)
101
+ >>> x_mole_fraction = np.array([0.4]) # Mole fraction of the first component
102
+ >>> x_weight_fraction = sle._convert(x_mole_fraction, to='weight')
103
+ >>> print(x_weight_fraction)
104
+ array([0.01373165])
105
+ """
106
+ Mw = np.array([c.Mw for c in self.mixture])
107
+ return convert(x=np.array([x, 1-x], dtype=np.float64), Mw=Mw, to=to)[0]
@@ -1,17 +1,30 @@
1
+
1
2
  import numpy as np
3
+ import cCOSMO
4
+
5
+ from typing import List, Union, Literal
2
6
  from .actmodel import ActModel
7
+ from ..components import Component
8
+
3
9
 
4
10
  class COSMOSAC(ActModel):
5
- def __init__(self, COSMO, components: list, free_volume=False,
6
- dispersion=False, combinatorial=True):
11
+ # Handling invalid values for free volume calculation
12
+ class InvalidFreeVolumeParametersException(Exception):
13
+ pass
14
+
15
+ def __init__(self,
16
+ COSMO: Union[cCOSMO.COSMO1, cCOSMO.COSMO3],
17
+ mixture: List[Component],
18
+ combinatorial: Union[Literal['sg', 'fv'], bool] = 'sg',
19
+ dispersion: bool = False,
20
+ ) -> None:
7
21
  self.COSMO = COSMO
8
- self.mix = components
22
+ self.mixture = mixture
9
23
  # Flexible assignment of 'get_lngamma_comb' and 'get_lngamma_dsp'
10
- # that changes dynamically if the values for 'free_volume', 'dispersion'
11
- # or "combinatorial" are changed after initialization of an instance.
12
- self._free_volume = free_volume
13
- self._dispersion = dispersion
24
+ # that changes dynamically if the values for 'combinatorial' or
25
+ # 'dispersion' are changed after initialization of an instance.
14
26
  self._combinatorial = combinatorial
27
+ self._dispersion = dispersion
15
28
 
16
29
  @ActModel.vectorize
17
30
  def lngamma(self, T, x):
@@ -54,8 +67,10 @@ class COSMOSAC(ActModel):
54
67
  (can replace ln_gamma_comb of normal COSMO-SAC) - Kuo2013
55
68
  x, v_298, v_hc are 1D arrays (number of elements = number of components)
56
69
  """
57
- v_298 = np.array([c.v_298 for c in self.mix])
58
- v_hc = np.array([c.v_hc for c in self.mix])
70
+ # TODO: Make sure, that v_298 and v_hc are provided, else "FV" not possible
71
+ self.validate_free_volume_parameters() # Ensure components are valid before proceeding
72
+ v_298 = np.array([comp.v_298 for comp in self.mixture])
73
+ v_hc = np.array([comp.v_hc for comp in self.mixture])
59
74
  vf = v_298-v_hc
60
75
  sum_vf = np.sum(x*vf)
61
76
  phix = vf/sum_vf
@@ -68,12 +83,12 @@ class COSMOSAC(ActModel):
68
83
  return self.COSMO.get_lngamma_resid(T, x)
69
84
 
70
85
  def get_lngamma_comb(self, x):
71
- if not self._combinatorial:
86
+ if self._combinatorial is False:
72
87
  return np.zeros(len(x))
73
- elif self._free_volume:
74
- return self.get_lngamma_fv(x)
75
- else:
88
+ elif self._combinatorial.lower() == 'sg':
76
89
  return self.get_lngamma_sg(x)
90
+ elif self._combinatorial.lower() == 'fv':
91
+ return self.get_lngamma_fv(x)
77
92
 
78
93
  def get_lngamma_disp(self, x):
79
94
  if self._dispersion:
@@ -81,14 +96,6 @@ class COSMOSAC(ActModel):
81
96
  else:
82
97
  return np.zeros(len(x))
83
98
 
84
- @property
85
- def free_volume(self):
86
- return self._free_volume
87
-
88
- @free_volume.setter
89
- def free_volume(self, value):
90
- self._free_volume = value
91
-
92
99
  @property
93
100
  def dispersion(self):
94
101
  return self._dispersion
@@ -102,5 +109,46 @@ class COSMOSAC(ActModel):
102
109
  return self._combinatorial
103
110
 
104
111
  @combinatorial.setter
105
- def combinatorial(self, value):
106
- self._combinatorial = value
112
+ def combinatorial(self, value: Union[str, bool]):
113
+ is_valid_string = isinstance(value, str) and value.lower() in ('sg', 'fv')
114
+ is_False = value is False
115
+ if is_valid_string or is_False:
116
+ self._combinatorial = value
117
+ else:
118
+ msg = "Invalid value for combinatorial term. Please choose 'sg', 'fv', or set to False."
119
+ raise ValueError(msg)
120
+
121
+ # =============================================================================
122
+ # Auxilliary functions
123
+ # =============================================================================
124
+ def configuration(self,
125
+ comb: Union[Literal['sg', 'fv'], bool] = 'sg',
126
+ dsp: bool = False, **kwargs
127
+ ):
128
+ """ Convenience function to quickly configure COSMO parameters """
129
+ self._combinatorial = comb
130
+ self._dispersion = dsp
131
+
132
+
133
+ def validate_free_volume_parameters(self):
134
+ # List of parameters to validate
135
+ parameters_to_check = ["v_298", "v_hc"]
136
+
137
+ for comp in self.mixture:
138
+ invalid_params = [] # List to accumulate names of invalid parameters for this component
139
+ for param in parameters_to_check:
140
+ value = getattr(comp, param, None)
141
+ # Check if value is None, not a number (np.nan), less than or equal to 0
142
+ if value is None or np.isnan(value) or value <= 0:
143
+ invalid_params.append((param, value)) # Append parameter name and value tuple
144
+
145
+ # Check if any errors were found for this component
146
+ if invalid_params:
147
+ # If errors were found, construct the warning message
148
+ error_message = f"Invalid FV parameters for component {comp}: {invalid_params}"
149
+ raise self.InvalidFreeVolumeParametersException(error_message)
150
+
151
+ # Additionally check if v_298 and v_hc are equal
152
+ if comp.v_298 == comp.v_hc:
153
+ msg = f"v_298 and v_hc are equal for component {comp}: v_298={comp.v_298}, v_hc={comp.v_hc}"
154
+ raise self.InvalidFreeVolumeParametersException(msg)
cosmopharm/components.py CHANGED
@@ -2,12 +2,13 @@ from typing import Optional
2
2
  from numbers import Number
3
3
 
4
4
  class Component:
5
- def __init__(self, name: Optional[str] = None,
6
- Mw: Optional[Number] = None,
7
- T_fus: Optional[Number] = None,
8
- H_fus: Optional[Number] = None,
9
- Cp_fus_a_fit: Optional[Number] = None,
10
- Cp_fus_bT_fit: Optional[Number] = None,
5
+ def __init__(self,
6
+ name: Optional[str] = None,
7
+ Mw: Optional[Number] = None, # Positive number expected
8
+ T_fus: Optional[Number] = None, # Positive number expected
9
+ H_fus: Number = 0,
10
+ Cp_fus_a_fit: Number = 0,
11
+ Cp_fus_bT_fit: Number = 0,
11
12
  v_298: Optional[Number] = None,
12
13
  v_hc: Optional[Number] = None,
13
14
  ):
@@ -1,34 +1,48 @@
1
1
  import numpy as np
2
2
  import pandas as pd
3
- from scipy.optimize import least_squares
3
+ from scipy.optimize import least_squares, root
4
+ from typing import Union, Optional, Type, List
4
5
 
5
- from ..utils import spacing
6
+ from ..components import Component
7
+ from ..actmodels import ActModel
8
+ from ..utils.spacing import spacing
6
9
  from ..utils.lle_scanner import estimate_lle_from_gmix
7
10
 
8
11
 
9
12
  class LLE:
10
- def __init__(self, actmodel):
11
- self.mix = actmodel.mix
12
- self.model = actmodel
13
+ def __init__(self,
14
+ actmodel: Union[ActModel, Type[ActModel]],
15
+ mixture: Optional[List[Component]] = None) -> None:
16
+ self.actmodel = actmodel
17
+ self.mixture = mixture
18
+ self._validate_arguments()
13
19
 
14
20
  def fobj_binodal(self, x1, T):
15
21
  # Equilibrium: Isoactivity criterion (aL1 - aL2 = 0)
16
22
  x = np.array([x1, 1-x1])
17
- activity = self.model.activity(T, x)
23
+ activity = self.actmodel.activity(T, x)
18
24
  equilibrium = np.diff(activity, axis=1)
19
25
  return equilibrium.ravel() # reshape from (2,1) --> (2,)
20
26
 
21
27
  def fobj_spinodal(self, x1):
22
28
  T = 0
23
29
  x = np.array([x1, 1-x1])
24
- return self.model.thermofac(T, x)
30
+ return self.actmodel.thermofac(T, x)
25
31
 
26
- def binodal(self, T, x0=None):
32
+ def binodal(self, T, x0=None, solver='least_squares'):
27
33
  if x0 is None:
28
34
  x0 = [0.1, 0.999] # 1_N2_Ethan
29
- kwargs = dict(bounds=(0,1), ftol=1e-15, xtol=1e-15)
30
- res = least_squares(self.fobj_binodal, x0, args=(T,), **kwargs)
31
- return res.x
35
+
36
+ if solver == 'least_squares':
37
+ kwargs = dict(bounds=(0,1), ftol=1e-15, xtol=1e-15)
38
+ res = least_squares(self.fobj_binodal, x0, args=(T,), **kwargs)
39
+ # print(res.nfev)
40
+ return res.x, res.nfev
41
+ else:
42
+ kwargs = dict(method='krylov', options={'maxiter': 5})
43
+ res = root(self.fobj_binodal, x0, args=(T,), **kwargs)
44
+ # print(res.nit)
45
+ return res.x, 30
32
46
 
33
47
  def spinodal(self, x0=None):
34
48
  if x0 is None:
@@ -36,26 +50,28 @@ class LLE:
36
50
  return least_squares(self.fobj_spinodal, x0).x
37
51
 
38
52
  # =============================================================================
39
- #
53
+ # TODO: (1) Add some "approx_initial_values" function based on gmix
54
+ # TODO: (2) Overall improve this code to match the SLE code
40
55
  # =============================================================================
41
56
  def approx_init_x0(self, T):
42
57
  x1 = spacing(0,1,51,'poly',n=3)
43
- gmix = self.model.gmix(T, x1)
58
+ gmix = self.actmodel.gmix(T, x1)
44
59
  xL, xR, yL, yR = estimate_lle_from_gmix(x1, gmix, rough=True)
45
60
  return xL, xR
46
61
 
47
- def solve_lle(self, T, x0, info=True):
48
- binodal_x = self.binodal(T, x0)
49
- binodal_w = self.model._convert(binodal_x)
62
+ def solve_lle(self, T, x0, solver='least_squares', info=True):
63
+ binodal_x, nfev = self.binodal(T, x0, solver)
64
+ binodal_w = self.actmodel._convert(binodal_x)
50
65
  formatted_w_binodal = [f"wL{i+1}={value:.4f}" for i, value in enumerate(binodal_w)]
51
66
  formatted_x_binodal = [f"xL{i+1}={value:.6f}" for i, value in enumerate(binodal_x)]
52
67
  msg = ('LLE: ', f"{T=:.2f}", *formatted_w_binodal, *formatted_x_binodal)
53
68
  if info:
54
69
  print(*msg)
55
- return binodal_x, binodal_w
56
- return binodal_x, binodal_w, msg
70
+ return binodal_x, binodal_w, nfev
71
+ return binodal_x, binodal_w, nfev, msg
57
72
 
58
- def miscibility(self, T, x0=None, max_gap=0.1, max_T=500, dT=25):
73
+ def miscibility(self, T, x0=None, max_gap=0.1, max_T=500, dT=25, exponent=2):
74
+ """ Calculate miscibility """
59
75
  print()
60
76
  print("Calculating LLE...")
61
77
  res = []
@@ -63,27 +79,48 @@ class LLE:
63
79
  if x0 is None:
64
80
  print("...searching for suitable initial value...")
65
81
  x0 = self.approx_init_x0(T)
66
- binodal_x, binodal_w, msg = self.solve_lle(T, x0, info=False)
82
+ binodal_x, binodal_w, nfev, msg = self.solve_lle(T, x0, info=False)
67
83
 
68
84
  # Check if initial guess is reasonalble - otherwise increase T
69
85
  while binodal_x[0] < x0[0] and T <= max_T:
70
86
  print('LLE: ', f"{T=:.2f}", "...no feasbible initial value found.")
71
87
  T += 10 # Increase T by 10
72
88
  x0 = self.approx_init_x0(T)
73
- binodal_x, binodal_w, msg = self.solve_lle(T, x0, info=False)
89
+ binodal_x, binodal_w, nfev, msg = self.solve_lle(T, x0, info=False)
74
90
  print("Suitable initial value found! Proceed with calculating LLE...")
75
91
  print(*msg)
76
92
  gap = np.diff(binodal_w)[0]
77
93
  res.append((T, *binodal_w, *binodal_x))
78
94
 
79
- exponent = 2.1
80
95
  while gap > max_gap and T <= max_T:
96
+ solver = 'least_squares' if nfev <= 30 else 'root'
97
+ solver = 'least_squares'
98
+ # print(solver)
81
99
  T += dT * gap**exponent
82
100
  x0 = binodal_x
83
- binodal_x, binodal_w = self.solve_lle(T, x0)
101
+ binodal_x, binodal_w, nfev = self.solve_lle(T, x0, solver)
84
102
  gap = np.diff(binodal_w)[0]
85
103
  res.append((T, *binodal_w, *binodal_x))
86
104
 
87
105
  columns = ['T', 'wL1', 'wL2', 'xL1', 'xL2']
88
106
  res = pd.DataFrame(res, columns=columns)
89
107
  return res
108
+
109
+ # =============================================================================
110
+ # AUXILLIARY FUNCTIONS
111
+ # =============================================================================
112
+ def _validate_arguments(self):
113
+ """Validate the arguments for the LLE class."""
114
+ # TODO: Insert case where both actmodel and mixture are provided (check if acmodel.mixture == mixture, if not raise warning)
115
+ if isinstance(self.actmodel, ActModel):
116
+ # If actmodel is an instance of ActModel
117
+ self.mixture: List[Component] = self.mixture or self.actmodel.mixture
118
+ elif isinstance(self.actmodel, type) and issubclass(self.actmodel, ActModel):
119
+ # If actmodel is a class (subclass of ActModel)
120
+ if self.mixture is None:
121
+ raise ValueError("Please provide a valid mixture:Mixture.")
122
+ self.actmodel: ActModel = self.actmodel(self.mixture)
123
+ else:
124
+ # If actmodel is neither an instance nor a subclass of ActModel
125
+ err = "'actmodel' must be an instance or a subclass of 'ActModel'"
126
+ raise ValueError(err)
@@ -1,72 +1,95 @@
1
- import pandas as pd
2
1
  import numpy as np
2
+ import pandas as pd
3
3
  from scipy.optimize import fsolve, root
4
- from typing import Literal
4
+ from numpy.typing import NDArray
5
+ from typing import Literal, Optional, Type, Union, List, Tuple, Generator, Dict
5
6
 
6
7
  from ..components import Component
8
+ from ..actmodels import ActModel
7
9
  from ..utils.spacing import spacing
8
10
 
11
+ NumericOrFrame = Union[float, List[float], Tuple[float, ...], NDArray[np.float64], pd.DataFrame]
12
+
9
13
  class SLE:
10
- def __init__(self, solute, solvent, actmodel):
11
- self.mix = [solute, solvent]
12
- self.model = actmodel
13
- self.solute, self.solvent = solute, solvent
14
+ def __init__(self,
15
+ actmodel: Union[ActModel, Type[ActModel]],
16
+ mixture: Optional[List[Component]] = None) -> None:
17
+ self.actmodel = actmodel
18
+ self.mixture = mixture
19
+ self._validate_arguments()
20
+ # Assign 'solute' and 'solvent' based on order in 'mixture'
21
+ # Default assignment can be changed in e.g. 'solubility()'
22
+ self.solute, self.solvent = self.mixture
14
23
 
15
24
  def solubility(self,
16
- solute: Component = None, solvent: Component = None,
17
- args=None, init=None, data=None,
25
+ solute: Optional[Component] = None,
26
+ solvent: Optional[Component] = None,
18
27
  vary: Literal['T', 'w', 'auto'] = 'auto',
19
- mix: Literal['ideal', 'real'] = 'real',
28
+ mix_type: Literal['ideal', 'real'] = 'real',
29
+ args: Optional[NumericOrFrame] = None,
30
+ init: Optional[NumericOrFrame] = None,
20
31
  solver: Literal['root', 'fsolve'] = 'root',
21
- show_progress=False):
32
+ show_progress=False, **kwargs):
22
33
  ''' Calculate solubility curve of solute in solvent.'''
23
34
  self.solute = solute or self.solute
24
35
  self.solvent = solvent or self.solvent
25
- self.vary, self.mix_type = vary, mix
36
+ self.vary, self.mix_type = vary, mix_type
26
37
  self.show_progress = show_progress
38
+ self.config = getattr(self.actmodel, 'config', self.mix_type)
27
39
  if self.vary == 'auto':
28
40
  gen = self.auto_solve(solver)
29
41
  else:
30
42
  self._vary = self.vary
31
- if args is None or init is None:
32
- args, init = self.initialize(init=init, data=data)
43
+ args = self.set_args(args)
44
+ init = self.set_x0(init)
33
45
  gen = self.solve_sle(args, init, solver)
34
- res = [k for k in gen]
35
- res = pd.DataFrame(res, columns=['T', 'x', 'vary', 'w'])
36
- res = res[['T', 'w', 'x', 'vary']]
37
- return res
46
+ try:
47
+ res = [k for k in gen]
48
+ res = pd.DataFrame(res, columns=['T', 'x', 'vary', 'w'])
49
+ res = res[['T', 'w', 'x', 'vary']]
50
+ return res
51
+ except self.actmodel.InvalidFreeVolumeParametersException as e:
52
+ print(f"Warning: {e}") # Inform the user
53
+ return pd.DataFrame(columns=['T', 'w', 'x', 'vary'])
38
54
 
39
55
 
40
56
  # =============================================================================
41
57
  # MATHEMATICS
42
58
  # =============================================================================
43
- def solve_sle(self, args, init, solver='root'):
44
- is_iterable = hasattr(init, "__len__") and len(init) > 1
59
+ def solve_sle(self, args: NDArray[np.float64], init: NDArray[np.float64],
60
+ solver: Literal['root', 'fsolve'] = 'root'
61
+ ) -> Generator[Dict[str, Union[float, str]], None, None]:
62
+ # Check compatibility of the "init" values
63
+ is_iterable = init.size > 1
64
+ if is_iterable and not init.size == args.size:
65
+ msg = 'The length of "init" must be the same as "args".'
66
+ raise ValueError(msg)
67
+ x0 = init
68
+ # Setup solver and handle pure component case
45
69
  key, lock = ['T', 'x'] if self._vary == 'T' else ['x', 'T']
46
70
  solve = self.set_solver(solver=solver)
47
- x0 = init
48
71
  args, pure_component = self._handle_pure_component(args)
49
72
  if pure_component: # no need to calculate pure component
50
73
  yield pure_component
51
-
52
74
  for i, arg in enumerate(args):
53
75
  x0 = init[i] if is_iterable else x0
54
76
  out = float(solve(x0, arg))
55
77
  x0 = out if not is_iterable else x0
56
78
  res = {key: arg, lock: out, 'vary': self._vary}
57
- res['w'] = self.model._convert(res['x'])[0]
79
+ res['w'] = self.actmodel._convert(res['x'])[0]
58
80
  text = (f"T={res['T']:.2f}", f"w={res['w']:.4f}", f"x={res['x']:.4f}")
59
81
  if self.show_progress:
60
- print(f'SLE ({self.mix_type}): ', *text)
82
+ print(f'SLE ({self.config}): ', *text)
61
83
  yield res
62
84
 
63
85
  def auto_solve(self, solver: Literal['root', 'fsolve'] = 'root'):
64
86
  if self.show_progress:
65
87
  print()
66
- print(f"Calculating SLE ({self.mix_type})...")
88
+ print(f"Calculating SLE ({self.config})...")
67
89
  # Start with varying 'w' until dTdw > THRESHOLD
68
90
  self._vary = 'w'
69
- args, x0 = self.initialize()
91
+ args = self.set_args()
92
+ x0 = self.set_x0()
70
93
  gen = self.solve_sle(args, x0, solver)
71
94
  previous = None
72
95
  for i, current in enumerate(gen):
@@ -77,10 +100,7 @@ class SLE:
77
100
  # Switch to varying 'T'
78
101
  self._vary = 'T'
79
102
  T0, x0 = current['T'], current['x']
80
- # # (Deprecated): If last dT>5, make the next dT=5 (from old version)
81
- # T1 = previous['T']; dT = T0 - T1
82
- # T0 += dT if abs(dT) < 5 else np.sign(dT) * 5
83
- args = self.set_args(xmax=T0)[1:] # exclude initial point (redundant)
103
+ args = self.set_args(xmax=T0)[1:] # exclude initial point
84
104
  gen = self.solve_sle(args, x0)
85
105
  yield from gen
86
106
 
@@ -92,7 +112,7 @@ class SLE:
92
112
  return np.exp(-self.gibbs_fusion(T))
93
113
 
94
114
  def real_mix(self, T, x):
95
- lngamma = self.model.lngamma(T, x)[0]
115
+ lngamma = self.actmodel.lngamma(T, x)[0]
96
116
  return np.log(x) + lngamma + self.gibbs_fusion(T)
97
117
 
98
118
  # Gibbs energy of fusion, i.e., the right-hand side of the solubility equation:
@@ -115,12 +135,12 @@ class SLE:
115
135
  # =============================================================================
116
136
  # HELPER FUNCTIONS
117
137
  # =============================================================================
118
- def initialize(self, xmin=None, xmax=None, dx=None, data=None, init=None):
119
- args = self.set_args(xmin, xmax, dx, data)
120
- x0 = self.set_x0(init)
121
- return args, x0
122
-
123
- def set_args(self, xmin=None, xmax=None, dx=None, data=None):
138
+ def set_args(self,
139
+ args: Optional[NumericOrFrame] = None,
140
+ xmin: Optional[float] = None,
141
+ xmax: Optional[float] = None,
142
+ dx: Optional[float] = None
143
+ ) -> NDArray[np.float64]:
124
144
  vary = self._vary
125
145
  # Determine argument values based on input data or generate
126
146
  # them based on range and type
@@ -132,7 +152,7 @@ class SLE:
132
152
  ma = defaults[vary]['max'] if xmax is None else xmax
133
153
  dx = defaults[vary]['step'] if dx is None else dx
134
154
 
135
- if data is None:
155
+ if args is None:
136
156
  if self.vary != 'auto': # auto_vary == False
137
157
  args = np.arange(ma, mi-dx, -dx)
138
158
  args[-1] = np.maximum(args[-1], mi)
@@ -145,17 +165,18 @@ class SLE:
145
165
  else: # vary == 'w'
146
166
  num = 16 if self.mix_type == 'ideal' else 21
147
167
  args = spacing(ma, mi, num, 'quadratic')
148
- else:
149
- args = data
150
- return args if vary != 'w' else self.model._convert(args, to='mole')
168
+ args = np.asarray(args)
169
+ args = args if vary != 'w' else self.actmodel._convert(args, to='mole')
170
+ return args
151
171
 
152
- def set_x0(self, init=None):
172
+ def set_x0(self, init: Optional[NumericOrFrame] = None) -> NDArray[np.float64]:
153
173
  vary = self._vary
154
174
  # Set up initial values based on the type of variable ('T' or 'w')
155
175
  if vary == 'T':
156
- x0 = 1. if init is None else self.model._convert(init, to='mole')
176
+ x0 = 1. if init is None else self.actmodel._convert(init, to='mole')
157
177
  else: # vary == 'w'
158
178
  x0 = self.solute.T_fus if init is None else init
179
+ x0 = np.asarray(x0)
159
180
  return x0
160
181
 
161
182
  def set_solver(self, solver: Literal['root', 'fsolve'] = 'root'):
@@ -205,3 +226,19 @@ class SLE:
205
226
  args = args[args != 1]
206
227
  return args, res
207
228
  return args, None
229
+
230
+ def _validate_arguments(self):
231
+ """Validate the arguments for the SLE class."""
232
+ # TODO: Insert case where both actmodel and mixture are provided (check if acmodel.mixture == mixture, if not raise warning)
233
+ if isinstance(self.actmodel, ActModel):
234
+ # If actmodel is an instance of ActModel
235
+ self.mixture: List[Component] = self.mixture or self.actmodel.mixture
236
+ elif isinstance(self.actmodel, type) and issubclass(self.actmodel, ActModel):
237
+ # If actmodel is a class (subclass of ActModel)
238
+ if self.mixture is None:
239
+ raise ValueError("Please provide a valid mixture:Mixture.")
240
+ self.actmodel: ActModel = self.actmodel(self.mixture)
241
+ else:
242
+ # If actmodel is neither an instance nor a subclass of ActModel
243
+ err = "'actmodel' must be an instance or a subclass of 'ActModel'"
244
+ raise ValueError(err)
@@ -21,8 +21,8 @@ def add_parameters(c, params):
21
21
  c.Mw = params['Mw'] # g/mol
22
22
  c.T_fus = params['T_fus'] if params['T_fus'] > 0 else np.nan # K
23
23
  c.H_fus = params['H_fus'] * KILOJOULE_TO_JOULE # J/mol
24
- c.Cp_fus_A = params['Cp_fus_a_fit'] # J/(mol K)
25
- c.Cp_fus_BT = params['Cp_fus_bT_fit'] # J/(mol K²)
24
+ c.Cp_fus_A = np.nan_to_num(params['Cp_fus_a_fit']) # J/(mol K)
25
+ c.Cp_fus_BT = np.nan_to_num(params['Cp_fus_bT_fit']) # J/(mol K²)
26
26
  c.v_298 = params['v298'] # cm³/mol
27
27
  c.v_hc = params['v_hc'] # cm³/mol
28
28
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cosmopharm
3
- Version: 0.0.22
3
+ Version: 0.0.23.1
4
4
  Summary: Predictive modeling for drug-polymer compatibility in pharmaceutical formulations using COSMO-SAC.
5
5
  Home-page: https://github.com/ivanantolo/cosmopharm,
6
6
  Author: Ivan Antolovic
@@ -38,13 +38,13 @@ Requires-Dist: matplotlib >=3.0 ; extra == 'examples'
38
38
 
39
39
  # COSMOPharm
40
40
 
41
+ Welcome to the COSMOPharm package, accompanying [our paper in *J. Chem. Theory Comput.*](https://dx.doi.org/10.1021/acs.jctc.9b01016). This project and its associated publication offer insights and a practical toolkit for researching drug-polymer and drug-solvent systems, aiming to provide the scientific community with the means to reproduce our findings and further the development of COSMO-SAC-based models.
42
+
41
43
  <p align="center">
42
44
  <!-- <img src="https://github.com/usnistgov/COSMOSAC/raw/master/JCTC2020.PNG" alt="TOC Figure" width="500"> -->
43
45
  <img src="https://github.com/usnistgov/COSMOSAC/raw/master/JCTC2020.PNG" alt="TOC Figure">
44
46
  </p>
45
47
 
46
- Welcome to the COSMOPharm package, accompanying [our paper in *J. Chem. Theory Comput.*](https://dx.doi.org/10.1021/acs.jctc.9b01016). This project and its associated publication offer insights and a practical toolkit for researching drug-polymer and drug-solvent systems, aiming to provide the scientific community with the means to reproduce our findings and further the development of COSMO-SAC-based models.
47
-
48
48
  ## About
49
49
 
50
50
  COSMOPharm is a Python package designed for predictive modeling of drug-polymer compatibility and drug-solubility in common solvents. It leverages the COSMO-SAC (Conductor-like Screening Model Segment Activity Coefficient) model, offering a robust platform for solubility, miscibility, and phase behavior prediction in drug formulation processes.
@@ -62,7 +62,7 @@ Install COSMOPharm with pip:
62
62
 
63
63
  `pip install cosmopharm`
64
64
 
65
- Ensure you have installed the cCOSMO library as per instructions on the [COSMOSAC GitHub page](https://github.com/usnistgov/COSMOSAC).
65
+ Ensure you have installed the `cCOSMO` library as per instructions on the [COSMOSAC GitHub page](https://github.com/usnistgov/COSMOSAC).
66
66
 
67
67
  ## Quick Start
68
68
 
@@ -0,0 +1,18 @@
1
+ cosmopharm/__init__.py,sha256=sdgLzbqylG8DDAJ5J96YiO4egn9xVJTx2uzaIZ8qj4g,68
2
+ cosmopharm/components.py,sha256=wEQQ0ZNOrFvG9SdhKAzBgqTbT6DtuoTreNBEdLw8Lm0,981
3
+ cosmopharm/actmodels/__init__.py,sha256=9iH67yrdSaf10Fj8LwRikUDUMeMxsvUHRPEaWc3384k,59
4
+ cosmopharm/actmodels/actmodel.py,sha256=69jluNR7Tb4BHwtkCQLI3NQ_0AEZcTDM69IdRPz9--w,5072
5
+ cosmopharm/actmodels/cosmo.py,sha256=tpYboI369rEOIkYgGqLyqgQSfKEgxwONULC4ZKDKIHI,5962
6
+ cosmopharm/equilibrium/__init__.py,sha256=5NsIbQEwELjeeoFEiWelnzHnhTzt5zsBh3r5icn_AIQ,44
7
+ cosmopharm/equilibrium/lle.py,sha256=Ru0_mso43vZNjy8ybdVQeweAsaZoa_yJiUBljn8qoNU,5472
8
+ cosmopharm/equilibrium/sle.py,sha256=E89JHAq-0XpJvSf2ybeVoNuV8OH55DHiJL6-8r33ggc,11187
9
+ cosmopharm/utils/__init__.py,sha256=qfUPovmZ9ukj6ZbTfndUOH6EX0ZrzRNjLZEDIVS8UvM,113
10
+ cosmopharm/utils/convert.py,sha256=V-7jY-Sb7C38N5bQcp1c27EOiVJfriP6zRbLAIKgrdE,2470
11
+ cosmopharm/utils/helpers.py,sha256=CXUTh3jVStHno_W_Z7o8RvQ6SveSjw_Ss31CkvfROfs,1460
12
+ cosmopharm/utils/lle_scanner.py,sha256=So9FCxLLcHmBkuF6zggMo3W3gFBocEmuRzyxVGy69JM,6587
13
+ cosmopharm/utils/spacing.py,sha256=vtM9b4wodpFGkZFGGLhiSXT51Zl6fNK2Og4oRcbLFH4,9222
14
+ cosmopharm-0.0.23.1.dist-info/LICENSE,sha256=25ZCycfBgonIECGYnZTy72eJVfzcHCEOz3DM9sTx7do,1162
15
+ cosmopharm-0.0.23.1.dist-info/METADATA,sha256=Th4N_9ntQqWDPlYnXewaQ9tH71Ru0BXLMJ2RInEodrI,5524
16
+ cosmopharm-0.0.23.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
17
+ cosmopharm-0.0.23.1.dist-info/top_level.txt,sha256=MGniVgvs1yq4sn6HQ7ErDVYV_g3st3Fs8TTFHOJVQ9I,11
18
+ cosmopharm-0.0.23.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.42.0)
2
+ Generator: bdist_wheel (0.43.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,18 +0,0 @@
1
- cosmopharm/__init__.py,sha256=sdgLzbqylG8DDAJ5J96YiO4egn9xVJTx2uzaIZ8qj4g,68
2
- cosmopharm/components.py,sha256=yHbhgFvLt9VN0jcAsLLRb0vS9FXM06yM7Pc7UgBli4M,946
3
- cosmopharm/actmodels/__init__.py,sha256=9iH67yrdSaf10Fj8LwRikUDUMeMxsvUHRPEaWc3384k,59
4
- cosmopharm/actmodels/actmodel.py,sha256=ZCOTdk1NgT0SwkdxFgYeToqlVVUzeibsVXOCxW9gDjg,3090
5
- cosmopharm/actmodels/cosmo.py,sha256=gkZ6-D0b1EEdxXvAp1dM81gSX6uxpLprK8NhnKy88m4,3434
6
- cosmopharm/equilibrium/__init__.py,sha256=5NsIbQEwELjeeoFEiWelnzHnhTzt5zsBh3r5icn_AIQ,44
7
- cosmopharm/equilibrium/lle.py,sha256=TvD4EV0bsbIO7PQdLnWWP0BvyiqmPz5kdeTyjLNtt4o,3343
8
- cosmopharm/equilibrium/sle.py,sha256=K1F2YQhK0GB35B0FuV-BXuY-D05apIeTpktLWvOul7o,9017
9
- cosmopharm/utils/__init__.py,sha256=qfUPovmZ9ukj6ZbTfndUOH6EX0ZrzRNjLZEDIVS8UvM,113
10
- cosmopharm/utils/convert.py,sha256=V-7jY-Sb7C38N5bQcp1c27EOiVJfriP6zRbLAIKgrdE,2470
11
- cosmopharm/utils/helpers.py,sha256=D2Zx9P0ywWWl2XQtzC6e5ek2CrudBIncfAIp_7vQnC0,1430
12
- cosmopharm/utils/lle_scanner.py,sha256=So9FCxLLcHmBkuF6zggMo3W3gFBocEmuRzyxVGy69JM,6587
13
- cosmopharm/utils/spacing.py,sha256=vtM9b4wodpFGkZFGGLhiSXT51Zl6fNK2Og4oRcbLFH4,9222
14
- cosmopharm-0.0.22.dist-info/LICENSE,sha256=25ZCycfBgonIECGYnZTy72eJVfzcHCEOz3DM9sTx7do,1162
15
- cosmopharm-0.0.22.dist-info/METADATA,sha256=01lyhRI79PhH9RiqUakGMjroAjPcO5oBij8LeC_FTjs,5520
16
- cosmopharm-0.0.22.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
17
- cosmopharm-0.0.22.dist-info/top_level.txt,sha256=MGniVgvs1yq4sn6HQ7ErDVYV_g3st3Fs8TTFHOJVQ9I,11
18
- cosmopharm-0.0.22.dist-info/RECORD,,