cosmoglint 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,397 @@
1
+ import sys
2
+ import os
3
+ from argparse import Namespace
4
+ import random
5
+ import numpy as np
6
+
7
+ import h5py
8
+
9
+ import torch
10
+
11
+ from tqdm import tqdm
12
+
13
+ from torch.utils.data import Dataset
14
+
15
+
16
+ def my_save_model(model, fname):
17
+ torch.save(model.state_dict(), fname)
18
+ print(f"# Model saved to {fname}")
19
+
20
+ def save_catalog_data(pos_list, value, args, output_fname):
21
+ if not isinstance(pos_list, list):
22
+ pos_list = [pos_list]
23
+
24
+ with open(output_fname, 'w') as f:
25
+ for i, v in enumerate(value):
26
+ f.write(f"{pos_list[0][i, 0]} {pos_list[0][i, 1]} ")
27
+ for pos in pos_list:
28
+ f.write(f"{pos[i, 2]} ")
29
+
30
+ f.write(f"{v}\n")
31
+
32
+ print(f"# Catalog saved to {output_fname}")
33
+
34
+ def save_intensity_data(intensity, args, output_fname):
35
+ args_dict = vars(args)
36
+ args_dict = {k: (v if v is not None else "None") for k, v in args_dict.items()}
37
+
38
+ if not isinstance(intensity, list):
39
+ intensity = [intensity]
40
+
41
+ with h5py.File(output_fname, 'w') as f:
42
+ for i, d in enumerate(intensity):
43
+ f.create_dataset(f'intensity{i}', data=d)
44
+ for key, value in args_dict.items():
45
+ f.attrs[key] = value
46
+ print(f"# Data cube saved as {output_fname}")
47
+
48
+ def namespace_to_dict(ns):
49
+ if isinstance(ns, Namespace):
50
+ return {k: namespace_to_dict(v) for k, v in vars(ns).items()}
51
+ elif isinstance(ns, dict):
52
+ return {k: namespace_to_dict(v) for k, v in ns.items()}
53
+ else:
54
+ return ns
55
+
56
+ def convert_to_log(val, val_min):
57
+ log_val = np.full_like(val, val_min)
58
+ mask = val > 10**val_min
59
+ log_val[mask] = np.log10(val[mask])
60
+ return log_val
61
+
62
+ def convert_to_log_with_sign(val):
63
+ return np.sign(val) * np.log10(np.abs(val) + 1)
64
+
65
+ def inverse_convert_to_log_with_sign(val):
66
+ return np.sign(val) * ( 10 ** np.abs( val ) - 1 )
67
+
68
+ def normalize(x, key, norm_param_dict, inverse=False, convert=True):
69
+ """
70
+ x: array-like
71
+ key: str
72
+ norm_param_dict: dict
73
+ e.g., {
74
+ "GroupMass": {"min": 10, "max": 15, "norm": "log"},
75
+ ...
76
+ }
77
+ inverse: bool
78
+ If True, perform inverse normalization.
79
+ convert: bool
80
+ If True, convert to/from log scale based on norm_param_dict.
81
+ """
82
+
83
+ x = np.array(x)
84
+
85
+ if norm_param_dict is not None:
86
+ xmin = norm_param_dict[key]["min"]
87
+ xmax = norm_param_dict[key]["max"]
88
+ norm = norm_param_dict[key]["norm"]
89
+
90
+ if inverse:
91
+ x = x * ( xmax - xmin ) + xmin
92
+ if convert:
93
+ if norm == "log":
94
+ x = 10 ** x
95
+ elif norm == "log_with_sign":
96
+ x = inverse_convert_to_log_with_sign(x)
97
+ else:
98
+ if convert:
99
+ if norm == "log":
100
+ x = convert_to_log(x, xmin)
101
+ elif norm == "log_with_sign":
102
+ x = convert_to_log_with_sign(x)
103
+ x = ( x - xmin ) / ( xmax - xmin )
104
+
105
+ return x
106
+
107
+ def load_global_params(global_param_file, global_features, norm_param_dict=None):
108
+
109
+ if global_features is None:
110
+ global_params = None
111
+
112
+ else:
113
+ if global_param_file is None:
114
+ raise ValueError("global_param_file must be specified when global_features is provided.")
115
+
116
+ if not isinstance(global_param_file, list):
117
+ global_param_file = [global_param_file]
118
+
119
+ global_params = []
120
+ for f in global_param_file:
121
+ data = np.genfromtxt(f, names=True, dtype=None, encoding="utf-8")
122
+ global_params_now = np.vstack([data[name] for name in global_features]).T.astype(np.float32)
123
+ global_params.append(global_params_now)
124
+
125
+ global_params = np.vstack(global_params)
126
+
127
+ for i, key in enumerate(global_features):
128
+ global_params[...,i] = normalize(global_params[...,i], key, norm_param_dict)
129
+
130
+ return global_params # (ndata, num_features_global)
131
+
132
+ def load_halo_data(
133
+ file_path,
134
+ input_features,
135
+ output_features,
136
+ norm_param_dict=None,
137
+ max_length=10,
138
+ sort=True,
139
+ ndata=None,
140
+ exclude_ratio=0.0,
141
+ use_excluded_region=False,
142
+ ):
143
+
144
+ def load_values(f, key):
145
+ if key not in f:
146
+ raise ValueError(f"Key '{key}' not found in the file.")
147
+
148
+ data = f[key][:]
149
+ return data
150
+
151
+ num_features_in = len(input_features)
152
+ num_features_out = len(output_features)
153
+
154
+ with h5py.File(file_path, "r") as f:
155
+
156
+ # Load input features
157
+ source_list = []
158
+ for feature in input_features:
159
+ x = load_values(f, feature)
160
+ source_list.append(x)
161
+
162
+ source = np.stack(source_list, axis=1) # (N, num_features_in)
163
+ for i, key in enumerate(input_features):
164
+ source[:,i] = normalize(source[:,i], key, norm_param_dict)
165
+
166
+ mask = np.ones(len(source), dtype=bool)
167
+ for i in range(num_features_in):
168
+ mask = mask & ( source[:,i] > 0 )
169
+
170
+ if exclude_ratio > 0:
171
+ boxsize = f.attrs["BoxSize"] # [kpc/h]
172
+ halo_pos = f["GroupPos"][:] # [kpc/h]
173
+ mask_exclude = (halo_pos[:,0] > boxsize * (1.-exclude_ratio)) \
174
+ & (halo_pos[:,1] > boxsize * (1.-exclude_ratio)) \
175
+ & (halo_pos[:,2] > boxsize * (1.-exclude_ratio))
176
+
177
+ if use_excluded_region:
178
+ print("# Using excluded region of size ({} * BoxSize)^3".format(exclude_ratio))
179
+ mask = mask & mask_exclude
180
+ else:
181
+ print("# Exclude halos in the corner of size ({} * BoxSize)^3".format(exclude_ratio))
182
+ print("# The excluded region is {:.2f} % of the entire volume".format(100.0 * (exclude_ratio**3)))
183
+ mask = mask & (~mask_exclude)
184
+
185
+ if mask.sum() == 0:
186
+ print("# No halo is found in {}".format(file_path))
187
+ return torch.empty((0, num_features_in), dtype=torch.float32), []
188
+
189
+ # Load output features
190
+ target_list = []
191
+ for feature in output_features:
192
+ y = load_values(f, feature)
193
+ target_list.append(y)
194
+
195
+ target = np.stack(target_list, axis=1) # (N, num_features_out)
196
+ for i, key in enumerate(output_features):
197
+ target[:,i] = normalize(target[:,i], key, norm_param_dict)
198
+
199
+ num_subgroups = f["GroupNsubs"][:]
200
+
201
+ offset = 0
202
+ y_list = []
203
+ for j in range(len(source)):
204
+ start = offset
205
+ end = start + num_subgroups[j]
206
+ offset = end
207
+
208
+ if not mask[j]:
209
+ continue
210
+
211
+ if num_subgroups[j] == 0:
212
+ y_j = np.zeros((1, num_features_out)) # handle empty subgroups
213
+ else:
214
+ y_j = target[start:end, :]
215
+
216
+ if sort:
217
+ sorted_indices = [0] + sorted(range(1, len(y_j)), key=lambda k: y_j[k,0], reverse=True)
218
+ y_j = y_j[sorted_indices]
219
+
220
+ y_j = y_j[:max_length] # truncate
221
+ y_j = torch.tensor(y_j, dtype=torch.float32)
222
+ y_list.append(y_j)
223
+
224
+ x = source[mask]
225
+ x = torch.tensor(x, dtype=torch.float32)
226
+
227
+ if ndata is not None:
228
+ x = x[:ndata]
229
+ y_list = y_list[:ndata]
230
+
231
+ return x, y_list
232
+
233
+ class MyDataset(Dataset):
234
+ def __init__(
235
+ self,
236
+ path,
237
+ input_features,
238
+ output_features,
239
+ global_params=None,
240
+ norm_param_dict=None,
241
+ max_length=10,
242
+ sort=True,
243
+ ndata=None,
244
+ exclude_ratio=0.0,
245
+ use_excluded_region=False,
246
+ use_flat_representation=False,
247
+ show_pbar=True,
248
+ ):
249
+
250
+ if not isinstance(path, list):
251
+ path = [path]
252
+
253
+ if global_params is not None:
254
+ if len(global_params) != len(path):
255
+ raise ValueError("The number of global parameter sets must match the number of data files")
256
+
257
+ x = []
258
+ self.y = []
259
+ self.g = []
260
+
261
+ plist = path
262
+ if len(path) < 20:
263
+ verbose = True
264
+ else:
265
+ verbose = False
266
+ if show_pbar:
267
+ plist = tqdm(plist, file=sys.stderr)
268
+ print("# Loading halo data from {} to {} ({} files)".format(path[0], path[-1], len(path)))
269
+
270
+ for i, p in enumerate(plist):
271
+ if verbose:
272
+ print(f"# Loading halo data from {p}")
273
+
274
+ x_tmp, y_tmp = load_halo_data(p, input_features, output_features, norm_param_dict=norm_param_dict, max_length=max_length, sort=sort, ndata=ndata, exclude_ratio=exclude_ratio, use_excluded_region=use_excluded_region)
275
+ x.append(x_tmp)
276
+ self.y = self.y + y_tmp
277
+
278
+ if global_params is not None:
279
+ global_param = global_params[i]
280
+ g_tmp = np.repeat(global_param[None, :], len(x_tmp), axis=0) # (Nhalo, num_features_global)
281
+ else:
282
+ g_tmp = np.zeros((len(x_tmp), 1)) # dummy (Nhalo, 1)
283
+
284
+ self.g.append( g_tmp )
285
+
286
+ self.x = torch.cat(x, dim=0)
287
+
288
+ if len(self.x) == 0:
289
+ raise ValueError("No halo is found.")
290
+
291
+ self.g = np.vstack(self.g)
292
+ self.g = torch.tensor(self.g, dtype=torch.float32)
293
+
294
+ _, num_params = (self.y[0]).shape
295
+
296
+ self.y_padded = torch.zeros(len(self.x), max_length, num_params)
297
+ self.mask = torch.zeros(len(self.x), max_length, num_params, dtype=torch.bool)
298
+
299
+ for i, y_i in enumerate(self.y):
300
+ length = len(y_i)
301
+ self.y_padded[i, :length, :] = y_i[:max_length]
302
+ self.mask[i, :length+1, :] = True # use the last + 1 value to learn when to stop
303
+
304
+ if use_flat_representation:
305
+ self.y_padded = self.y_padded.reshape(len(self.y_padded), -1, 1) # (Nhalo, max_length * output_features, 1)
306
+ self.mask = self.mask.reshape(len(self.mask), -1, 1) # (Nhalo, max_length * output_features, 1)
307
+
308
+ def __len__(self):
309
+ return len(self.x)
310
+
311
+ def __getitem__(self, idx):
312
+ batch = {
313
+ "context": self.x[idx],
314
+ "global_context": self.g[idx],
315
+ "target": self.y_padded[idx],
316
+ "mask": self.mask[idx]
317
+ }
318
+ return batch
319
+
320
+ def load_lightcone_data(input_fname, cosmo):
321
+ print(f"# Load {input_fname}")
322
+
323
+ if "pinocchio" in input_fname:
324
+ if "old_version" in input_fname:
325
+ M, theta, phi, _, redshift_obs, redshift_real = load_old_plc(input_fname)
326
+ mass = M
327
+ else:
328
+ import cosmoglint.utils.ReadPinocchio5 as rp
329
+ myplc = rp.plc(input_fname)
330
+
331
+ mass = myplc.data["Mass"]
332
+ theta = myplc.data["theta"] # [arcsec]
333
+ phi = myplc.data["phi"]
334
+
335
+ redshift_obs = myplc.data["obsz"]
336
+ redshift_real = myplc.data["truez"]
337
+
338
+ import astropy.units as u
339
+ hlittle = cosmo.H(0).to(u.km/u.s/u.Mpc).value / 100.0
340
+ mass /= hlittle # [Msun]
341
+
342
+ theta = ( 90. - theta ) * 3600 # [arcsec]
343
+ pos_x = theta * np.cos( phi * np.pi / 180. ) # [arcsec]
344
+ pos_y = theta * np.sin( phi * np.pi / 180. ) # [arcsec]
345
+
346
+ print("# Minimum log mass in catalog: {:.5f}".format(np.min(np.log10(mass))))
347
+ print("# Maximum pos: ({:.3f}, {:.3f}) arcsec".format(np.max(pos_x), np.max(pos_y)))
348
+ print("# Minimum pos: ({:.3f}, {:.3f}) arcsec".format(np.min(pos_x), np.min(pos_y)))
349
+ print("# Redshift: {:.3f} - {:.3f}".format(np.min(redshift_real), np.max(redshift_real)))
350
+ print("# Number of halos: {}".format(len(mass)))
351
+
352
+ else:
353
+ raise ValueError("Unknown input file format")
354
+
355
+ return mass, pos_x, pos_y, redshift_obs, redshift_real
356
+
357
+
358
+ def load_old_plc(filename):
359
+ import struct
360
+
361
+ plc_struct_format = "<Q d ddd ddd ddddd" # Q=uint64, d=double, little-endian
362
+ plc_size = struct.calcsize(plc_struct_format)
363
+
364
+ M_list = []
365
+ th_list = []
366
+ ph_list = []
367
+ vl_list = []
368
+ zo_list = []
369
+ z_list = []
370
+ with open(filename, "rb") as f:
371
+ while True:
372
+ dummy_bytes = f.read(4)
373
+ if not dummy_bytes:
374
+ break # EOF
375
+ dummy = struct.unpack("<i", dummy_bytes)[0]
376
+
377
+ plc_bytes = f.read(dummy)
378
+ if len(plc_bytes) != dummy:
379
+ break # 不完全な読み込み
380
+
381
+ data = struct.unpack(plc_struct_format, plc_bytes)
382
+ (
383
+ id, z, x1, x2, x3, v1, v2, v3,
384
+ M, th, ph, vl, zo
385
+ ) = data
386
+
387
+ dummy2_bytes = f.read(4)
388
+ dummy2 = struct.unpack("<i", dummy2_bytes)[0]
389
+
390
+ M_list.append(M)
391
+ th_list.append(th)
392
+ ph_list.append(ph)
393
+ vl_list.append(vl)
394
+ zo_list.append(zo)
395
+ z_list.append(z)
396
+
397
+ return np.array(M_list), np.array(th_list), np.array(ph_list), np.array(vl_list), np.array(zo_list), np.array(z_list)
@@ -0,0 +1,164 @@
1
+ Metadata-Version: 2.4
2
+ Name: cosmoglint
3
+ Version: 1.0.0
4
+ Summary: Transformer-based generative model for galaxies
5
+ Author: Kana Moriwaki
6
+ License: MIT License
7
+
8
+ Copyright (c) 2026 Kana Moriwaki
9
+
10
+ Permission is hereby granted, free of charge, to any person obtaining a copy
11
+ of this software and associated documentation files (the "Software"), to deal
12
+ in the Software without restriction, including without limitation the rights
13
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14
+ copies of the Software, and to permit persons to whom the Software is
15
+ furnished to do so, subject to the following conditions:
16
+
17
+ The above copyright notice and this permission notice shall be included in all
18
+ copies or substantial portions of the Software.
19
+
20
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
23
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26
+ SOFTWARE.
27
+
28
+ Project-URL: Homepage, https://github.com/knmoriwaki/cosmoglint
29
+ Requires-Python: >=3.9
30
+ Description-Content-Type: text/markdown
31
+ License-File: LICENSE
32
+ Requires-Dist: numpy
33
+ Requires-Dist: tqdm
34
+ Requires-Dist: h5py
35
+ Requires-Dist: nflows
36
+ Requires-Dist: astropy
37
+ Dynamic: license-file
38
+
39
+ # CosmoGLINT: Cosmological Generative model for Line INtensity mapping with Transformer
40
+
41
+ This repository includes:
42
+
43
+ - cosmoglint, a package of Transformer-based models that generate galaxy properties from halo mass.
44
+ - Scripts for training and mock catalog generation.
45
+ - Example notebooks for result visualization.
46
+
47
+ Models trained with TNG300-1 at z = 0.5 - 6 and generated data are available at [Google Drive](https://drive.google.com/drive/folders/1IFje9tNRf4Dr3NufqzlDdGMFTEDpsm35?usp=share_link).
48
+
49
+ For detailed usage and options, see [DOCUMENTATION](./DOCUMENTATION.md).
50
+
51
+ ---
52
+
53
+ ## Installation
54
+
55
+ Python>=3.9 is required.
56
+
57
+ This package requires PyTorch.
58
+ Please install PyTorch first following https://pytorch.org
59
+
60
+ Install package and from local clone:
61
+
62
+ ```bash
63
+ git clone https://github.com/knmoriwaki/cosmoglint.git
64
+ cd cosmoglint
65
+ pip install .
66
+ ```
67
+
68
+ If you only need the `cosmoglint` package (e.g., to import it in your own code), you can install it directly:
69
+
70
+ ```bash
71
+ pip install git+https://github.com/knmoriwaki/cosmoglint.git
72
+ ```
73
+
74
+
75
+ Several libraries needs to be additionally installed to run the scripts and notebooks:
76
+ ```bash
77
+ pip install -r requirements.txt
78
+ ```
79
+
80
+ ## Training
81
+
82
+ Example:
83
+ ```bash
84
+ python train_transformer.py --data_path [data_path] --norm_param_file [norm_param_file]
85
+ ```
86
+
87
+ Options:
88
+ - `--data_path`: Path(s) to the training data. Data is an hdf5 file that contains properties of halos and galaxies. In addition to those for input and output features, the number of galaxies in each halo (`GroupNsubs`) should be provided. Multiple files can be passed.
89
+ - `--norm_param_file`: Path to the json file that specifies the normalization settings. Each key (e.g., `HaloMass`) maps to a dictionary with `min` / `max` and `norm`. If `norm` is `"log"` or `"log_with_sign"`, the `min` / `max` normalization is applied after the log conversion.
90
+ - `--input_features`: List of the input properties (default: `["GroupMass"]`)
91
+ - `--output_features`: List of the output properties (default: `["SubhaloSFR", "SubhaloDist", "SubhaloVrad", "SubhaloVtan"]`)
92
+ - `--max_length`: Maximum number of galaxies (sequence length) per halo (default: 30).
93
+ - `--use_flat_representation`: If true, use flattened point features (B, N * M). If false, keep (B, N, M). Use `--no-use_flat_representation` to set it to false (default: true).
94
+
95
+ ## Create mock data cube
96
+
97
+ Example:
98
+ ```bash
99
+ python create_data_cube.py --input_fname [input_fname] --model_dir [model_dir]
100
+ ```
101
+
102
+ Options:
103
+ - `--input_fname`: Path to the halo catalog. Text file that contains halo mass [Msun] in log scale (1st column), comving positions [Mpc/h] (2nd to 4th columns), and velocities [km/s] (5th to 8th columns) and catalog in [Pinocchio](https://github.com/pigimonaco/Pinocchio) format are supported.
104
+ - `--model_dir`: Path to a directory containing the trained model (`model.pth` and `args.json`). If not set, column 7 of the input file is used as intensity.
105
+ - `--boxsize`: Size of the simulation box in comoving units [Mpc/h] (default: 100.0).
106
+ - `--redshift_space`: If set, positions are converted to redshift space using halo velocities.
107
+ - `--gen_both`: If set, generates both real-space and redshift-space data cubes.
108
+ - `--npix`: Number of pixels in the x and y directions for the data cube (default: 100).
109
+ - `--npix_z`: Number of pixels in the z direction (default: 90).
110
+
111
+ ## Create lightcone
112
+
113
+ Example:
114
+ ```bash
115
+ python create_lightcone.py --input_fname [input_fname] --model_dir [model_dir] --model_config_file [model_config_file]
116
+ ```
117
+
118
+ Example of `model_config_file`:
119
+ ```json
120
+ {
121
+ "33": ["transformer1_33_ep40_bs512_w0.02", 2.002],
122
+ "21": ["transformer1_21_ep60_bs512_w0.02", 4.008]
123
+ }
124
+ ```
125
+
126
+ - `--input_fname`: Path to the lightcone halo catalog. Pinocchio format is supported.
127
+ - `--output_fname`: Output filename (HDF5 format).
128
+ - `--model_dir`: Path to a directory containing the trained models.
129
+ - `--model_config_file`: Path to a JSON file that contains the names of the trained models to be used for each redshift bin. The JSON file is a dictionary where each key is a stringified snapshot ID, and the value is a list containing the model directory relative to `model_dir` and the redshift.
130
+ - `--redshift_space`: If set, generate output in redshift space.
131
+ - `redshift_min`, `--redshift_max`: Redshift range for the lightcone.
132
+ - `dz`: Redshift bin width. Indicates dlogz if `--use_logz` is given.
133
+ - `use_logz`: Use dlogz instead of dz for redshift binning.
134
+ - `--side_length`, `--angular_resolution`: Angular size and resolution (arcsec) of the simulated map.
135
+ - `--gen_catalog`: If set, generate a galaxy catalog with SFR greater than --catalog_threshold.
136
+ - `--catalog_threshold`: SFR threshold for inclusion in the catalog.
137
+
138
+ ## Visualization
139
+
140
+ Example Jupyter notebooks are available in the `notebooks/` directory:
141
+
142
+ - `plot_transformer.ipynb`: visualize training results
143
+ - `plot_data_cube.ipynb`: visualize created data cube
144
+ - `plot_lightcone.ipynb`: visualize lightcone data
145
+
146
+
147
+ ## Citation
148
+
149
+ If you use CosmoGLINT in your research, please cite [Moriwaki et al. 2025](https://arxiv.org/abs/2506.16843)
150
+
151
+ ```
152
+ @ARTICLE{CosmoGLINT,
153
+ title = {CosmoGLINT: Cosmological Generative Model for Line Intensity Mapping with Transformer},
154
+ author = {{Moriwaki}, Kana and {Jun}, Rui Lan and {Osato}, Ken and {Yoshida}, Naoki},
155
+ journal = {arXiv preprints},
156
+ year = 2025,
157
+ month = jun,
158
+ eid = {arXiv:2506.16843},
159
+ doi = {10.48550/arXiv.2506.16843},
160
+ archivePrefix = {arXiv},
161
+ eprint = {2506.16843},
162
+ primaryClass = {astro-ph.CO}
163
+ }
164
+ ```
@@ -0,0 +1,14 @@
1
+ cosmoglint/__init__.py,sha256=Aj77VL1d5Mdku7sgCgKQmPuYavPpAHuZuJcy6bygQZE,21
2
+ cosmoglint/model/__init__.py,sha256=gmiP1R51lrK8dSjjAnLXHshGllnXa1SV-dhsSqqiqis,244
3
+ cosmoglint/model/transformer.py,sha256=woFgnk_uWKZEl6EIQX6PBU0ERtUKSk1W_2_sPjYujnM,21949
4
+ cosmoglint/model/transformer_nf.py,sha256=MXMYdj1KY1dZgmEzCeFxWp_QdqgHO7Sc3tDguoNG7P0,14459
5
+ cosmoglint/utils/ReadPinocchio5.py,sha256=17v3GFydE-Ha45TohwtUsU60xmGzfuZ1sNjPJEzUguI,39714
6
+ cosmoglint/utils/__init__.py,sha256=r19103JGuFfnKqPa0Oi0jmeAeKM5darGcTEY-_wLzpg,206
7
+ cosmoglint/utils/cosmology_utils.py,sha256=Ergv-REB-0LERfbXc0AnB4KJTLdUOCeVmze2u3H4KUE,7606
8
+ cosmoglint/utils/generation_utils.py,sha256=cnMVTjZdHaefKKBUpEFL7BSN2pSEyiQgyR48MdMqy9c,15301
9
+ cosmoglint/utils/io_utils.py,sha256=XUF7znHmGSZ8wQpOPk-KqNJvYN6-0rU8NE8mEtO1q2I,13068
10
+ cosmoglint-1.0.0.dist-info/licenses/LICENSE,sha256=xMgUlRtQRou9wDsNl4o8Op0w_VHlQmhY_uPwFCl7SWo,1070
11
+ cosmoglint-1.0.0.dist-info/METADATA,sha256=LJu3TSkCsnAqenZZWKKNYk0NNUVZGDIQWnJHBGO_kR0,7140
12
+ cosmoglint-1.0.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
13
+ cosmoglint-1.0.0.dist-info/top_level.txt,sha256=gKGGdFf41h3PsCSMtVYESsfUqfxNLsYXSCe3tQKiPxw,11
14
+ cosmoglint-1.0.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.2)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Kana Moriwaki
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1 @@
1
+ cosmoglint