corp-extractor 0.5.0__py3-none-any.whl → 0.9.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {corp_extractor-0.5.0.dist-info → corp_extractor-0.9.3.dist-info}/METADATA +228 -30
- corp_extractor-0.9.3.dist-info/RECORD +79 -0
- statement_extractor/__init__.py +1 -1
- statement_extractor/cli.py +2030 -24
- statement_extractor/data/statement_taxonomy.json +6949 -1159
- statement_extractor/database/__init__.py +52 -0
- statement_extractor/database/embeddings.py +186 -0
- statement_extractor/database/hub.py +428 -0
- statement_extractor/database/importers/__init__.py +32 -0
- statement_extractor/database/importers/companies_house.py +559 -0
- statement_extractor/database/importers/companies_house_officers.py +431 -0
- statement_extractor/database/importers/gleif.py +561 -0
- statement_extractor/database/importers/sec_edgar.py +392 -0
- statement_extractor/database/importers/sec_form4.py +512 -0
- statement_extractor/database/importers/wikidata.py +1120 -0
- statement_extractor/database/importers/wikidata_dump.py +1951 -0
- statement_extractor/database/importers/wikidata_people.py +1130 -0
- statement_extractor/database/models.py +254 -0
- statement_extractor/database/resolver.py +245 -0
- statement_extractor/database/store.py +3034 -0
- statement_extractor/document/__init__.py +62 -0
- statement_extractor/document/chunker.py +410 -0
- statement_extractor/document/context.py +171 -0
- statement_extractor/document/deduplicator.py +171 -0
- statement_extractor/document/html_extractor.py +246 -0
- statement_extractor/document/loader.py +303 -0
- statement_extractor/document/pipeline.py +388 -0
- statement_extractor/document/summarizer.py +195 -0
- statement_extractor/extractor.py +1 -1
- statement_extractor/models/__init__.py +19 -3
- statement_extractor/models/canonical.py +44 -1
- statement_extractor/models/document.py +308 -0
- statement_extractor/models/labels.py +47 -18
- statement_extractor/models/qualifiers.py +51 -3
- statement_extractor/models/statement.py +39 -15
- statement_extractor/models.py +1 -1
- statement_extractor/pipeline/config.py +6 -11
- statement_extractor/pipeline/context.py +5 -5
- statement_extractor/pipeline/orchestrator.py +90 -121
- statement_extractor/pipeline/registry.py +52 -46
- statement_extractor/plugins/__init__.py +20 -8
- statement_extractor/plugins/base.py +348 -78
- statement_extractor/plugins/extractors/gliner2.py +38 -28
- statement_extractor/plugins/labelers/taxonomy.py +18 -5
- statement_extractor/plugins/labelers/taxonomy_embedding.py +17 -6
- statement_extractor/plugins/pdf/__init__.py +10 -0
- statement_extractor/plugins/pdf/pypdf.py +291 -0
- statement_extractor/plugins/qualifiers/__init__.py +11 -0
- statement_extractor/plugins/qualifiers/companies_house.py +14 -3
- statement_extractor/plugins/qualifiers/embedding_company.py +422 -0
- statement_extractor/plugins/qualifiers/gleif.py +14 -3
- statement_extractor/plugins/qualifiers/person.py +588 -14
- statement_extractor/plugins/qualifiers/sec_edgar.py +14 -3
- statement_extractor/plugins/scrapers/__init__.py +10 -0
- statement_extractor/plugins/scrapers/http.py +236 -0
- statement_extractor/plugins/splitters/t5_gemma.py +176 -75
- statement_extractor/plugins/taxonomy/embedding.py +193 -46
- statement_extractor/plugins/taxonomy/mnli.py +16 -4
- statement_extractor/scoring.py +8 -8
- corp_extractor-0.5.0.dist-info/RECORD +0 -55
- statement_extractor/plugins/canonicalizers/__init__.py +0 -17
- statement_extractor/plugins/canonicalizers/base.py +0 -9
- statement_extractor/plugins/canonicalizers/location.py +0 -219
- statement_extractor/plugins/canonicalizers/organization.py +0 -230
- statement_extractor/plugins/canonicalizers/person.py +0 -242
- {corp_extractor-0.5.0.dist-info → corp_extractor-0.9.3.dist-info}/WHEEL +0 -0
- {corp_extractor-0.5.0.dist-info → corp_extractor-0.9.3.dist-info}/entry_points.txt +0 -0
statement_extractor/cli.py
CHANGED
|
@@ -11,6 +11,7 @@ Usage:
|
|
|
11
11
|
import json
|
|
12
12
|
import logging
|
|
13
13
|
import sys
|
|
14
|
+
from pathlib import Path
|
|
14
15
|
from typing import Optional
|
|
15
16
|
|
|
16
17
|
import click
|
|
@@ -42,16 +43,27 @@ def _configure_logging(verbose: bool) -> None:
|
|
|
42
43
|
"statement_extractor.plugins.extractors.gliner2",
|
|
43
44
|
"statement_extractor.plugins.splitters",
|
|
44
45
|
"statement_extractor.plugins.labelers",
|
|
46
|
+
"statement_extractor.plugins.scrapers",
|
|
47
|
+
"statement_extractor.plugins.scrapers.http",
|
|
48
|
+
"statement_extractor.plugins.pdf",
|
|
49
|
+
"statement_extractor.plugins.pdf.pypdf",
|
|
50
|
+
"statement_extractor.document",
|
|
51
|
+
"statement_extractor.document.loader",
|
|
52
|
+
"statement_extractor.document.html_extractor",
|
|
53
|
+
"statement_extractor.document.pipeline",
|
|
54
|
+
"statement_extractor.document.chunker",
|
|
45
55
|
]:
|
|
46
56
|
logging.getLogger(logger_name).setLevel(level)
|
|
47
57
|
|
|
48
58
|
# Suppress noisy third-party loggers
|
|
49
59
|
for noisy_logger in [
|
|
60
|
+
"httpcore",
|
|
50
61
|
"httpcore.http11",
|
|
51
62
|
"httpcore.connection",
|
|
52
63
|
"httpx",
|
|
53
64
|
"urllib3",
|
|
54
65
|
"huggingface_hub",
|
|
66
|
+
"asyncio",
|
|
55
67
|
]:
|
|
56
68
|
logging.getLogger(noisy_logger).setLevel(logging.WARNING)
|
|
57
69
|
|
|
@@ -74,14 +86,17 @@ def main():
|
|
|
74
86
|
\b
|
|
75
87
|
Commands:
|
|
76
88
|
split Extract sub-statements from text (simple, fast)
|
|
77
|
-
pipeline Run the full
|
|
89
|
+
pipeline Run the full 6-stage extraction pipeline
|
|
90
|
+
document Process documents with chunking and citations
|
|
78
91
|
plugins List or inspect available plugins
|
|
92
|
+
db Manage entity/organization embedding database
|
|
79
93
|
|
|
80
94
|
\b
|
|
81
95
|
Examples:
|
|
82
96
|
corp-extractor split "Apple announced a new iPhone."
|
|
83
97
|
corp-extractor split -f article.txt --json
|
|
84
98
|
corp-extractor pipeline "Apple CEO Tim Cook announced..." --stages 1-3
|
|
99
|
+
corp-extractor document process report.txt --title "Annual Report"
|
|
85
100
|
corp-extractor plugins list
|
|
86
101
|
"""
|
|
87
102
|
pass
|
|
@@ -354,7 +369,7 @@ def pipeline_cmd(
|
|
|
354
369
|
if enabled_plugins:
|
|
355
370
|
enabled_plugin_set = {p.strip() for p in enabled_plugins.split(",") if p.strip()}
|
|
356
371
|
|
|
357
|
-
disabled_plugin_set =
|
|
372
|
+
disabled_plugin_set = None
|
|
358
373
|
if disable_plugins:
|
|
359
374
|
disabled_plugin_set = {p.strip() for p in disable_plugins.split(",") if p.strip()}
|
|
360
375
|
|
|
@@ -365,13 +380,15 @@ def pipeline_cmd(
|
|
|
365
380
|
if not quiet:
|
|
366
381
|
click.echo("Default predicates disabled - using entity extraction only", err=True)
|
|
367
382
|
|
|
368
|
-
# Create config
|
|
369
|
-
|
|
370
|
-
enabled_stages
|
|
371
|
-
enabled_plugins
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
383
|
+
# Create config - only pass disabled_plugins if user explicitly specified, otherwise use defaults
|
|
384
|
+
config_kwargs: dict = {
|
|
385
|
+
"enabled_stages": enabled_stages,
|
|
386
|
+
"enabled_plugins": enabled_plugin_set,
|
|
387
|
+
"extractor_options": extractor_options,
|
|
388
|
+
}
|
|
389
|
+
if disabled_plugin_set is not None:
|
|
390
|
+
config_kwargs["disabled_plugins"] = disabled_plugin_set
|
|
391
|
+
config = PipelineConfig(**config_kwargs)
|
|
375
392
|
|
|
376
393
|
# Run pipeline
|
|
377
394
|
try:
|
|
@@ -422,7 +439,7 @@ def _print_pipeline_json(ctx):
|
|
|
422
439
|
"""Print pipeline results as JSON."""
|
|
423
440
|
output = {
|
|
424
441
|
"statement_count": ctx.statement_count,
|
|
425
|
-
"
|
|
442
|
+
"split_sentences": [s.model_dump() for s in ctx.split_sentences],
|
|
426
443
|
"statements": [s.model_dump() for s in ctx.statements],
|
|
427
444
|
"labeled_statements": [stmt.as_dict() for stmt in ctx.labeled_statements],
|
|
428
445
|
"timings": ctx.stage_timings,
|
|
@@ -455,9 +472,10 @@ def _print_pipeline_triples(ctx):
|
|
|
455
472
|
elif ctx.statements:
|
|
456
473
|
for stmt in ctx.statements:
|
|
457
474
|
click.echo(f"{stmt.subject.text}\t{stmt.predicate}\t{stmt.object.text}")
|
|
458
|
-
elif ctx.
|
|
459
|
-
|
|
460
|
-
|
|
475
|
+
elif ctx.split_sentences:
|
|
476
|
+
# Stage 1 only output - just show the split sentences (no triples yet)
|
|
477
|
+
for sentence in ctx.split_sentences:
|
|
478
|
+
click.echo(sentence.text)
|
|
461
479
|
|
|
462
480
|
|
|
463
481
|
def _print_pipeline_table(ctx, verbose: bool):
|
|
@@ -511,20 +529,16 @@ def _print_pipeline_table(ctx, verbose: bool):
|
|
|
511
529
|
|
|
512
530
|
click.echo("-" * 80)
|
|
513
531
|
|
|
514
|
-
elif ctx.
|
|
515
|
-
click.echo(f"\
|
|
532
|
+
elif ctx.split_sentences:
|
|
533
|
+
click.echo(f"\nSplit into {len(ctx.split_sentences)} atomic sentence(s):\n")
|
|
516
534
|
click.echo("-" * 80)
|
|
517
535
|
|
|
518
|
-
for i,
|
|
519
|
-
|
|
520
|
-
click.echo(f"
|
|
521
|
-
click.echo(f" {triple.object_text}")
|
|
536
|
+
for i, sentence in enumerate(ctx.split_sentences, 1):
|
|
537
|
+
text_preview = sentence.text[:100] + "..." if len(sentence.text) > 100 else sentence.text
|
|
538
|
+
click.echo(f"{i}. {text_preview}")
|
|
522
539
|
|
|
523
540
|
if verbose:
|
|
524
|
-
click.echo(f" Confidence: {
|
|
525
|
-
if triple.source_sentence:
|
|
526
|
-
source = triple.source_sentence[:60] + "..." if len(triple.source_sentence) > 60 else triple.source_sentence
|
|
527
|
-
click.echo(f" Source: \"{source}\"")
|
|
541
|
+
click.echo(f" Confidence: {sentence.confidence:.2f}")
|
|
528
542
|
|
|
529
543
|
click.echo("-" * 80)
|
|
530
544
|
|
|
@@ -629,12 +643,2004 @@ def _load_all_plugins():
|
|
|
629
643
|
"""Load all plugins by importing their modules."""
|
|
630
644
|
# Import all plugin modules to trigger registration
|
|
631
645
|
try:
|
|
632
|
-
from .plugins import splitters, extractors, qualifiers,
|
|
646
|
+
from .plugins import splitters, extractors, qualifiers, labelers, taxonomy
|
|
633
647
|
# The @PluginRegistry decorators will register plugins on import
|
|
648
|
+
_ = splitters, extractors, qualifiers, labelers, taxonomy # Silence unused warnings
|
|
634
649
|
except ImportError as e:
|
|
635
650
|
logging.debug(f"Some plugins failed to load: {e}")
|
|
636
651
|
|
|
637
652
|
|
|
653
|
+
# =============================================================================
|
|
654
|
+
# Database commands
|
|
655
|
+
# =============================================================================
|
|
656
|
+
|
|
657
|
+
@main.group("db")
|
|
658
|
+
def db_cmd():
|
|
659
|
+
"""
|
|
660
|
+
Manage entity/organization embedding database.
|
|
661
|
+
|
|
662
|
+
\b
|
|
663
|
+
Commands:
|
|
664
|
+
import-gleif Import GLEIF LEI data (~3M records)
|
|
665
|
+
import-sec Import SEC Edgar bulk data (~100K+ filers)
|
|
666
|
+
import-sec-officers Import SEC Form 4 officers/directors
|
|
667
|
+
import-ch-officers Import UK Companies House officers (Prod195)
|
|
668
|
+
import-companies-house Import UK Companies House (~5M records)
|
|
669
|
+
import-wikidata Import Wikidata organizations (SPARQL, may timeout)
|
|
670
|
+
import-people Import Wikidata notable people (SPARQL, may timeout)
|
|
671
|
+
import-wikidata-dump Import from Wikidata JSON dump (recommended)
|
|
672
|
+
canonicalize Link equivalent records across sources
|
|
673
|
+
status Show database status
|
|
674
|
+
search Search for an organization
|
|
675
|
+
search-people Search for a person
|
|
676
|
+
download Download database from HuggingFace
|
|
677
|
+
upload Upload database with lite variant
|
|
678
|
+
create-lite Create lite version (no record data)
|
|
679
|
+
|
|
680
|
+
\b
|
|
681
|
+
Examples:
|
|
682
|
+
corp-extractor db import-sec --download
|
|
683
|
+
corp-extractor db import-sec-officers --start-year 2023 --limit 10000
|
|
684
|
+
corp-extractor db import-gleif --download --limit 100000
|
|
685
|
+
corp-extractor db import-wikidata-dump --download --limit 50000
|
|
686
|
+
corp-extractor db canonicalize
|
|
687
|
+
corp-extractor db status
|
|
688
|
+
corp-extractor db search "Apple Inc"
|
|
689
|
+
corp-extractor db search-people "Tim Cook"
|
|
690
|
+
corp-extractor db upload entities.db
|
|
691
|
+
"""
|
|
692
|
+
pass
|
|
693
|
+
|
|
694
|
+
|
|
695
|
+
@db_cmd.command("gleif-info")
|
|
696
|
+
def db_gleif_info():
|
|
697
|
+
"""
|
|
698
|
+
Show information about the latest available GLEIF data file.
|
|
699
|
+
|
|
700
|
+
\b
|
|
701
|
+
Examples:
|
|
702
|
+
corp-extractor db gleif-info
|
|
703
|
+
"""
|
|
704
|
+
from .database.importers import GleifImporter
|
|
705
|
+
|
|
706
|
+
importer = GleifImporter()
|
|
707
|
+
|
|
708
|
+
try:
|
|
709
|
+
info = importer.get_latest_file_info()
|
|
710
|
+
record_count = info.get('record_count')
|
|
711
|
+
|
|
712
|
+
click.echo("\nLatest GLEIF Data File")
|
|
713
|
+
click.echo("=" * 40)
|
|
714
|
+
click.echo(f"File ID: {info['id']}")
|
|
715
|
+
click.echo(f"Publish Date: {info['publish_date']}")
|
|
716
|
+
click.echo(f"Record Count: {record_count:,}" if record_count else "Record Count: unknown")
|
|
717
|
+
|
|
718
|
+
delta = info.get("delta_from_last_file", {})
|
|
719
|
+
if delta:
|
|
720
|
+
click.echo(f"\nChanges from previous file:")
|
|
721
|
+
if delta.get('new'):
|
|
722
|
+
click.echo(f" New: {delta.get('new'):,}")
|
|
723
|
+
if delta.get('updated'):
|
|
724
|
+
click.echo(f" Updated: {delta.get('updated'):,}")
|
|
725
|
+
if delta.get('retired'):
|
|
726
|
+
click.echo(f" Retired: {delta.get('retired'):,}")
|
|
727
|
+
|
|
728
|
+
except Exception as e:
|
|
729
|
+
raise click.ClickException(f"Failed to get GLEIF info: {e}")
|
|
730
|
+
|
|
731
|
+
|
|
732
|
+
@db_cmd.command("import-gleif")
|
|
733
|
+
@click.argument("file_path", type=click.Path(exists=True), required=False)
|
|
734
|
+
@click.option("--download", is_flag=True, help="Download latest GLEIF file before importing")
|
|
735
|
+
@click.option("--force", is_flag=True, help="Force re-download even if cached")
|
|
736
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path (default: ~/.cache/corp-extractor/entities.db)")
|
|
737
|
+
@click.option("--limit", type=int, help="Limit number of records to import")
|
|
738
|
+
@click.option("--batch-size", type=int, default=50000, help="Batch size for commits (default: 50000)")
|
|
739
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
740
|
+
def db_import_gleif(file_path: Optional[str], download: bool, force: bool, db_path: Optional[str], limit: Optional[int], batch_size: int, verbose: bool):
|
|
741
|
+
"""
|
|
742
|
+
Import GLEIF LEI data into the entity database.
|
|
743
|
+
|
|
744
|
+
If no file path is provided and --download is set, downloads the latest
|
|
745
|
+
GLEIF data file automatically. Downloaded files are cached and reused
|
|
746
|
+
unless --force is specified.
|
|
747
|
+
|
|
748
|
+
\b
|
|
749
|
+
Examples:
|
|
750
|
+
corp-extractor db import-gleif /path/to/lei-records.xml
|
|
751
|
+
corp-extractor db import-gleif --download
|
|
752
|
+
corp-extractor db import-gleif --download --limit 10000
|
|
753
|
+
corp-extractor db import-gleif --download --force # Re-download
|
|
754
|
+
"""
|
|
755
|
+
_configure_logging(verbose)
|
|
756
|
+
|
|
757
|
+
from .database import OrganizationDatabase, CompanyEmbedder
|
|
758
|
+
from .database.importers import GleifImporter
|
|
759
|
+
|
|
760
|
+
importer = GleifImporter()
|
|
761
|
+
|
|
762
|
+
# Handle file path
|
|
763
|
+
if file_path is None:
|
|
764
|
+
if not download:
|
|
765
|
+
raise click.UsageError("Either provide a file path or use --download to fetch the latest GLEIF data")
|
|
766
|
+
click.echo("Downloading latest GLEIF data...", err=True)
|
|
767
|
+
file_path = str(importer.download_latest(force=force))
|
|
768
|
+
elif download:
|
|
769
|
+
click.echo("Downloading latest GLEIF data (ignoring provided file path)...", err=True)
|
|
770
|
+
file_path = str(importer.download_latest(force=force))
|
|
771
|
+
|
|
772
|
+
click.echo(f"Importing GLEIF data from {file_path}...", err=True)
|
|
773
|
+
|
|
774
|
+
# Initialize components
|
|
775
|
+
embedder = CompanyEmbedder()
|
|
776
|
+
database = OrganizationDatabase(db_path=db_path, embedding_dim=embedder.embedding_dim)
|
|
777
|
+
|
|
778
|
+
# Import records in batches
|
|
779
|
+
records = []
|
|
780
|
+
count = 0
|
|
781
|
+
|
|
782
|
+
for record in importer.import_from_file(file_path, limit=limit):
|
|
783
|
+
records.append(record)
|
|
784
|
+
|
|
785
|
+
if len(records) >= batch_size:
|
|
786
|
+
# Embed and insert batch
|
|
787
|
+
names = [r.name for r in records]
|
|
788
|
+
embeddings = embedder.embed_batch(names)
|
|
789
|
+
database.insert_batch(records, embeddings)
|
|
790
|
+
count += len(records)
|
|
791
|
+
click.echo(f"Imported {count} records...", err=True)
|
|
792
|
+
records = []
|
|
793
|
+
|
|
794
|
+
# Final batch
|
|
795
|
+
if records:
|
|
796
|
+
names = [r.name for r in records]
|
|
797
|
+
embeddings = embedder.embed_batch(names)
|
|
798
|
+
database.insert_batch(records, embeddings)
|
|
799
|
+
count += len(records)
|
|
800
|
+
|
|
801
|
+
click.echo(f"\nImported {count} GLEIF records successfully.", err=True)
|
|
802
|
+
database.close()
|
|
803
|
+
|
|
804
|
+
|
|
805
|
+
@db_cmd.command("import-sec")
|
|
806
|
+
@click.option("--download", is_flag=True, help="Download bulk submissions.zip (~500MB, ~100K+ filers)")
|
|
807
|
+
@click.option("--file", "file_path", type=click.Path(exists=True), help="Local file (submissions.zip or company_tickers.json)")
|
|
808
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
809
|
+
@click.option("--limit", type=int, help="Limit number of records")
|
|
810
|
+
@click.option("--batch-size", type=int, default=10000, help="Batch size (default: 10000)")
|
|
811
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
812
|
+
def db_import_sec(download: bool, file_path: Optional[str], db_path: Optional[str], limit: Optional[int], batch_size: int, verbose: bool):
|
|
813
|
+
"""
|
|
814
|
+
Import SEC Edgar data into the entity database.
|
|
815
|
+
|
|
816
|
+
By default, downloads the bulk submissions.zip file which contains
|
|
817
|
+
ALL SEC filers (~100K+), not just companies with ticker symbols (~10K).
|
|
818
|
+
|
|
819
|
+
\b
|
|
820
|
+
Examples:
|
|
821
|
+
corp-extractor db import-sec --download
|
|
822
|
+
corp-extractor db import-sec --download --limit 50000
|
|
823
|
+
corp-extractor db import-sec --file /path/to/submissions.zip
|
|
824
|
+
corp-extractor db import-sec --file /path/to/company_tickers.json # legacy
|
|
825
|
+
"""
|
|
826
|
+
_configure_logging(verbose)
|
|
827
|
+
|
|
828
|
+
from .database import OrganizationDatabase, CompanyEmbedder
|
|
829
|
+
from .database.importers import SecEdgarImporter
|
|
830
|
+
|
|
831
|
+
if not download and not file_path:
|
|
832
|
+
raise click.UsageError("Either --download or --file is required")
|
|
833
|
+
|
|
834
|
+
# Initialize components
|
|
835
|
+
embedder = CompanyEmbedder()
|
|
836
|
+
database = OrganizationDatabase(db_path=db_path, embedding_dim=embedder.embedding_dim)
|
|
837
|
+
importer = SecEdgarImporter()
|
|
838
|
+
|
|
839
|
+
# Get records
|
|
840
|
+
if file_path:
|
|
841
|
+
click.echo(f"Importing SEC Edgar data from {file_path}...", err=True)
|
|
842
|
+
record_iter = importer.import_from_file(file_path, limit=limit)
|
|
843
|
+
else:
|
|
844
|
+
click.echo("Downloading SEC submissions.zip (~500MB)...", err=True)
|
|
845
|
+
record_iter = importer.import_from_url(limit=limit)
|
|
846
|
+
|
|
847
|
+
# Import records in batches
|
|
848
|
+
records = []
|
|
849
|
+
count = 0
|
|
850
|
+
|
|
851
|
+
for record in record_iter:
|
|
852
|
+
records.append(record)
|
|
853
|
+
|
|
854
|
+
if len(records) >= batch_size:
|
|
855
|
+
names = [r.name for r in records]
|
|
856
|
+
embeddings = embedder.embed_batch(names)
|
|
857
|
+
database.insert_batch(records, embeddings)
|
|
858
|
+
count += len(records)
|
|
859
|
+
click.echo(f"Imported {count} records...", err=True)
|
|
860
|
+
records = []
|
|
861
|
+
|
|
862
|
+
# Final batch
|
|
863
|
+
if records:
|
|
864
|
+
names = [r.name for r in records]
|
|
865
|
+
embeddings = embedder.embed_batch(names)
|
|
866
|
+
database.insert_batch(records, embeddings)
|
|
867
|
+
count += len(records)
|
|
868
|
+
|
|
869
|
+
click.echo(f"\nImported {count} SEC Edgar records successfully.", err=True)
|
|
870
|
+
database.close()
|
|
871
|
+
|
|
872
|
+
|
|
873
|
+
@db_cmd.command("import-sec-officers")
|
|
874
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
875
|
+
@click.option("--start-year", type=int, default=2020, help="Start year (default: 2020)")
|
|
876
|
+
@click.option("--end-year", type=int, help="End year (default: current year)")
|
|
877
|
+
@click.option("--limit", type=int, help="Limit number of records")
|
|
878
|
+
@click.option("--batch-size", type=int, default=1000, help="Batch size for commits (default: 1000)")
|
|
879
|
+
@click.option("--resume", is_flag=True, help="Resume from saved progress")
|
|
880
|
+
@click.option("--skip-existing", is_flag=True, help="Skip records that already exist")
|
|
881
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
882
|
+
def db_import_sec_officers(db_path: Optional[str], start_year: int, end_year: Optional[int], limit: Optional[int], batch_size: int, resume: bool, skip_existing: bool, verbose: bool):
|
|
883
|
+
"""
|
|
884
|
+
Import SEC Form 4 insider data into the people database.
|
|
885
|
+
|
|
886
|
+
Downloads Form 4 filings from SEC EDGAR and extracts officers, directors,
|
|
887
|
+
and significant investors (10%+ owners) from each company.
|
|
888
|
+
|
|
889
|
+
Form 4 filings are submitted when insiders buy or sell company stock.
|
|
890
|
+
They contain the person's name, role (officer/director), and company.
|
|
891
|
+
|
|
892
|
+
Rate limited to 5 requests/second to comply with SEC guidelines.
|
|
893
|
+
|
|
894
|
+
\b
|
|
895
|
+
Examples:
|
|
896
|
+
corp-extractor db import-sec-officers --limit 1000
|
|
897
|
+
corp-extractor db import-sec-officers --start-year 2023
|
|
898
|
+
corp-extractor db import-sec-officers --resume
|
|
899
|
+
corp-extractor db import-sec-officers --skip-existing -v
|
|
900
|
+
"""
|
|
901
|
+
_configure_logging(verbose)
|
|
902
|
+
|
|
903
|
+
from .database.store import get_person_database, get_database, DEFAULT_DB_PATH
|
|
904
|
+
from .database.embeddings import CompanyEmbedder
|
|
905
|
+
from .database.importers.sec_form4 import SecForm4Importer
|
|
906
|
+
|
|
907
|
+
# Default database path
|
|
908
|
+
if db_path is None:
|
|
909
|
+
db_path_obj = DEFAULT_DB_PATH
|
|
910
|
+
else:
|
|
911
|
+
db_path_obj = Path(db_path)
|
|
912
|
+
|
|
913
|
+
click.echo(f"Importing SEC Form 4 officers/directors to {db_path_obj}...", err=True)
|
|
914
|
+
click.echo(f"Year range: {start_year} - {end_year or 'current'}", err=True)
|
|
915
|
+
if resume:
|
|
916
|
+
click.echo("Resuming from saved progress...", err=True)
|
|
917
|
+
|
|
918
|
+
# Initialize components
|
|
919
|
+
database = get_person_database(db_path=db_path_obj)
|
|
920
|
+
org_database = get_database(db_path=db_path_obj)
|
|
921
|
+
embedder = CompanyEmbedder()
|
|
922
|
+
importer = SecForm4Importer()
|
|
923
|
+
|
|
924
|
+
# Import records in batches
|
|
925
|
+
records = []
|
|
926
|
+
count = 0
|
|
927
|
+
skipped_existing = 0
|
|
928
|
+
|
|
929
|
+
def progress_callback(year: int, quarter: int, filing_idx: int, accession: str, total: int) -> None:
|
|
930
|
+
if verbose and filing_idx % 100 == 0:
|
|
931
|
+
click.echo(f" {year} Q{quarter}: {filing_idx} filings, {total} records", err=True)
|
|
932
|
+
|
|
933
|
+
for record in importer.import_range(
|
|
934
|
+
start_year=start_year,
|
|
935
|
+
end_year=end_year,
|
|
936
|
+
limit=limit,
|
|
937
|
+
resume=resume,
|
|
938
|
+
progress_callback=progress_callback,
|
|
939
|
+
):
|
|
940
|
+
# Skip existing records if flag is set
|
|
941
|
+
if skip_existing:
|
|
942
|
+
existing = database.get_by_source_id(record.source, record.source_id)
|
|
943
|
+
if existing is not None:
|
|
944
|
+
skipped_existing += 1
|
|
945
|
+
continue
|
|
946
|
+
|
|
947
|
+
# Look up org ID by CIK if available
|
|
948
|
+
issuer_cik = record.record.get("issuer_cik", "")
|
|
949
|
+
if issuer_cik:
|
|
950
|
+
org_id = org_database.get_id_by_source_id("sec_edgar", issuer_cik.zfill(10))
|
|
951
|
+
if org_id is not None:
|
|
952
|
+
record.known_for_org_id = org_id
|
|
953
|
+
|
|
954
|
+
records.append(record)
|
|
955
|
+
|
|
956
|
+
if len(records) >= batch_size:
|
|
957
|
+
embedding_texts = [r.get_embedding_text() for r in records]
|
|
958
|
+
embeddings = embedder.embed_batch(embedding_texts)
|
|
959
|
+
database.insert_batch(records, embeddings)
|
|
960
|
+
count += len(records)
|
|
961
|
+
click.echo(f"Imported {count} records...", err=True)
|
|
962
|
+
records = []
|
|
963
|
+
|
|
964
|
+
# Final batch
|
|
965
|
+
if records:
|
|
966
|
+
embedding_texts = [r.get_embedding_text() for r in records]
|
|
967
|
+
embeddings = embedder.embed_batch(embedding_texts)
|
|
968
|
+
database.insert_batch(records, embeddings)
|
|
969
|
+
count += len(records)
|
|
970
|
+
|
|
971
|
+
if skip_existing and skipped_existing > 0:
|
|
972
|
+
click.echo(f"\nImported {count} SEC officers/directors (skipped {skipped_existing} existing).", err=True)
|
|
973
|
+
else:
|
|
974
|
+
click.echo(f"\nImported {count} SEC officers/directors successfully.", err=True)
|
|
975
|
+
|
|
976
|
+
org_database.close()
|
|
977
|
+
database.close()
|
|
978
|
+
|
|
979
|
+
|
|
980
|
+
@db_cmd.command("import-ch-officers")
|
|
981
|
+
@click.option("--file", "file_path", type=click.Path(exists=True), required=True, help="Path to CH officers zip file (Prod195)")
|
|
982
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
983
|
+
@click.option("--limit", type=int, help="Limit number of records")
|
|
984
|
+
@click.option("--batch-size", type=int, default=1000, help="Batch size for commits (default: 1000)")
|
|
985
|
+
@click.option("--resume", is_flag=True, help="Resume from saved progress")
|
|
986
|
+
@click.option("--include-resigned", is_flag=True, help="Include resigned officers (default: current only)")
|
|
987
|
+
@click.option("--skip-existing", is_flag=True, help="Skip records that already exist")
|
|
988
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
989
|
+
def db_import_ch_officers(file_path: str, db_path: Optional[str], limit: Optional[int], batch_size: int, resume: bool, include_resigned: bool, skip_existing: bool, verbose: bool):
|
|
990
|
+
"""
|
|
991
|
+
Import Companies House officers data into the people database.
|
|
992
|
+
|
|
993
|
+
Requires the Prod195 bulk officers zip file from Companies House.
|
|
994
|
+
Request access via BulkProducts@companieshouse.gov.uk.
|
|
995
|
+
|
|
996
|
+
\b
|
|
997
|
+
Examples:
|
|
998
|
+
corp-extractor db import-ch-officers --file officers.zip --limit 10000
|
|
999
|
+
corp-extractor db import-ch-officers --file officers.zip --resume
|
|
1000
|
+
corp-extractor db import-ch-officers --file officers.zip --include-resigned
|
|
1001
|
+
"""
|
|
1002
|
+
_configure_logging(verbose)
|
|
1003
|
+
|
|
1004
|
+
from .database.store import get_person_database, get_database, DEFAULT_DB_PATH
|
|
1005
|
+
from .database.embeddings import CompanyEmbedder
|
|
1006
|
+
from .database.importers.companies_house_officers import CompaniesHouseOfficersImporter
|
|
1007
|
+
|
|
1008
|
+
# Default database path
|
|
1009
|
+
if db_path is None:
|
|
1010
|
+
db_path_obj = DEFAULT_DB_PATH
|
|
1011
|
+
else:
|
|
1012
|
+
db_path_obj = Path(db_path)
|
|
1013
|
+
|
|
1014
|
+
click.echo(f"Importing Companies House officers to {db_path_obj}...", err=True)
|
|
1015
|
+
if resume:
|
|
1016
|
+
click.echo("Resuming from saved progress...", err=True)
|
|
1017
|
+
|
|
1018
|
+
# Initialize components
|
|
1019
|
+
database = get_person_database(db_path=db_path_obj)
|
|
1020
|
+
org_database = get_database(db_path=db_path_obj)
|
|
1021
|
+
embedder = CompanyEmbedder()
|
|
1022
|
+
importer = CompaniesHouseOfficersImporter()
|
|
1023
|
+
|
|
1024
|
+
# Import records in batches
|
|
1025
|
+
records = []
|
|
1026
|
+
count = 0
|
|
1027
|
+
skipped_existing = 0
|
|
1028
|
+
|
|
1029
|
+
def progress_callback(file_idx: int, line_num: int, total: int) -> None:
|
|
1030
|
+
if verbose:
|
|
1031
|
+
click.echo(f" File {file_idx}: line {line_num}, {total} records", err=True)
|
|
1032
|
+
|
|
1033
|
+
for record in importer.import_from_zip(
|
|
1034
|
+
file_path,
|
|
1035
|
+
limit=limit,
|
|
1036
|
+
resume=resume,
|
|
1037
|
+
current_only=not include_resigned,
|
|
1038
|
+
progress_callback=progress_callback,
|
|
1039
|
+
):
|
|
1040
|
+
# Skip existing records if flag is set
|
|
1041
|
+
if skip_existing:
|
|
1042
|
+
existing = database.get_by_source_id(record.source, record.source_id)
|
|
1043
|
+
if existing is not None:
|
|
1044
|
+
skipped_existing += 1
|
|
1045
|
+
continue
|
|
1046
|
+
|
|
1047
|
+
# Look up org ID by company number if available
|
|
1048
|
+
company_number = record.record.get("company_number", "")
|
|
1049
|
+
if company_number:
|
|
1050
|
+
org_id = org_database.get_id_by_source_id("companies_house", company_number)
|
|
1051
|
+
if org_id is not None:
|
|
1052
|
+
record.known_for_org_id = org_id
|
|
1053
|
+
|
|
1054
|
+
records.append(record)
|
|
1055
|
+
|
|
1056
|
+
if len(records) >= batch_size:
|
|
1057
|
+
embedding_texts = [r.get_embedding_text() for r in records]
|
|
1058
|
+
embeddings = embedder.embed_batch(embedding_texts)
|
|
1059
|
+
database.insert_batch(records, embeddings)
|
|
1060
|
+
count += len(records)
|
|
1061
|
+
click.echo(f"Imported {count} records...", err=True)
|
|
1062
|
+
records = []
|
|
1063
|
+
|
|
1064
|
+
# Final batch
|
|
1065
|
+
if records:
|
|
1066
|
+
embedding_texts = [r.get_embedding_text() for r in records]
|
|
1067
|
+
embeddings = embedder.embed_batch(embedding_texts)
|
|
1068
|
+
database.insert_batch(records, embeddings)
|
|
1069
|
+
count += len(records)
|
|
1070
|
+
|
|
1071
|
+
if skip_existing and skipped_existing > 0:
|
|
1072
|
+
click.echo(f"\nImported {count} CH officers (skipped {skipped_existing} existing).", err=True)
|
|
1073
|
+
else:
|
|
1074
|
+
click.echo(f"\nImported {count} CH officers successfully.", err=True)
|
|
1075
|
+
|
|
1076
|
+
org_database.close()
|
|
1077
|
+
database.close()
|
|
1078
|
+
|
|
1079
|
+
|
|
1080
|
+
@db_cmd.command("import-wikidata")
|
|
1081
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
1082
|
+
@click.option("--limit", type=int, help="Limit number of records")
|
|
1083
|
+
@click.option("--batch-size", type=int, default=1000, help="Batch size for commits (default: 1000)")
|
|
1084
|
+
@click.option("--type", "query_type", type=click.Choice(["lei", "ticker", "public", "business", "organization", "nonprofit", "government"]), default="lei",
|
|
1085
|
+
help="Query type to use for fetching data")
|
|
1086
|
+
@click.option("--all", "import_all", is_flag=True, help="Run all query types sequentially")
|
|
1087
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
1088
|
+
def db_import_wikidata(db_path: Optional[str], limit: Optional[int], batch_size: int, query_type: str, import_all: bool, verbose: bool):
|
|
1089
|
+
"""
|
|
1090
|
+
Import organization data from Wikidata via SPARQL.
|
|
1091
|
+
|
|
1092
|
+
Uses simplified SPARQL queries that avoid timeouts on Wikidata's endpoint.
|
|
1093
|
+
Query types target different organization categories.
|
|
1094
|
+
|
|
1095
|
+
\b
|
|
1096
|
+
Query types:
|
|
1097
|
+
lei Companies with LEI codes (fastest, most reliable)
|
|
1098
|
+
ticker Companies listed on stock exchanges
|
|
1099
|
+
public Direct instances of "public company" (Q891723)
|
|
1100
|
+
business Direct instances of "business enterprise" (Q4830453)
|
|
1101
|
+
organization All organizations (Q43229) - NGOs, associations, etc.
|
|
1102
|
+
nonprofit Non-profit organizations (Q163740)
|
|
1103
|
+
government Government agencies (Q327333)
|
|
1104
|
+
|
|
1105
|
+
\b
|
|
1106
|
+
Examples:
|
|
1107
|
+
corp-extractor db import-wikidata --limit 10
|
|
1108
|
+
corp-extractor db import-wikidata --type organization --limit 1000
|
|
1109
|
+
corp-extractor db import-wikidata --type nonprofit --limit 5000
|
|
1110
|
+
corp-extractor db import-wikidata --all --limit 10000
|
|
1111
|
+
"""
|
|
1112
|
+
_configure_logging(verbose)
|
|
1113
|
+
|
|
1114
|
+
from .database import OrganizationDatabase, CompanyEmbedder
|
|
1115
|
+
from .database.importers import WikidataImporter
|
|
1116
|
+
|
|
1117
|
+
click.echo(f"Importing Wikidata organization data via SPARQL (type={query_type}, all={import_all})...", err=True)
|
|
1118
|
+
|
|
1119
|
+
# Initialize components
|
|
1120
|
+
embedder = CompanyEmbedder()
|
|
1121
|
+
database = OrganizationDatabase(db_path=db_path, embedding_dim=embedder.embedding_dim)
|
|
1122
|
+
importer = WikidataImporter(batch_size=500) # Smaller SPARQL batch size for reliability
|
|
1123
|
+
|
|
1124
|
+
# Import records in batches
|
|
1125
|
+
records = []
|
|
1126
|
+
count = 0
|
|
1127
|
+
|
|
1128
|
+
for record in importer.import_from_sparql(limit=limit, query_type=query_type, import_all=import_all):
|
|
1129
|
+
records.append(record)
|
|
1130
|
+
|
|
1131
|
+
if len(records) >= batch_size:
|
|
1132
|
+
names = [r.name for r in records]
|
|
1133
|
+
embeddings = embedder.embed_batch(names)
|
|
1134
|
+
database.insert_batch(records, embeddings)
|
|
1135
|
+
count += len(records)
|
|
1136
|
+
click.echo(f"Imported {count} records...", err=True)
|
|
1137
|
+
records = []
|
|
1138
|
+
|
|
1139
|
+
# Final batch
|
|
1140
|
+
if records:
|
|
1141
|
+
names = [r.name for r in records]
|
|
1142
|
+
embeddings = embedder.embed_batch(names)
|
|
1143
|
+
database.insert_batch(records, embeddings)
|
|
1144
|
+
count += len(records)
|
|
1145
|
+
|
|
1146
|
+
click.echo(f"\nImported {count} Wikidata records successfully.", err=True)
|
|
1147
|
+
database.close()
|
|
1148
|
+
|
|
1149
|
+
|
|
1150
|
+
@db_cmd.command("import-people")
|
|
1151
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
1152
|
+
@click.option("--limit", type=int, help="Limit number of records")
|
|
1153
|
+
@click.option("--batch-size", type=int, default=1000, help="Batch size for commits (default: 1000)")
|
|
1154
|
+
@click.option("--type", "query_type", type=click.Choice([
|
|
1155
|
+
"executive", "politician", "athlete", "artist",
|
|
1156
|
+
"academic", "scientist", "journalist", "entrepreneur", "activist"
|
|
1157
|
+
]), default="executive", help="Person type to import")
|
|
1158
|
+
@click.option("--all", "import_all", is_flag=True, help="Run all person type queries sequentially")
|
|
1159
|
+
@click.option("--enrich", is_flag=True, help="Query individual people to get role/org data (slower, resumable)")
|
|
1160
|
+
@click.option("--enrich-only", is_flag=True, help="Only enrich existing people (skip bulk import)")
|
|
1161
|
+
@click.option("--enrich-dates", is_flag=True, help="Query individual people to get start/end dates (slower)")
|
|
1162
|
+
@click.option("--skip-existing", is_flag=True, help="Skip records that already exist (default: update them)")
|
|
1163
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
1164
|
+
def db_import_people(db_path: Optional[str], limit: Optional[int], batch_size: int, query_type: str, import_all: bool, enrich: bool, enrich_only: bool, enrich_dates: bool, skip_existing: bool, verbose: bool):
|
|
1165
|
+
"""
|
|
1166
|
+
Import notable people data from Wikidata via SPARQL.
|
|
1167
|
+
|
|
1168
|
+
Uses a two-phase approach for reliability:
|
|
1169
|
+
1. Bulk import: Fast fetch of QID, name, country (no timeouts)
|
|
1170
|
+
2. Enrich (optional): Per-person queries for role/org/dates
|
|
1171
|
+
|
|
1172
|
+
Imports people with English Wikipedia articles (ensures notability).
|
|
1173
|
+
|
|
1174
|
+
\b
|
|
1175
|
+
Examples:
|
|
1176
|
+
corp-extractor db import-people --type executive --limit 5000
|
|
1177
|
+
corp-extractor db import-people --all --limit 10000
|
|
1178
|
+
corp-extractor db import-people --type executive --enrich
|
|
1179
|
+
corp-extractor db import-people --enrich-only --limit 100
|
|
1180
|
+
corp-extractor db import-people --type politician -v
|
|
1181
|
+
"""
|
|
1182
|
+
_configure_logging(verbose)
|
|
1183
|
+
|
|
1184
|
+
from .database.store import get_person_database, get_database, DEFAULT_DB_PATH
|
|
1185
|
+
from .database.embeddings import CompanyEmbedder
|
|
1186
|
+
from .database.importers.wikidata_people import WikidataPeopleImporter
|
|
1187
|
+
|
|
1188
|
+
# Default database path
|
|
1189
|
+
if db_path is None:
|
|
1190
|
+
db_path_obj = DEFAULT_DB_PATH
|
|
1191
|
+
else:
|
|
1192
|
+
db_path_obj = Path(db_path)
|
|
1193
|
+
|
|
1194
|
+
click.echo(f"Importing Wikidata people to {db_path_obj}...", err=True)
|
|
1195
|
+
|
|
1196
|
+
# Initialize components
|
|
1197
|
+
database = get_person_database(db_path=db_path_obj)
|
|
1198
|
+
org_database = get_database(db_path=db_path_obj)
|
|
1199
|
+
embedder = CompanyEmbedder()
|
|
1200
|
+
importer = WikidataPeopleImporter(batch_size=batch_size)
|
|
1201
|
+
|
|
1202
|
+
count = 0
|
|
1203
|
+
|
|
1204
|
+
# Phase 1: Bulk import (fast, minimal data) - skip if --enrich-only
|
|
1205
|
+
if not enrich_only:
|
|
1206
|
+
records = []
|
|
1207
|
+
skipped_existing = 0
|
|
1208
|
+
|
|
1209
|
+
click.echo("Phase 1: Bulk import (QID, name, country)...", err=True)
|
|
1210
|
+
|
|
1211
|
+
for record in importer.import_from_sparql(limit=limit, query_type=query_type, import_all=import_all):
|
|
1212
|
+
# Skip existing records if flag is set
|
|
1213
|
+
if skip_existing:
|
|
1214
|
+
existing = database.get_by_source_id(record.source, record.source_id)
|
|
1215
|
+
if existing is not None:
|
|
1216
|
+
skipped_existing += 1
|
|
1217
|
+
continue
|
|
1218
|
+
|
|
1219
|
+
records.append(record)
|
|
1220
|
+
|
|
1221
|
+
if len(records) >= batch_size:
|
|
1222
|
+
# Generate embeddings (just name for now, will re-embed after enrichment)
|
|
1223
|
+
embedding_texts = [r.get_embedding_text() for r in records]
|
|
1224
|
+
embeddings = embedder.embed_batch(embedding_texts)
|
|
1225
|
+
database.insert_batch(records, embeddings)
|
|
1226
|
+
count += len(records)
|
|
1227
|
+
|
|
1228
|
+
click.echo(f" Imported {count} people...", err=True)
|
|
1229
|
+
records = []
|
|
1230
|
+
|
|
1231
|
+
# Final batch
|
|
1232
|
+
if records:
|
|
1233
|
+
embedding_texts = [r.get_embedding_text() for r in records]
|
|
1234
|
+
embeddings = embedder.embed_batch(embedding_texts)
|
|
1235
|
+
database.insert_batch(records, embeddings)
|
|
1236
|
+
count += len(records)
|
|
1237
|
+
|
|
1238
|
+
if skip_existing and skipped_existing > 0:
|
|
1239
|
+
click.echo(f"\nPhase 1 complete: {count} people imported (skipped {skipped_existing} existing).", err=True)
|
|
1240
|
+
else:
|
|
1241
|
+
click.echo(f"\nPhase 1 complete: {count} people imported.", err=True)
|
|
1242
|
+
else:
|
|
1243
|
+
click.echo("Skipping Phase 1 (bulk import) - using existing database records.", err=True)
|
|
1244
|
+
# Enable enrich if enrich_only is set
|
|
1245
|
+
enrich = True
|
|
1246
|
+
|
|
1247
|
+
# Phase 2: Enrich with role/org/dates (optional, slower but resumable)
|
|
1248
|
+
if enrich:
|
|
1249
|
+
click.echo("\nPhase 2: Enriching with role/org/dates (parallel queries)...", err=True)
|
|
1250
|
+
# Get all people without role/org
|
|
1251
|
+
people_to_enrich = []
|
|
1252
|
+
enriched_count = 0
|
|
1253
|
+
for record in database.iter_records():
|
|
1254
|
+
if not record.known_for_role and not record.known_for_org:
|
|
1255
|
+
people_to_enrich.append(record)
|
|
1256
|
+
enriched_count += 1
|
|
1257
|
+
# Apply limit if --enrich-only
|
|
1258
|
+
if enrich_only and limit and enriched_count >= limit:
|
|
1259
|
+
break
|
|
1260
|
+
|
|
1261
|
+
if people_to_enrich:
|
|
1262
|
+
click.echo(f"Found {len(people_to_enrich)} people to enrich...", err=True)
|
|
1263
|
+
importer.enrich_people_role_org_batch(people_to_enrich, delay_seconds=0.1, max_workers=5)
|
|
1264
|
+
|
|
1265
|
+
# Persist the enriched data and re-generate embeddings
|
|
1266
|
+
updated = 0
|
|
1267
|
+
org_count = 0
|
|
1268
|
+
date_count = 0
|
|
1269
|
+
for person in people_to_enrich:
|
|
1270
|
+
if person.known_for_role or person.known_for_org:
|
|
1271
|
+
# Look up org ID if we have org_qid
|
|
1272
|
+
org_qid = person.record.get("org_qid", "")
|
|
1273
|
+
if org_qid:
|
|
1274
|
+
org_id = org_database.get_id_by_source_id("wikipedia", org_qid)
|
|
1275
|
+
if org_id is not None:
|
|
1276
|
+
person.known_for_org_id = org_id
|
|
1277
|
+
|
|
1278
|
+
# Update the record with new role/org/dates and re-embed
|
|
1279
|
+
new_embedding_text = person.get_embedding_text()
|
|
1280
|
+
new_embedding = embedder.embed(new_embedding_text)
|
|
1281
|
+
if database.update_role_org(
|
|
1282
|
+
person.source, person.source_id,
|
|
1283
|
+
person.known_for_role, person.known_for_org,
|
|
1284
|
+
person.known_for_org_id, new_embedding,
|
|
1285
|
+
person.from_date, person.to_date,
|
|
1286
|
+
):
|
|
1287
|
+
updated += 1
|
|
1288
|
+
if person.known_for_org:
|
|
1289
|
+
org_count += 1
|
|
1290
|
+
if person.from_date or person.to_date:
|
|
1291
|
+
date_count += 1
|
|
1292
|
+
if verbose:
|
|
1293
|
+
date_str = ""
|
|
1294
|
+
if person.from_date or person.to_date:
|
|
1295
|
+
date_str = f" ({person.from_date or '?'} - {person.to_date or '?'})"
|
|
1296
|
+
click.echo(f" {person.name}: {person.known_for_role} at {person.known_for_org}{date_str}", err=True)
|
|
1297
|
+
|
|
1298
|
+
click.echo(f"Updated {updated} people ({org_count} with orgs, {date_count} with dates).", err=True)
|
|
1299
|
+
|
|
1300
|
+
# Phase 3: Enrich with dates (optional, even slower)
|
|
1301
|
+
if enrich_dates:
|
|
1302
|
+
click.echo("\nPhase 3: Enriching with dates...", err=True)
|
|
1303
|
+
# Get all people without dates but with role (dates are associated with positions)
|
|
1304
|
+
people_to_enrich = []
|
|
1305
|
+
for record in database.iter_records():
|
|
1306
|
+
if not record.from_date and not record.to_date and record.known_for_role:
|
|
1307
|
+
people_to_enrich.append(record)
|
|
1308
|
+
|
|
1309
|
+
if people_to_enrich:
|
|
1310
|
+
click.echo(f"Found {len(people_to_enrich)} people to enrich with dates...", err=True)
|
|
1311
|
+
enriched = importer.enrich_people_batch(people_to_enrich, delay_seconds=0.3)
|
|
1312
|
+
|
|
1313
|
+
# Persist the enriched dates
|
|
1314
|
+
updated = 0
|
|
1315
|
+
for person in people_to_enrich:
|
|
1316
|
+
if person.from_date or person.to_date:
|
|
1317
|
+
if database.update_dates(person.source, person.source_id, person.from_date, person.to_date):
|
|
1318
|
+
updated += 1
|
|
1319
|
+
if verbose:
|
|
1320
|
+
click.echo(f" {person.name}: {person.from_date or '?'} - {person.to_date or '?'}", err=True)
|
|
1321
|
+
|
|
1322
|
+
click.echo(f"Updated {updated} people with dates.", err=True)
|
|
1323
|
+
|
|
1324
|
+
org_database.close()
|
|
1325
|
+
database.close()
|
|
1326
|
+
|
|
1327
|
+
|
|
1328
|
+
@db_cmd.command("import-wikidata-dump")
|
|
1329
|
+
@click.option("--dump", "dump_path", type=click.Path(exists=True), help="Path to Wikidata JSON dump file (.bz2 or .gz)")
|
|
1330
|
+
@click.option("--download", is_flag=True, help="Download latest dump first (~100GB)")
|
|
1331
|
+
@click.option("--force", is_flag=True, help="Force re-download even if cached")
|
|
1332
|
+
@click.option("--no-aria2", is_flag=True, help="Don't use aria2c even if available (slower)")
|
|
1333
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
1334
|
+
@click.option("--people/--no-people", default=True, help="Import people (default: yes)")
|
|
1335
|
+
@click.option("--orgs/--no-orgs", default=True, help="Import organizations (default: yes)")
|
|
1336
|
+
@click.option("--require-enwiki", is_flag=True, help="Only import orgs with English Wikipedia articles")
|
|
1337
|
+
@click.option("--resume", is_flag=True, help="Resume from last position in dump file (tracks entity index)")
|
|
1338
|
+
@click.option("--skip-updates", is_flag=True, help="Skip Q codes already in database (no updates)")
|
|
1339
|
+
@click.option("--limit", type=int, help="Max records per type (people and/or orgs)")
|
|
1340
|
+
@click.option("--batch-size", type=int, default=10000, help="Batch size for commits (default: 10000)")
|
|
1341
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
1342
|
+
def db_import_wikidata_dump(
|
|
1343
|
+
dump_path: Optional[str],
|
|
1344
|
+
download: bool,
|
|
1345
|
+
force: bool,
|
|
1346
|
+
no_aria2: bool,
|
|
1347
|
+
db_path: Optional[str],
|
|
1348
|
+
people: bool,
|
|
1349
|
+
orgs: bool,
|
|
1350
|
+
require_enwiki: bool,
|
|
1351
|
+
resume: bool,
|
|
1352
|
+
skip_updates: bool,
|
|
1353
|
+
limit: Optional[int],
|
|
1354
|
+
batch_size: int,
|
|
1355
|
+
verbose: bool,
|
|
1356
|
+
):
|
|
1357
|
+
"""
|
|
1358
|
+
Import people and organizations from Wikidata JSON dump.
|
|
1359
|
+
|
|
1360
|
+
This uses the full Wikidata JSON dump (~100GB compressed) to import
|
|
1361
|
+
all humans and organizations with English Wikipedia articles. This
|
|
1362
|
+
avoids SPARQL query timeouts that occur with large result sets.
|
|
1363
|
+
|
|
1364
|
+
The dump is streamed line-by-line to minimize memory usage.
|
|
1365
|
+
|
|
1366
|
+
\b
|
|
1367
|
+
Features:
|
|
1368
|
+
- No timeouts (processes locally)
|
|
1369
|
+
- Complete coverage (all notable people/orgs)
|
|
1370
|
+
- Resumable with --resume (tracks position in dump file)
|
|
1371
|
+
- Skip existing with --skip-updates (loads existing Q codes)
|
|
1372
|
+
- People like Andy Burnham are captured via occupation (P106)
|
|
1373
|
+
|
|
1374
|
+
\b
|
|
1375
|
+
Resume options:
|
|
1376
|
+
- --resume: Resume from where the dump processing left off (tracks entity index).
|
|
1377
|
+
Progress is saved after each batch. Use this if import was interrupted.
|
|
1378
|
+
- --skip-updates: Skip Q codes already in database (no updates to existing records).
|
|
1379
|
+
Use this to add new records without re-processing existing ones.
|
|
1380
|
+
|
|
1381
|
+
\b
|
|
1382
|
+
Examples:
|
|
1383
|
+
corp-extractor db import-wikidata-dump --dump /path/to/dump.json.bz2 --limit 10000
|
|
1384
|
+
corp-extractor db import-wikidata-dump --download --people --no-orgs --limit 50000
|
|
1385
|
+
corp-extractor db import-wikidata-dump --dump dump.json.bz2 --orgs --no-people
|
|
1386
|
+
corp-extractor db import-wikidata-dump --dump dump.json.bz2 --resume # Resume interrupted import
|
|
1387
|
+
corp-extractor db import-wikidata-dump --dump dump.json.bz2 --skip-updates # Skip existing Q codes
|
|
1388
|
+
"""
|
|
1389
|
+
_configure_logging(verbose)
|
|
1390
|
+
|
|
1391
|
+
from .database.store import get_person_database, get_database, DEFAULT_DB_PATH
|
|
1392
|
+
from .database.embeddings import CompanyEmbedder
|
|
1393
|
+
from .database.importers.wikidata_dump import WikidataDumpImporter, DumpProgress
|
|
1394
|
+
|
|
1395
|
+
if not dump_path and not download:
|
|
1396
|
+
raise click.UsageError("Either --dump path or --download is required")
|
|
1397
|
+
|
|
1398
|
+
if not people and not orgs:
|
|
1399
|
+
raise click.UsageError("Must import at least one of --people or --orgs")
|
|
1400
|
+
|
|
1401
|
+
# Default database path
|
|
1402
|
+
if db_path is None:
|
|
1403
|
+
db_path_obj = DEFAULT_DB_PATH
|
|
1404
|
+
else:
|
|
1405
|
+
db_path_obj = Path(db_path)
|
|
1406
|
+
|
|
1407
|
+
click.echo(f"Importing Wikidata dump to {db_path_obj}...", err=True)
|
|
1408
|
+
|
|
1409
|
+
# Initialize importer
|
|
1410
|
+
importer = WikidataDumpImporter(dump_path=dump_path)
|
|
1411
|
+
|
|
1412
|
+
# Download if requested
|
|
1413
|
+
if download:
|
|
1414
|
+
import shutil
|
|
1415
|
+
dump_target = importer.get_dump_path()
|
|
1416
|
+
click.echo(f"Downloading Wikidata dump (~100GB) to:", err=True)
|
|
1417
|
+
click.echo(f" {dump_target}", err=True)
|
|
1418
|
+
|
|
1419
|
+
# Check for aria2c
|
|
1420
|
+
has_aria2 = shutil.which("aria2c") is not None
|
|
1421
|
+
use_aria2 = has_aria2 and not no_aria2
|
|
1422
|
+
|
|
1423
|
+
if use_aria2:
|
|
1424
|
+
click.echo(" Using aria2c for fast parallel download (16 connections)", err=True)
|
|
1425
|
+
dump_file = importer.download_dump(force=force, use_aria2=True)
|
|
1426
|
+
click.echo(f"\nUsing dump: {dump_file}", err=True)
|
|
1427
|
+
else:
|
|
1428
|
+
if not has_aria2:
|
|
1429
|
+
click.echo("", err=True)
|
|
1430
|
+
click.echo(" TIP: Install aria2c for 10-20x faster downloads:", err=True)
|
|
1431
|
+
click.echo(" brew install aria2 (macOS)", err=True)
|
|
1432
|
+
click.echo(" apt install aria2 (Ubuntu/Debian)", err=True)
|
|
1433
|
+
click.echo("", err=True)
|
|
1434
|
+
|
|
1435
|
+
# Use urllib to get content length first
|
|
1436
|
+
import urllib.request
|
|
1437
|
+
req = urllib.request.Request(
|
|
1438
|
+
"https://dumps.wikimedia.org/wikidatawiki/entities/latest-all.json.bz2",
|
|
1439
|
+
headers={"User-Agent": "corp-extractor/1.0"},
|
|
1440
|
+
method="HEAD"
|
|
1441
|
+
)
|
|
1442
|
+
with urllib.request.urlopen(req) as response:
|
|
1443
|
+
total_size = int(response.headers.get("content-length", 0))
|
|
1444
|
+
|
|
1445
|
+
if total_size:
|
|
1446
|
+
total_gb = total_size / (1024 ** 3)
|
|
1447
|
+
click.echo(f" Size: {total_gb:.1f} GB", err=True)
|
|
1448
|
+
|
|
1449
|
+
# Download with progress bar
|
|
1450
|
+
progress_bar = None
|
|
1451
|
+
|
|
1452
|
+
def update_progress(downloaded: int, total: int) -> None:
|
|
1453
|
+
nonlocal progress_bar
|
|
1454
|
+
if progress_bar is None and total > 0:
|
|
1455
|
+
progress_bar = click.progressbar(
|
|
1456
|
+
length=total,
|
|
1457
|
+
label="Downloading",
|
|
1458
|
+
show_percent=True,
|
|
1459
|
+
show_pos=True,
|
|
1460
|
+
item_show_func=lambda x: f"{(x or 0) / (1024**3):.1f} GB" if x else "",
|
|
1461
|
+
)
|
|
1462
|
+
progress_bar.__enter__()
|
|
1463
|
+
if progress_bar:
|
|
1464
|
+
# Update to absolute position
|
|
1465
|
+
progress_bar.update(downloaded - progress_bar.pos)
|
|
1466
|
+
|
|
1467
|
+
try:
|
|
1468
|
+
dump_file = importer.download_dump(force=force, use_aria2=False, progress_callback=update_progress)
|
|
1469
|
+
finally:
|
|
1470
|
+
if progress_bar:
|
|
1471
|
+
progress_bar.__exit__(None, None, None)
|
|
1472
|
+
|
|
1473
|
+
click.echo(f"\nUsing dump: {dump_file}", err=True)
|
|
1474
|
+
elif dump_path:
|
|
1475
|
+
click.echo(f"Using dump: {dump_path}", err=True)
|
|
1476
|
+
|
|
1477
|
+
# Initialize embedder (loads model, may take time on first run)
|
|
1478
|
+
click.echo("Loading embedding model...", err=True)
|
|
1479
|
+
sys.stderr.flush()
|
|
1480
|
+
embedder = CompanyEmbedder()
|
|
1481
|
+
click.echo("Embedding model loaded.", err=True)
|
|
1482
|
+
sys.stderr.flush()
|
|
1483
|
+
|
|
1484
|
+
# Load existing QID labels from database and seed the importer's cache
|
|
1485
|
+
database = get_person_database(db_path=db_path_obj)
|
|
1486
|
+
existing_labels = database.get_all_qid_labels()
|
|
1487
|
+
if existing_labels:
|
|
1488
|
+
click.echo(f"Loaded {len(existing_labels):,} existing QID labels from DB", err=True)
|
|
1489
|
+
importer.set_label_cache(existing_labels)
|
|
1490
|
+
known_qids_at_start = set(existing_labels.keys())
|
|
1491
|
+
|
|
1492
|
+
# Load existing source_ids for skip_updates mode
|
|
1493
|
+
existing_people_ids: set[str] = set()
|
|
1494
|
+
existing_org_ids: set[str] = set()
|
|
1495
|
+
if skip_updates:
|
|
1496
|
+
click.echo("Loading existing records for --skip-updates...", err=True)
|
|
1497
|
+
if people:
|
|
1498
|
+
existing_people_ids = database.get_all_source_ids(source="wikidata")
|
|
1499
|
+
click.echo(f" Found {len(existing_people_ids):,} existing people Q codes", err=True)
|
|
1500
|
+
if orgs:
|
|
1501
|
+
org_database = get_database(db_path=db_path_obj)
|
|
1502
|
+
existing_org_ids = org_database.get_all_source_ids(source="wikipedia")
|
|
1503
|
+
click.echo(f" Found {len(existing_org_ids):,} existing org Q codes", err=True)
|
|
1504
|
+
|
|
1505
|
+
# Load progress for resume mode (position-based resume)
|
|
1506
|
+
progress: Optional[DumpProgress] = None
|
|
1507
|
+
start_index = 0
|
|
1508
|
+
if resume:
|
|
1509
|
+
progress = DumpProgress.load()
|
|
1510
|
+
if progress:
|
|
1511
|
+
# Verify the progress is for the same dump file
|
|
1512
|
+
actual_dump_path = importer._dump_path or Path(dump_path) if dump_path else importer.get_dump_path()
|
|
1513
|
+
if progress.matches_dump(actual_dump_path):
|
|
1514
|
+
start_index = progress.entity_index
|
|
1515
|
+
click.echo(f"Resuming from entity index {start_index:,}", err=True)
|
|
1516
|
+
click.echo(f" Last entity: {progress.last_entity_id}", err=True)
|
|
1517
|
+
click.echo(f" Last updated: {progress.last_updated}", err=True)
|
|
1518
|
+
else:
|
|
1519
|
+
click.echo("Warning: Progress file is for a different dump, starting from beginning", err=True)
|
|
1520
|
+
progress = None
|
|
1521
|
+
else:
|
|
1522
|
+
click.echo("No progress file found, starting from beginning", err=True)
|
|
1523
|
+
|
|
1524
|
+
# Initialize progress tracking
|
|
1525
|
+
if progress is None:
|
|
1526
|
+
actual_dump_path = importer._dump_path or Path(dump_path) if dump_path else importer.get_dump_path()
|
|
1527
|
+
progress = DumpProgress(
|
|
1528
|
+
dump_path=str(actual_dump_path),
|
|
1529
|
+
dump_size=actual_dump_path.stat().st_size if actual_dump_path.exists() else 0,
|
|
1530
|
+
)
|
|
1531
|
+
|
|
1532
|
+
# Helper to persist new labels after each batch
|
|
1533
|
+
def persist_new_labels() -> int:
|
|
1534
|
+
new_labels = importer.get_new_labels_since(known_qids_at_start)
|
|
1535
|
+
if new_labels:
|
|
1536
|
+
database.insert_qid_labels(new_labels)
|
|
1537
|
+
known_qids_at_start.update(new_labels.keys())
|
|
1538
|
+
return len(new_labels)
|
|
1539
|
+
return 0
|
|
1540
|
+
|
|
1541
|
+
# Combined import - single pass through the dump for both people and orgs
|
|
1542
|
+
click.echo("\n=== Combined Import (single dump pass) ===", err=True)
|
|
1543
|
+
sys.stderr.flush() # Ensure output is visible immediately
|
|
1544
|
+
if people:
|
|
1545
|
+
click.echo(f" People: {'up to ' + str(limit) + ' records' if limit else 'unlimited'}", err=True)
|
|
1546
|
+
if skip_updates and existing_people_ids:
|
|
1547
|
+
click.echo(f" Skip updates: {len(existing_people_ids):,} existing Q codes", err=True)
|
|
1548
|
+
if orgs:
|
|
1549
|
+
click.echo(f" Orgs: {'up to ' + str(limit) + ' records' if limit else 'unlimited'}", err=True)
|
|
1550
|
+
if require_enwiki:
|
|
1551
|
+
click.echo(" Filter: only orgs with English Wikipedia articles", err=True)
|
|
1552
|
+
if skip_updates and existing_org_ids:
|
|
1553
|
+
click.echo(f" Skip updates: {len(existing_org_ids):,} existing Q codes", err=True)
|
|
1554
|
+
if start_index > 0:
|
|
1555
|
+
click.echo(f" Resuming from entity index {start_index:,}", err=True)
|
|
1556
|
+
|
|
1557
|
+
# Initialize databases
|
|
1558
|
+
person_database = get_person_database(db_path=db_path_obj)
|
|
1559
|
+
org_database = get_database(db_path=db_path_obj) if orgs else None
|
|
1560
|
+
|
|
1561
|
+
# Batches for each type
|
|
1562
|
+
people_records: list = []
|
|
1563
|
+
org_records: list = []
|
|
1564
|
+
people_count = 0
|
|
1565
|
+
orgs_count = 0
|
|
1566
|
+
last_entity_index = start_index
|
|
1567
|
+
last_entity_id = ""
|
|
1568
|
+
|
|
1569
|
+
def combined_progress_callback(entity_index: int, entity_id: str, ppl_count: int, org_count: int) -> None:
|
|
1570
|
+
nonlocal last_entity_index, last_entity_id
|
|
1571
|
+
last_entity_index = entity_index
|
|
1572
|
+
last_entity_id = entity_id
|
|
1573
|
+
|
|
1574
|
+
def save_progress() -> None:
|
|
1575
|
+
if progress:
|
|
1576
|
+
progress.entity_index = last_entity_index
|
|
1577
|
+
progress.last_entity_id = last_entity_id
|
|
1578
|
+
progress.people_yielded = people_count
|
|
1579
|
+
progress.orgs_yielded = orgs_count
|
|
1580
|
+
progress.save()
|
|
1581
|
+
|
|
1582
|
+
def flush_people_batch() -> None:
|
|
1583
|
+
nonlocal people_records, people_count
|
|
1584
|
+
if people_records:
|
|
1585
|
+
embedding_texts = [r.get_embedding_text() for r in people_records]
|
|
1586
|
+
embeddings = embedder.embed_batch(embedding_texts)
|
|
1587
|
+
person_database.insert_batch(people_records, embeddings)
|
|
1588
|
+
people_count += len(people_records)
|
|
1589
|
+
people_records = []
|
|
1590
|
+
|
|
1591
|
+
def flush_org_batch() -> None:
|
|
1592
|
+
nonlocal org_records, orgs_count
|
|
1593
|
+
if org_records and org_database:
|
|
1594
|
+
names = [r.name for r in org_records]
|
|
1595
|
+
embeddings = embedder.embed_batch(names)
|
|
1596
|
+
org_database.insert_batch(org_records, embeddings)
|
|
1597
|
+
orgs_count += len(org_records)
|
|
1598
|
+
org_records = []
|
|
1599
|
+
|
|
1600
|
+
# Calculate total for progress bar (if limits set for both)
|
|
1601
|
+
total_limit = None
|
|
1602
|
+
if limit and people and orgs:
|
|
1603
|
+
total_limit = limit * 2 # Rough estimate
|
|
1604
|
+
elif limit:
|
|
1605
|
+
total_limit = limit
|
|
1606
|
+
|
|
1607
|
+
click.echo("Starting dump iteration...", err=True)
|
|
1608
|
+
sys.stderr.flush()
|
|
1609
|
+
|
|
1610
|
+
records_seen = 0
|
|
1611
|
+
try:
|
|
1612
|
+
if total_limit:
|
|
1613
|
+
# Use progress bar when we have limits
|
|
1614
|
+
with click.progressbar(
|
|
1615
|
+
length=total_limit,
|
|
1616
|
+
label="Processing dump",
|
|
1617
|
+
show_percent=True,
|
|
1618
|
+
show_pos=True,
|
|
1619
|
+
) as pbar:
|
|
1620
|
+
for record_type, record in importer.import_all(
|
|
1621
|
+
people_limit=limit if people else 0,
|
|
1622
|
+
orgs_limit=limit if orgs else 0,
|
|
1623
|
+
import_people=people,
|
|
1624
|
+
import_orgs=orgs,
|
|
1625
|
+
require_enwiki=require_enwiki,
|
|
1626
|
+
skip_people_ids=existing_people_ids if skip_updates else None,
|
|
1627
|
+
skip_org_ids=existing_org_ids if skip_updates else None,
|
|
1628
|
+
start_index=start_index,
|
|
1629
|
+
progress_callback=combined_progress_callback,
|
|
1630
|
+
):
|
|
1631
|
+
records_seen += 1
|
|
1632
|
+
pbar.update(1)
|
|
1633
|
+
|
|
1634
|
+
if record_type == "person":
|
|
1635
|
+
people_records.append(record)
|
|
1636
|
+
if len(people_records) >= batch_size:
|
|
1637
|
+
flush_people_batch()
|
|
1638
|
+
persist_new_labels()
|
|
1639
|
+
save_progress()
|
|
1640
|
+
else: # org
|
|
1641
|
+
org_records.append(record)
|
|
1642
|
+
if len(org_records) >= batch_size:
|
|
1643
|
+
flush_org_batch()
|
|
1644
|
+
persist_new_labels()
|
|
1645
|
+
save_progress()
|
|
1646
|
+
else:
|
|
1647
|
+
# No limit - show counter updates
|
|
1648
|
+
for record_type, record in importer.import_all(
|
|
1649
|
+
people_limit=None,
|
|
1650
|
+
orgs_limit=None,
|
|
1651
|
+
import_people=people,
|
|
1652
|
+
import_orgs=orgs,
|
|
1653
|
+
require_enwiki=require_enwiki,
|
|
1654
|
+
skip_people_ids=existing_people_ids if skip_updates else None,
|
|
1655
|
+
skip_org_ids=existing_org_ids if skip_updates else None,
|
|
1656
|
+
start_index=start_index,
|
|
1657
|
+
progress_callback=combined_progress_callback,
|
|
1658
|
+
):
|
|
1659
|
+
records_seen += 1
|
|
1660
|
+
# Show first record immediately as proof of life
|
|
1661
|
+
if records_seen == 1:
|
|
1662
|
+
click.echo(f" First record found: {record.name}", err=True)
|
|
1663
|
+
sys.stderr.flush()
|
|
1664
|
+
|
|
1665
|
+
if record_type == "person":
|
|
1666
|
+
people_records.append(record)
|
|
1667
|
+
if len(people_records) >= batch_size:
|
|
1668
|
+
flush_people_batch()
|
|
1669
|
+
persist_new_labels()
|
|
1670
|
+
save_progress()
|
|
1671
|
+
click.echo(f"\r Progress: {people_count:,} people, {orgs_count:,} orgs...", nl=False, err=True)
|
|
1672
|
+
sys.stderr.flush()
|
|
1673
|
+
else: # org
|
|
1674
|
+
org_records.append(record)
|
|
1675
|
+
if len(org_records) >= batch_size:
|
|
1676
|
+
flush_org_batch()
|
|
1677
|
+
persist_new_labels()
|
|
1678
|
+
save_progress()
|
|
1679
|
+
click.echo(f"\r Progress: {people_count:,} people, {orgs_count:,} orgs...", nl=False, err=True)
|
|
1680
|
+
sys.stderr.flush()
|
|
1681
|
+
|
|
1682
|
+
click.echo("", err=True) # Newline after counter
|
|
1683
|
+
|
|
1684
|
+
# Final batches
|
|
1685
|
+
flush_people_batch()
|
|
1686
|
+
flush_org_batch()
|
|
1687
|
+
persist_new_labels()
|
|
1688
|
+
save_progress()
|
|
1689
|
+
|
|
1690
|
+
finally:
|
|
1691
|
+
# Ensure we save progress even on interrupt
|
|
1692
|
+
save_progress()
|
|
1693
|
+
|
|
1694
|
+
click.echo(f"Import complete: {people_count:,} people, {orgs_count:,} orgs", err=True)
|
|
1695
|
+
|
|
1696
|
+
# Keep references for final label resolution
|
|
1697
|
+
database = person_database
|
|
1698
|
+
if org_database:
|
|
1699
|
+
org_database.close()
|
|
1700
|
+
|
|
1701
|
+
# Final label resolution pass for any remaining unresolved QIDs
|
|
1702
|
+
click.echo("\n=== Final QID Label Resolution ===", err=True)
|
|
1703
|
+
|
|
1704
|
+
# Get the full label cache (includes labels from DB + new ones from import)
|
|
1705
|
+
all_labels = importer.get_label_cache()
|
|
1706
|
+
click.echo(f" Total labels in cache: {len(all_labels):,}", err=True)
|
|
1707
|
+
|
|
1708
|
+
# Check for any remaining unresolved QIDs in the database
|
|
1709
|
+
people_unresolved = database.get_unresolved_qids()
|
|
1710
|
+
click.echo(f" Unresolved QIDs in people: {len(people_unresolved):,}", err=True)
|
|
1711
|
+
|
|
1712
|
+
org_unresolved: set[str] = set()
|
|
1713
|
+
if orgs:
|
|
1714
|
+
org_database = get_database(db_path=db_path_obj)
|
|
1715
|
+
org_unresolved = org_database.get_unresolved_qids()
|
|
1716
|
+
click.echo(f" Unresolved QIDs in orgs: {len(org_unresolved):,}", err=True)
|
|
1717
|
+
|
|
1718
|
+
all_unresolved = people_unresolved | org_unresolved
|
|
1719
|
+
need_sparql = all_unresolved - set(all_labels.keys())
|
|
1720
|
+
|
|
1721
|
+
if need_sparql:
|
|
1722
|
+
click.echo(f" Resolving {len(need_sparql):,} remaining QIDs via SPARQL...", err=True)
|
|
1723
|
+
sparql_resolved = importer.resolve_qids_via_sparql(need_sparql)
|
|
1724
|
+
all_labels.update(sparql_resolved)
|
|
1725
|
+
# Persist newly resolved labels
|
|
1726
|
+
if sparql_resolved:
|
|
1727
|
+
database.insert_qid_labels(sparql_resolved)
|
|
1728
|
+
click.echo(f" SPARQL resolved and stored: {len(sparql_resolved):,}", err=True)
|
|
1729
|
+
|
|
1730
|
+
# Update records with any newly resolved labels
|
|
1731
|
+
if all_labels:
|
|
1732
|
+
updates, deletes = database.resolve_qid_labels(all_labels)
|
|
1733
|
+
if updates or deletes:
|
|
1734
|
+
click.echo(f" People: {updates:,} updated, {deletes:,} duplicates deleted", err=True)
|
|
1735
|
+
|
|
1736
|
+
if orgs:
|
|
1737
|
+
org_database = get_database(db_path=db_path_obj)
|
|
1738
|
+
org_updates = org_database.resolve_qid_labels(all_labels)
|
|
1739
|
+
if org_updates:
|
|
1740
|
+
click.echo(f" Updated orgs: {org_updates:,} regions", err=True)
|
|
1741
|
+
org_database.close()
|
|
1742
|
+
|
|
1743
|
+
# Final stats
|
|
1744
|
+
final_label_count = database.get_qid_labels_count()
|
|
1745
|
+
click.echo(f" Total labels in DB: {final_label_count:,}", err=True)
|
|
1746
|
+
database.close()
|
|
1747
|
+
|
|
1748
|
+
click.echo("\nWikidata dump import complete!", err=True)
|
|
1749
|
+
|
|
1750
|
+
|
|
1751
|
+
@db_cmd.command("search-people")
|
|
1752
|
+
@click.argument("query")
|
|
1753
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
1754
|
+
@click.option("--top-k", type=int, default=10, help="Number of results")
|
|
1755
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
1756
|
+
def db_search_people(query: str, db_path: Optional[str], top_k: int, verbose: bool):
|
|
1757
|
+
"""
|
|
1758
|
+
Search for a person in the database.
|
|
1759
|
+
|
|
1760
|
+
\b
|
|
1761
|
+
Examples:
|
|
1762
|
+
corp-extractor db search-people "Tim Cook"
|
|
1763
|
+
corp-extractor db search-people "Elon Musk" --top-k 5
|
|
1764
|
+
"""
|
|
1765
|
+
_configure_logging(verbose)
|
|
1766
|
+
|
|
1767
|
+
from .database.store import get_person_database, DEFAULT_DB_PATH
|
|
1768
|
+
from .database.embeddings import CompanyEmbedder
|
|
1769
|
+
|
|
1770
|
+
# Default database path
|
|
1771
|
+
if db_path is None:
|
|
1772
|
+
db_path_obj = DEFAULT_DB_PATH
|
|
1773
|
+
else:
|
|
1774
|
+
db_path_obj = Path(db_path)
|
|
1775
|
+
|
|
1776
|
+
click.echo(f"Searching for '{query}' in {db_path_obj}...", err=True)
|
|
1777
|
+
|
|
1778
|
+
# Initialize components
|
|
1779
|
+
database = get_person_database(db_path=db_path_obj)
|
|
1780
|
+
embedder = CompanyEmbedder()
|
|
1781
|
+
|
|
1782
|
+
# Embed query and search
|
|
1783
|
+
query_embedding = embedder.embed(query)
|
|
1784
|
+
results = database.search(query_embedding, top_k=top_k, query_text=query)
|
|
1785
|
+
|
|
1786
|
+
if not results:
|
|
1787
|
+
click.echo("No results found.", err=True)
|
|
1788
|
+
return
|
|
1789
|
+
|
|
1790
|
+
click.echo(f"\nFound {len(results)} results:\n")
|
|
1791
|
+
for i, (record, similarity) in enumerate(results, 1):
|
|
1792
|
+
role_str = f" ({record.known_for_role})" if record.known_for_role else ""
|
|
1793
|
+
org_str = f" at {record.known_for_org}" if record.known_for_org else ""
|
|
1794
|
+
country_str = f" [{record.country}]" if record.country else ""
|
|
1795
|
+
click.echo(f" {i}. {record.name}{role_str}{org_str}{country_str}")
|
|
1796
|
+
click.echo(f" Source: wikidata:{record.source_id}, Type: {record.person_type.value}, Score: {similarity:.3f}")
|
|
1797
|
+
click.echo()
|
|
1798
|
+
|
|
1799
|
+
database.close()
|
|
1800
|
+
|
|
1801
|
+
|
|
1802
|
+
@db_cmd.command("import-companies-house")
|
|
1803
|
+
@click.option("--download", is_flag=True, help="Download bulk data file (free, no API key needed)")
|
|
1804
|
+
@click.option("--force", is_flag=True, help="Force re-download even if cached")
|
|
1805
|
+
@click.option("--file", "file_path", type=click.Path(exists=True), help="Local Companies House CSV/JSON file")
|
|
1806
|
+
@click.option("--search", "search_terms", type=str, help="Comma-separated search terms (requires API key)")
|
|
1807
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
1808
|
+
@click.option("--limit", type=int, help="Limit number of records")
|
|
1809
|
+
@click.option("--batch-size", type=int, default=50000, help="Batch size for commits (default: 50000)")
|
|
1810
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
1811
|
+
def db_import_companies_house(
|
|
1812
|
+
download: bool,
|
|
1813
|
+
force: bool,
|
|
1814
|
+
file_path: Optional[str],
|
|
1815
|
+
search_terms: Optional[str],
|
|
1816
|
+
db_path: Optional[str],
|
|
1817
|
+
limit: Optional[int],
|
|
1818
|
+
batch_size: int,
|
|
1819
|
+
verbose: bool,
|
|
1820
|
+
):
|
|
1821
|
+
"""
|
|
1822
|
+
Import UK Companies House data into the entity database.
|
|
1823
|
+
|
|
1824
|
+
\b
|
|
1825
|
+
Options:
|
|
1826
|
+
--download Download free bulk data (all UK companies, ~5M records)
|
|
1827
|
+
--file Import from local CSV/JSON file
|
|
1828
|
+
--search Search via API (requires COMPANIES_HOUSE_API_KEY)
|
|
1829
|
+
|
|
1830
|
+
\b
|
|
1831
|
+
Examples:
|
|
1832
|
+
corp-extractor db import-companies-house --download
|
|
1833
|
+
corp-extractor db import-companies-house --download --limit 100000
|
|
1834
|
+
corp-extractor db import-companies-house --file /path/to/companies.csv
|
|
1835
|
+
corp-extractor db import-companies-house --search "bank,insurance"
|
|
1836
|
+
"""
|
|
1837
|
+
_configure_logging(verbose)
|
|
1838
|
+
|
|
1839
|
+
from .database import OrganizationDatabase, CompanyEmbedder
|
|
1840
|
+
from .database.importers import CompaniesHouseImporter
|
|
1841
|
+
|
|
1842
|
+
if not file_path and not search_terms and not download:
|
|
1843
|
+
raise click.UsageError("Either --download, --file, or --search is required")
|
|
1844
|
+
|
|
1845
|
+
click.echo("Importing Companies House data...", err=True)
|
|
1846
|
+
|
|
1847
|
+
# Initialize components
|
|
1848
|
+
embedder = CompanyEmbedder()
|
|
1849
|
+
database = OrganizationDatabase(db_path=db_path, embedding_dim=embedder.embedding_dim)
|
|
1850
|
+
importer = CompaniesHouseImporter()
|
|
1851
|
+
|
|
1852
|
+
# Get records
|
|
1853
|
+
if download:
|
|
1854
|
+
# Download bulk data file
|
|
1855
|
+
csv_path = importer.download_bulk_data(force=force)
|
|
1856
|
+
click.echo(f"Using bulk data file: {csv_path}", err=True)
|
|
1857
|
+
record_iter = importer.import_from_file(csv_path, limit=limit)
|
|
1858
|
+
elif file_path:
|
|
1859
|
+
record_iter = importer.import_from_file(file_path, limit=limit)
|
|
1860
|
+
else:
|
|
1861
|
+
terms = [t.strip() for t in search_terms.split(",") if t.strip()]
|
|
1862
|
+
click.echo(f"Searching for: {terms}", err=True)
|
|
1863
|
+
record_iter = importer.import_from_search(
|
|
1864
|
+
search_terms=terms,
|
|
1865
|
+
limit_per_term=limit or 100,
|
|
1866
|
+
total_limit=limit,
|
|
1867
|
+
)
|
|
1868
|
+
|
|
1869
|
+
# Import records in batches
|
|
1870
|
+
records = []
|
|
1871
|
+
count = 0
|
|
1872
|
+
|
|
1873
|
+
for record in record_iter:
|
|
1874
|
+
records.append(record)
|
|
1875
|
+
|
|
1876
|
+
if len(records) >= batch_size:
|
|
1877
|
+
names = [r.name for r in records]
|
|
1878
|
+
embeddings = embedder.embed_batch(names)
|
|
1879
|
+
database.insert_batch(records, embeddings)
|
|
1880
|
+
count += len(records)
|
|
1881
|
+
click.echo(f"Imported {count} records...", err=True)
|
|
1882
|
+
records = []
|
|
1883
|
+
|
|
1884
|
+
# Final batch
|
|
1885
|
+
if records:
|
|
1886
|
+
names = [r.name for r in records]
|
|
1887
|
+
embeddings = embedder.embed_batch(names)
|
|
1888
|
+
database.insert_batch(records, embeddings)
|
|
1889
|
+
count += len(records)
|
|
1890
|
+
|
|
1891
|
+
click.echo(f"\nImported {count} Companies House records successfully.", err=True)
|
|
1892
|
+
database.close()
|
|
1893
|
+
|
|
1894
|
+
|
|
1895
|
+
@db_cmd.command("status")
|
|
1896
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
1897
|
+
def db_status(db_path: Optional[str]):
|
|
1898
|
+
"""
|
|
1899
|
+
Show database status and statistics.
|
|
1900
|
+
|
|
1901
|
+
\b
|
|
1902
|
+
Examples:
|
|
1903
|
+
corp-extractor db status
|
|
1904
|
+
corp-extractor db status --db /path/to/entities.db
|
|
1905
|
+
"""
|
|
1906
|
+
from .database import OrganizationDatabase
|
|
1907
|
+
|
|
1908
|
+
try:
|
|
1909
|
+
database = OrganizationDatabase(db_path=db_path)
|
|
1910
|
+
stats = database.get_stats()
|
|
1911
|
+
|
|
1912
|
+
click.echo("\nEntity Database Status")
|
|
1913
|
+
click.echo("=" * 40)
|
|
1914
|
+
click.echo(f"Total records: {stats.total_records:,}")
|
|
1915
|
+
click.echo(f"Embedding dimension: {stats.embedding_dimension}")
|
|
1916
|
+
click.echo(f"Database size: {stats.database_size_bytes / 1024 / 1024:.2f} MB")
|
|
1917
|
+
|
|
1918
|
+
# Check for missing embeddings
|
|
1919
|
+
missing_embeddings = database.get_missing_embedding_count()
|
|
1920
|
+
if missing_embeddings > 0:
|
|
1921
|
+
click.echo(f"\n⚠️ Missing embeddings: {missing_embeddings:,}")
|
|
1922
|
+
click.echo(" Run 'corp-extractor db repair-embeddings' to fix")
|
|
1923
|
+
|
|
1924
|
+
if stats.by_source:
|
|
1925
|
+
click.echo("\nRecords by source:")
|
|
1926
|
+
for source, count in stats.by_source.items():
|
|
1927
|
+
click.echo(f" {source}: {count:,}")
|
|
1928
|
+
|
|
1929
|
+
# Show canonicalization stats
|
|
1930
|
+
canon_stats = database.get_canon_stats()
|
|
1931
|
+
if canon_stats["canonicalized_records"] > 0:
|
|
1932
|
+
click.echo("\nCanonicalization:")
|
|
1933
|
+
click.echo(f" Canonicalized: {canon_stats['canonicalized_records']:,} / {canon_stats['total_records']:,}")
|
|
1934
|
+
click.echo(f" Canonical groups: {canon_stats['canonical_groups']:,}")
|
|
1935
|
+
click.echo(f" Multi-record groups: {canon_stats['multi_record_groups']:,}")
|
|
1936
|
+
click.echo(f" Records in multi-groups: {canon_stats['records_in_multi_groups']:,}")
|
|
1937
|
+
else:
|
|
1938
|
+
click.echo("\nCanonicalization: Not run yet")
|
|
1939
|
+
click.echo(" Run 'corp-extractor db canonicalize' to link equivalent records")
|
|
1940
|
+
|
|
1941
|
+
database.close()
|
|
1942
|
+
|
|
1943
|
+
except Exception as e:
|
|
1944
|
+
raise click.ClickException(f"Failed to read database: {e}")
|
|
1945
|
+
|
|
1946
|
+
|
|
1947
|
+
@db_cmd.command("canonicalize")
|
|
1948
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
1949
|
+
@click.option("--batch-size", type=int, default=10000, help="Batch size for updates (default: 10000)")
|
|
1950
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
1951
|
+
def db_canonicalize(db_path: Optional[str], batch_size: int, verbose: bool):
|
|
1952
|
+
"""
|
|
1953
|
+
Canonicalize organizations by linking equivalent records across sources.
|
|
1954
|
+
|
|
1955
|
+
Records are considered equivalent if they share:
|
|
1956
|
+
- Same LEI (globally unique legal entity identifier)
|
|
1957
|
+
- Same ticker symbol
|
|
1958
|
+
- Same CIK (SEC identifier)
|
|
1959
|
+
- Same normalized name (after lowercasing, removing dots)
|
|
1960
|
+
- Same name with suffix expansion (Ltd -> Limited, etc.)
|
|
1961
|
+
|
|
1962
|
+
For each group, the highest-priority source becomes canonical:
|
|
1963
|
+
gleif > sec_edgar > companies_house > wikipedia
|
|
1964
|
+
|
|
1965
|
+
Canonicalization enables better search re-ranking by boosting results
|
|
1966
|
+
that have records from multiple authoritative sources.
|
|
1967
|
+
|
|
1968
|
+
\b
|
|
1969
|
+
Examples:
|
|
1970
|
+
corp-extractor db canonicalize
|
|
1971
|
+
corp-extractor db canonicalize -v
|
|
1972
|
+
corp-extractor db canonicalize --db /path/to/entities.db
|
|
1973
|
+
"""
|
|
1974
|
+
_configure_logging(verbose)
|
|
1975
|
+
|
|
1976
|
+
from .database import OrganizationDatabase
|
|
1977
|
+
from .database.store import get_person_database
|
|
1978
|
+
|
|
1979
|
+
try:
|
|
1980
|
+
# Canonicalize organizations
|
|
1981
|
+
database = OrganizationDatabase(db_path=db_path)
|
|
1982
|
+
click.echo("Running organization canonicalization...", err=True)
|
|
1983
|
+
|
|
1984
|
+
result = database.canonicalize(batch_size=batch_size)
|
|
1985
|
+
|
|
1986
|
+
click.echo("\nOrganization Canonicalization Results")
|
|
1987
|
+
click.echo("=" * 40)
|
|
1988
|
+
click.echo(f"Total records processed: {result['total_records']:,}")
|
|
1989
|
+
click.echo(f"Equivalence groups found: {result['groups_found']:,}")
|
|
1990
|
+
click.echo(f"Multi-record groups: {result['multi_record_groups']:,}")
|
|
1991
|
+
click.echo(f"Records updated: {result['records_updated']:,}")
|
|
1992
|
+
|
|
1993
|
+
database.close()
|
|
1994
|
+
|
|
1995
|
+
# Canonicalize people
|
|
1996
|
+
db_path_obj = Path(db_path) if db_path else None
|
|
1997
|
+
person_db = get_person_database(db_path=db_path_obj)
|
|
1998
|
+
click.echo("\nRunning people canonicalization...", err=True)
|
|
1999
|
+
|
|
2000
|
+
people_result = person_db.canonicalize(batch_size=batch_size)
|
|
2001
|
+
|
|
2002
|
+
click.echo("\nPeople Canonicalization Results")
|
|
2003
|
+
click.echo("=" * 40)
|
|
2004
|
+
click.echo(f"Total records processed: {people_result['total_records']:,}")
|
|
2005
|
+
click.echo(f"Matched by organization: {people_result['matched_by_org']:,}")
|
|
2006
|
+
click.echo(f"Matched by date overlap: {people_result['matched_by_date']:,}")
|
|
2007
|
+
click.echo(f"Canonical groups: {people_result['canonical_groups']:,}")
|
|
2008
|
+
click.echo(f"Records in multi-record groups: {people_result['records_in_groups']:,}")
|
|
2009
|
+
|
|
2010
|
+
person_db.close()
|
|
2011
|
+
|
|
2012
|
+
except Exception as e:
|
|
2013
|
+
raise click.ClickException(f"Canonicalization failed: {e}")
|
|
2014
|
+
|
|
2015
|
+
|
|
2016
|
+
@db_cmd.command("search")
|
|
2017
|
+
@click.argument("query")
|
|
2018
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
2019
|
+
@click.option("--top-k", type=int, default=10, help="Number of results")
|
|
2020
|
+
@click.option("--source", type=click.Choice(["gleif", "sec_edgar", "companies_house", "wikipedia"]), help="Filter by source")
|
|
2021
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
2022
|
+
def db_search(query: str, db_path: Optional[str], top_k: int, source: Optional[str], verbose: bool):
|
|
2023
|
+
"""
|
|
2024
|
+
Search for an organization in the database.
|
|
2025
|
+
|
|
2026
|
+
\b
|
|
2027
|
+
Examples:
|
|
2028
|
+
corp-extractor db search "Apple Inc"
|
|
2029
|
+
corp-extractor db search "Microsoft" --source sec_edgar
|
|
2030
|
+
"""
|
|
2031
|
+
_configure_logging(verbose)
|
|
2032
|
+
|
|
2033
|
+
from .database import OrganizationDatabase, CompanyEmbedder
|
|
2034
|
+
|
|
2035
|
+
embedder = CompanyEmbedder()
|
|
2036
|
+
database = OrganizationDatabase(db_path=db_path)
|
|
2037
|
+
|
|
2038
|
+
click.echo(f"Searching for: {query}", err=True)
|
|
2039
|
+
|
|
2040
|
+
# Embed query
|
|
2041
|
+
query_embedding = embedder.embed(query)
|
|
2042
|
+
|
|
2043
|
+
# Search
|
|
2044
|
+
results = database.search(query_embedding, top_k=top_k, source_filter=source)
|
|
2045
|
+
|
|
2046
|
+
if not results:
|
|
2047
|
+
click.echo("No results found.")
|
|
2048
|
+
return
|
|
2049
|
+
|
|
2050
|
+
click.echo(f"\nTop {len(results)} matches:")
|
|
2051
|
+
click.echo("-" * 60)
|
|
2052
|
+
|
|
2053
|
+
for i, (record, similarity) in enumerate(results, 1):
|
|
2054
|
+
click.echo(f"{i}. {record.legal_name}")
|
|
2055
|
+
click.echo(f" Source: {record.source} | ID: {record.source_id}")
|
|
2056
|
+
click.echo(f" Canonical ID: {record.canonical_id}")
|
|
2057
|
+
click.echo(f" Similarity: {similarity:.4f}")
|
|
2058
|
+
if verbose and record.record:
|
|
2059
|
+
if record.record.get("ticker"):
|
|
2060
|
+
click.echo(f" Ticker: {record.record['ticker']}")
|
|
2061
|
+
if record.record.get("jurisdiction"):
|
|
2062
|
+
click.echo(f" Jurisdiction: {record.record['jurisdiction']}")
|
|
2063
|
+
click.echo()
|
|
2064
|
+
|
|
2065
|
+
database.close()
|
|
2066
|
+
|
|
2067
|
+
|
|
2068
|
+
@db_cmd.command("download")
|
|
2069
|
+
@click.option("--repo", type=str, default="Corp-o-Rate-Community/entity-references", help="HuggingFace repo ID")
|
|
2070
|
+
@click.option("--db", "db_path", type=click.Path(), help="Output path for database")
|
|
2071
|
+
@click.option("--full", is_flag=True, help="Download full version (larger, includes record metadata)")
|
|
2072
|
+
@click.option("--force", is_flag=True, help="Force re-download")
|
|
2073
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
2074
|
+
def db_download(repo: str, db_path: Optional[str], full: bool, force: bool, verbose: bool):
|
|
2075
|
+
"""
|
|
2076
|
+
Download entity database from HuggingFace Hub.
|
|
2077
|
+
|
|
2078
|
+
By default downloads the lite version (smaller, without record metadata).
|
|
2079
|
+
Use --full for the complete database with all source record data.
|
|
2080
|
+
|
|
2081
|
+
\b
|
|
2082
|
+
Examples:
|
|
2083
|
+
corp-extractor db download
|
|
2084
|
+
corp-extractor db download --full
|
|
2085
|
+
corp-extractor db download --repo my-org/my-entity-db
|
|
2086
|
+
"""
|
|
2087
|
+
_configure_logging(verbose)
|
|
2088
|
+
from .database.hub import download_database
|
|
2089
|
+
|
|
2090
|
+
filename = "entities.db" if full else "entities-lite.db"
|
|
2091
|
+
click.echo(f"Downloading {'full ' if full else 'lite '}database from {repo}...", err=True)
|
|
2092
|
+
|
|
2093
|
+
try:
|
|
2094
|
+
path = download_database(
|
|
2095
|
+
repo_id=repo,
|
|
2096
|
+
filename=filename,
|
|
2097
|
+
force_download=force,
|
|
2098
|
+
)
|
|
2099
|
+
click.echo(f"Database downloaded to: {path}")
|
|
2100
|
+
except Exception as e:
|
|
2101
|
+
raise click.ClickException(f"Download failed: {e}")
|
|
2102
|
+
|
|
2103
|
+
|
|
2104
|
+
@db_cmd.command("upload")
|
|
2105
|
+
@click.argument("db_path", type=click.Path(exists=True), required=False)
|
|
2106
|
+
@click.option("--repo", type=str, default="Corp-o-Rate-Community/entity-references", help="HuggingFace repo ID")
|
|
2107
|
+
@click.option("--message", type=str, default="Update entity database", help="Commit message")
|
|
2108
|
+
@click.option("--no-lite", is_flag=True, help="Skip creating lite version (without record data)")
|
|
2109
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
2110
|
+
def db_upload(db_path: Optional[str], repo: str, message: str, no_lite: bool, verbose: bool):
|
|
2111
|
+
"""
|
|
2112
|
+
Upload entity database to HuggingFace Hub.
|
|
2113
|
+
|
|
2114
|
+
First VACUUMs the database, then creates and uploads:
|
|
2115
|
+
- entities.db (full database)
|
|
2116
|
+
- entities-lite.db (without record data, smaller)
|
|
2117
|
+
|
|
2118
|
+
If no path is provided, uploads from the default cache location.
|
|
2119
|
+
Requires HF_TOKEN environment variable to be set.
|
|
2120
|
+
|
|
2121
|
+
\b
|
|
2122
|
+
Examples:
|
|
2123
|
+
corp-extractor db upload
|
|
2124
|
+
corp-extractor db upload /path/to/entities.db
|
|
2125
|
+
corp-extractor db upload --no-lite
|
|
2126
|
+
corp-extractor db upload --repo my-org/my-entity-db
|
|
2127
|
+
"""
|
|
2128
|
+
_configure_logging(verbose)
|
|
2129
|
+
from .database.hub import upload_database_with_variants, DEFAULT_CACHE_DIR, DEFAULT_DB_FULL_FILENAME
|
|
2130
|
+
|
|
2131
|
+
# Use default cache location if no path provided
|
|
2132
|
+
if db_path is None:
|
|
2133
|
+
db_path = str(DEFAULT_CACHE_DIR / DEFAULT_DB_FULL_FILENAME)
|
|
2134
|
+
if not Path(db_path).exists():
|
|
2135
|
+
raise click.ClickException(
|
|
2136
|
+
f"Database not found at default location: {db_path}\n"
|
|
2137
|
+
"Build the database first with import commands, or specify a path."
|
|
2138
|
+
)
|
|
2139
|
+
|
|
2140
|
+
click.echo(f"Uploading {db_path} to {repo}...", err=True)
|
|
2141
|
+
click.echo(" - Running VACUUM to optimize database", err=True)
|
|
2142
|
+
if not no_lite:
|
|
2143
|
+
click.echo(" - Creating lite version (without record data)", err=True)
|
|
2144
|
+
|
|
2145
|
+
try:
|
|
2146
|
+
results = upload_database_with_variants(
|
|
2147
|
+
db_path=db_path,
|
|
2148
|
+
repo_id=repo,
|
|
2149
|
+
commit_message=message,
|
|
2150
|
+
include_lite=not no_lite,
|
|
2151
|
+
)
|
|
2152
|
+
click.echo(f"\nUploaded {len(results)} file(s) successfully:")
|
|
2153
|
+
for filename, url in results.items():
|
|
2154
|
+
click.echo(f" - {filename}")
|
|
2155
|
+
except Exception as e:
|
|
2156
|
+
raise click.ClickException(f"Upload failed: {e}")
|
|
2157
|
+
|
|
2158
|
+
|
|
2159
|
+
@db_cmd.command("create-lite")
|
|
2160
|
+
@click.argument("db_path", type=click.Path(exists=True))
|
|
2161
|
+
@click.option("-o", "--output", type=click.Path(), help="Output path (default: adds -lite suffix)")
|
|
2162
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
2163
|
+
def db_create_lite(db_path: str, output: Optional[str], verbose: bool):
|
|
2164
|
+
"""
|
|
2165
|
+
Create a lite version of the database without record data.
|
|
2166
|
+
|
|
2167
|
+
The lite version strips the `record` column (full source data),
|
|
2168
|
+
keeping only core fields and embeddings. This significantly
|
|
2169
|
+
reduces file size while maintaining search functionality.
|
|
2170
|
+
|
|
2171
|
+
\b
|
|
2172
|
+
Examples:
|
|
2173
|
+
corp-extractor db create-lite entities.db
|
|
2174
|
+
corp-extractor db create-lite entities.db -o entities-lite.db
|
|
2175
|
+
"""
|
|
2176
|
+
_configure_logging(verbose)
|
|
2177
|
+
from .database.hub import create_lite_database
|
|
2178
|
+
|
|
2179
|
+
click.echo(f"Creating lite database from {db_path}...", err=True)
|
|
2180
|
+
|
|
2181
|
+
try:
|
|
2182
|
+
lite_path = create_lite_database(db_path, output)
|
|
2183
|
+
click.echo(f"Lite database created: {lite_path}")
|
|
2184
|
+
except Exception as e:
|
|
2185
|
+
raise click.ClickException(f"Failed to create lite database: {e}")
|
|
2186
|
+
|
|
2187
|
+
|
|
2188
|
+
@db_cmd.command("repair-embeddings")
|
|
2189
|
+
@click.option("--db", "db_path", type=click.Path(), help="Database path")
|
|
2190
|
+
@click.option("--batch-size", type=int, default=1000, help="Batch size for embedding generation (default: 1000)")
|
|
2191
|
+
@click.option("--source", type=str, help="Only repair specific source (gleif, sec_edgar, etc.)")
|
|
2192
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
2193
|
+
def db_repair_embeddings(db_path: Optional[str], batch_size: int, source: Optional[str], verbose: bool):
|
|
2194
|
+
"""
|
|
2195
|
+
Generate missing embeddings for organizations in the database.
|
|
2196
|
+
|
|
2197
|
+
This repairs databases where organizations were imported without embeddings
|
|
2198
|
+
being properly stored in the organization_embeddings table.
|
|
2199
|
+
|
|
2200
|
+
\b
|
|
2201
|
+
Examples:
|
|
2202
|
+
corp-extractor db repair-embeddings
|
|
2203
|
+
corp-extractor db repair-embeddings --source wikipedia
|
|
2204
|
+
corp-extractor db repair-embeddings --batch-size 500
|
|
2205
|
+
"""
|
|
2206
|
+
_configure_logging(verbose)
|
|
2207
|
+
|
|
2208
|
+
from .database import OrganizationDatabase, CompanyEmbedder
|
|
2209
|
+
|
|
2210
|
+
database = OrganizationDatabase(db_path=db_path)
|
|
2211
|
+
embedder = CompanyEmbedder()
|
|
2212
|
+
|
|
2213
|
+
# Check how many need repair
|
|
2214
|
+
missing_count = database.get_missing_embedding_count()
|
|
2215
|
+
if missing_count == 0:
|
|
2216
|
+
click.echo("All organizations have embeddings. Nothing to repair.")
|
|
2217
|
+
database.close()
|
|
2218
|
+
return
|
|
2219
|
+
|
|
2220
|
+
click.echo(f"Found {missing_count:,} organizations without embeddings.", err=True)
|
|
2221
|
+
click.echo("Generating embeddings...", err=True)
|
|
2222
|
+
|
|
2223
|
+
# Process in batches
|
|
2224
|
+
org_ids = []
|
|
2225
|
+
names = []
|
|
2226
|
+
count = 0
|
|
2227
|
+
|
|
2228
|
+
for org_id, name in database.get_organizations_without_embeddings(batch_size=batch_size, source=source):
|
|
2229
|
+
org_ids.append(org_id)
|
|
2230
|
+
names.append(name)
|
|
2231
|
+
|
|
2232
|
+
if len(names) >= batch_size:
|
|
2233
|
+
# Generate embeddings
|
|
2234
|
+
embeddings = embedder.embed_batch(names)
|
|
2235
|
+
database.insert_embeddings_batch(org_ids, embeddings)
|
|
2236
|
+
count += len(names)
|
|
2237
|
+
click.echo(f"Repaired {count:,} / {missing_count:,} embeddings...", err=True)
|
|
2238
|
+
org_ids = []
|
|
2239
|
+
names = []
|
|
2240
|
+
|
|
2241
|
+
# Final batch
|
|
2242
|
+
if names:
|
|
2243
|
+
embeddings = embedder.embed_batch(names)
|
|
2244
|
+
database.insert_embeddings_batch(org_ids, embeddings)
|
|
2245
|
+
count += len(names)
|
|
2246
|
+
|
|
2247
|
+
click.echo(f"\nRepaired {count:,} embeddings successfully.", err=True)
|
|
2248
|
+
database.close()
|
|
2249
|
+
|
|
2250
|
+
|
|
2251
|
+
@db_cmd.command("migrate")
|
|
2252
|
+
@click.argument("db_path", type=click.Path(exists=True))
|
|
2253
|
+
@click.option("--rename-file", is_flag=True, help="Also rename companies.db to entities.db")
|
|
2254
|
+
@click.option("--yes", is_flag=True, help="Skip confirmation prompt")
|
|
2255
|
+
@click.option("-v", "--verbose", is_flag=True, help="Verbose output")
|
|
2256
|
+
def db_migrate(db_path: str, rename_file: bool, yes: bool, verbose: bool):
|
|
2257
|
+
"""
|
|
2258
|
+
Migrate database from legacy schema to new schema.
|
|
2259
|
+
|
|
2260
|
+
Migrates from old naming (companies/company_embeddings tables)
|
|
2261
|
+
to new naming (organizations/organization_embeddings tables).
|
|
2262
|
+
|
|
2263
|
+
\b
|
|
2264
|
+
What this does:
|
|
2265
|
+
- Renames 'companies' table to 'organizations'
|
|
2266
|
+
- Renames 'company_embeddings' table to 'organization_embeddings'
|
|
2267
|
+
- Updates all indexes
|
|
2268
|
+
|
|
2269
|
+
\b
|
|
2270
|
+
Examples:
|
|
2271
|
+
corp-extractor db migrate companies.db
|
|
2272
|
+
corp-extractor db migrate companies.db --rename-file
|
|
2273
|
+
corp-extractor db migrate ~/.cache/corp-extractor/companies.db --yes
|
|
2274
|
+
"""
|
|
2275
|
+
_configure_logging(verbose)
|
|
2276
|
+
|
|
2277
|
+
from pathlib import Path
|
|
2278
|
+
from .database import OrganizationDatabase
|
|
2279
|
+
|
|
2280
|
+
db_path_obj = Path(db_path)
|
|
2281
|
+
|
|
2282
|
+
if not yes:
|
|
2283
|
+
click.confirm(
|
|
2284
|
+
f"This will migrate {db_path} from legacy schema (companies) to new schema (organizations).\n"
|
|
2285
|
+
"This operation cannot be undone. Continue?",
|
|
2286
|
+
abort=True
|
|
2287
|
+
)
|
|
2288
|
+
|
|
2289
|
+
try:
|
|
2290
|
+
database = OrganizationDatabase(db_path=db_path)
|
|
2291
|
+
migrations = database.migrate_from_legacy_schema()
|
|
2292
|
+
database.close()
|
|
2293
|
+
|
|
2294
|
+
if migrations:
|
|
2295
|
+
click.echo("Migration completed:")
|
|
2296
|
+
for table, action in migrations.items():
|
|
2297
|
+
click.echo(f" {table}: {action}")
|
|
2298
|
+
else:
|
|
2299
|
+
click.echo("No migration needed. Database already uses new schema.")
|
|
2300
|
+
|
|
2301
|
+
# Optionally rename the file
|
|
2302
|
+
if rename_file and db_path_obj.name.startswith("companies"):
|
|
2303
|
+
new_name = db_path_obj.name.replace("companies", "entities")
|
|
2304
|
+
new_path = db_path_obj.parent / new_name
|
|
2305
|
+
db_path_obj.rename(new_path)
|
|
2306
|
+
click.echo(f"Renamed file: {db_path} -> {new_path}")
|
|
2307
|
+
|
|
2308
|
+
except Exception as e:
|
|
2309
|
+
raise click.ClickException(f"Migration failed: {e}")
|
|
2310
|
+
|
|
2311
|
+
|
|
2312
|
+
# =============================================================================
|
|
2313
|
+
# Document commands
|
|
2314
|
+
# =============================================================================
|
|
2315
|
+
|
|
2316
|
+
@main.group("document")
|
|
2317
|
+
def document_cmd():
|
|
2318
|
+
"""
|
|
2319
|
+
Process documents with chunking, deduplication, and citations.
|
|
2320
|
+
|
|
2321
|
+
\b
|
|
2322
|
+
Commands:
|
|
2323
|
+
process Process a document through the full pipeline
|
|
2324
|
+
chunk Preview chunking without extraction
|
|
2325
|
+
|
|
2326
|
+
\b
|
|
2327
|
+
Examples:
|
|
2328
|
+
corp-extractor document process article.txt
|
|
2329
|
+
corp-extractor document process report.pdf --no-summary
|
|
2330
|
+
corp-extractor document chunk article.txt --max-tokens 500
|
|
2331
|
+
"""
|
|
2332
|
+
pass
|
|
2333
|
+
|
|
2334
|
+
|
|
2335
|
+
@document_cmd.command("process")
|
|
2336
|
+
@click.argument("input_source") # Can be file path or URL
|
|
2337
|
+
@click.option("--title", type=str, help="Document title (for citations)")
|
|
2338
|
+
@click.option("--author", "authors", type=str, multiple=True, help="Document author(s)")
|
|
2339
|
+
@click.option("--year", type=int, help="Publication year")
|
|
2340
|
+
@click.option("--max-tokens", type=int, default=1000, help="Target tokens per chunk (default: 1000)")
|
|
2341
|
+
@click.option("--overlap", type=int, default=100, help="Token overlap between chunks (default: 100)")
|
|
2342
|
+
@click.option("--no-summary", is_flag=True, help="Skip document summarization")
|
|
2343
|
+
@click.option("--no-dedup", is_flag=True, help="Skip deduplication across chunks")
|
|
2344
|
+
@click.option("--use-ocr", is_flag=True, help="Force OCR for PDF parsing")
|
|
2345
|
+
@click.option(
|
|
2346
|
+
"--stages",
|
|
2347
|
+
type=str,
|
|
2348
|
+
default="1-6",
|
|
2349
|
+
help="Pipeline stages to run (e.g., '1-3' or '1,2,5')"
|
|
2350
|
+
)
|
|
2351
|
+
@click.option(
|
|
2352
|
+
"-o", "--output",
|
|
2353
|
+
type=click.Choice(["table", "json", "triples"], case_sensitive=False),
|
|
2354
|
+
default="table",
|
|
2355
|
+
help="Output format (default: table)"
|
|
2356
|
+
)
|
|
2357
|
+
@click.option("-v", "--verbose", is_flag=True, help="Show verbose output")
|
|
2358
|
+
@click.option("-q", "--quiet", is_flag=True, help="Suppress progress messages")
|
|
2359
|
+
def document_process(
|
|
2360
|
+
input_source: str,
|
|
2361
|
+
title: Optional[str],
|
|
2362
|
+
authors: tuple[str, ...],
|
|
2363
|
+
year: Optional[int],
|
|
2364
|
+
max_tokens: int,
|
|
2365
|
+
overlap: int,
|
|
2366
|
+
no_summary: bool,
|
|
2367
|
+
no_dedup: bool,
|
|
2368
|
+
use_ocr: bool,
|
|
2369
|
+
stages: str,
|
|
2370
|
+
output: str,
|
|
2371
|
+
verbose: bool,
|
|
2372
|
+
quiet: bool,
|
|
2373
|
+
):
|
|
2374
|
+
"""
|
|
2375
|
+
Process a document or URL through the extraction pipeline with chunking.
|
|
2376
|
+
|
|
2377
|
+
Supports text files, URLs (web pages and PDFs).
|
|
2378
|
+
|
|
2379
|
+
\b
|
|
2380
|
+
Examples:
|
|
2381
|
+
corp-extractor document process article.txt
|
|
2382
|
+
corp-extractor document process report.txt --title "Annual Report" --year 2024
|
|
2383
|
+
corp-extractor document process https://example.com/article
|
|
2384
|
+
corp-extractor document process https://example.com/report.pdf --use-ocr
|
|
2385
|
+
corp-extractor document process doc.txt --no-summary --stages 1-3
|
|
2386
|
+
corp-extractor document process doc.txt -o json
|
|
2387
|
+
"""
|
|
2388
|
+
_configure_logging(verbose)
|
|
2389
|
+
|
|
2390
|
+
# Import document pipeline
|
|
2391
|
+
from .document import DocumentPipeline, DocumentPipelineConfig, Document
|
|
2392
|
+
from .models.document import ChunkingConfig
|
|
2393
|
+
from .pipeline import PipelineConfig
|
|
2394
|
+
_load_all_plugins()
|
|
2395
|
+
|
|
2396
|
+
# Parse stages
|
|
2397
|
+
enabled_stages = _parse_stages(stages)
|
|
2398
|
+
|
|
2399
|
+
# Build configs
|
|
2400
|
+
chunking_config = ChunkingConfig(
|
|
2401
|
+
target_tokens=max_tokens,
|
|
2402
|
+
max_tokens=max_tokens * 2,
|
|
2403
|
+
overlap_tokens=overlap,
|
|
2404
|
+
)
|
|
2405
|
+
|
|
2406
|
+
pipeline_config = PipelineConfig(
|
|
2407
|
+
enabled_stages=enabled_stages,
|
|
2408
|
+
)
|
|
2409
|
+
|
|
2410
|
+
doc_config = DocumentPipelineConfig(
|
|
2411
|
+
chunking=chunking_config,
|
|
2412
|
+
generate_summary=not no_summary,
|
|
2413
|
+
deduplicate_across_chunks=not no_dedup,
|
|
2414
|
+
pipeline_config=pipeline_config,
|
|
2415
|
+
)
|
|
2416
|
+
|
|
2417
|
+
# Create pipeline
|
|
2418
|
+
pipeline = DocumentPipeline(doc_config)
|
|
2419
|
+
|
|
2420
|
+
# Detect if input is a URL
|
|
2421
|
+
is_url = input_source.startswith(("http://", "https://"))
|
|
2422
|
+
|
|
2423
|
+
# Process
|
|
2424
|
+
try:
|
|
2425
|
+
if is_url:
|
|
2426
|
+
# Process URL
|
|
2427
|
+
from .document import URLLoaderConfig
|
|
2428
|
+
|
|
2429
|
+
if not quiet:
|
|
2430
|
+
click.echo(f"Fetching URL: {input_source}", err=True)
|
|
2431
|
+
|
|
2432
|
+
loader_config = URLLoaderConfig(use_ocr=use_ocr)
|
|
2433
|
+
ctx = pipeline.process_url_sync(input_source, loader_config)
|
|
2434
|
+
|
|
2435
|
+
if not quiet:
|
|
2436
|
+
click.echo(f"Processed: {ctx.document.metadata.title or 'Untitled'}", err=True)
|
|
2437
|
+
|
|
2438
|
+
else:
|
|
2439
|
+
# Process file
|
|
2440
|
+
from pathlib import Path
|
|
2441
|
+
import os
|
|
2442
|
+
|
|
2443
|
+
if not os.path.exists(input_source):
|
|
2444
|
+
raise click.ClickException(f"File not found: {input_source}")
|
|
2445
|
+
|
|
2446
|
+
# Read input file
|
|
2447
|
+
with open(input_source, "r", encoding="utf-8") as f:
|
|
2448
|
+
text = f.read()
|
|
2449
|
+
|
|
2450
|
+
if not text.strip():
|
|
2451
|
+
raise click.ClickException("Input file is empty")
|
|
2452
|
+
|
|
2453
|
+
if not quiet:
|
|
2454
|
+
click.echo(f"Processing document: {input_source} ({len(text)} chars)", err=True)
|
|
2455
|
+
|
|
2456
|
+
# Create document with metadata
|
|
2457
|
+
doc_title = title or Path(input_source).stem
|
|
2458
|
+
document = Document.from_text(
|
|
2459
|
+
text=text,
|
|
2460
|
+
title=doc_title,
|
|
2461
|
+
source_type="text",
|
|
2462
|
+
authors=list(authors),
|
|
2463
|
+
year=year,
|
|
2464
|
+
)
|
|
2465
|
+
|
|
2466
|
+
ctx = pipeline.process(document)
|
|
2467
|
+
|
|
2468
|
+
# Output results
|
|
2469
|
+
if output == "json":
|
|
2470
|
+
_print_document_json(ctx)
|
|
2471
|
+
elif output == "triples":
|
|
2472
|
+
_print_document_triples(ctx)
|
|
2473
|
+
else:
|
|
2474
|
+
_print_document_table(ctx, verbose)
|
|
2475
|
+
|
|
2476
|
+
# Report stats
|
|
2477
|
+
if not quiet:
|
|
2478
|
+
click.echo(f"\nChunks: {ctx.chunk_count}", err=True)
|
|
2479
|
+
click.echo(f"Statements: {ctx.statement_count}", err=True)
|
|
2480
|
+
if ctx.duplicates_removed > 0:
|
|
2481
|
+
click.echo(f"Duplicates removed: {ctx.duplicates_removed}", err=True)
|
|
2482
|
+
|
|
2483
|
+
if ctx.processing_errors:
|
|
2484
|
+
click.echo(f"\nErrors: {len(ctx.processing_errors)}", err=True)
|
|
2485
|
+
for error in ctx.processing_errors:
|
|
2486
|
+
click.echo(f" - {error}", err=True)
|
|
2487
|
+
|
|
2488
|
+
except Exception as e:
|
|
2489
|
+
logging.exception("Document processing error:")
|
|
2490
|
+
raise click.ClickException(f"Processing failed: {e}")
|
|
2491
|
+
|
|
2492
|
+
|
|
2493
|
+
@document_cmd.command("chunk")
|
|
2494
|
+
@click.argument("input_path", type=click.Path(exists=True))
|
|
2495
|
+
@click.option("--max-tokens", type=int, default=1000, help="Target tokens per chunk (default: 1000)")
|
|
2496
|
+
@click.option("--overlap", type=int, default=100, help="Token overlap between chunks (default: 100)")
|
|
2497
|
+
@click.option("-o", "--output", type=click.Choice(["table", "json"]), default="table", help="Output format")
|
|
2498
|
+
@click.option("-v", "--verbose", is_flag=True, help="Show verbose output")
|
|
2499
|
+
def document_chunk(
|
|
2500
|
+
input_path: str,
|
|
2501
|
+
max_tokens: int,
|
|
2502
|
+
overlap: int,
|
|
2503
|
+
output: str,
|
|
2504
|
+
verbose: bool,
|
|
2505
|
+
):
|
|
2506
|
+
"""
|
|
2507
|
+
Preview document chunking without running extraction.
|
|
2508
|
+
|
|
2509
|
+
Shows how a document would be split into chunks for processing.
|
|
2510
|
+
|
|
2511
|
+
\b
|
|
2512
|
+
Examples:
|
|
2513
|
+
corp-extractor document chunk article.txt
|
|
2514
|
+
corp-extractor document chunk article.txt --max-tokens 500
|
|
2515
|
+
corp-extractor document chunk article.txt -o json
|
|
2516
|
+
"""
|
|
2517
|
+
_configure_logging(verbose)
|
|
2518
|
+
|
|
2519
|
+
# Read input file
|
|
2520
|
+
with open(input_path, "r", encoding="utf-8") as f:
|
|
2521
|
+
text = f.read()
|
|
2522
|
+
|
|
2523
|
+
if not text.strip():
|
|
2524
|
+
raise click.ClickException("Input file is empty")
|
|
2525
|
+
|
|
2526
|
+
click.echo(f"Chunking document: {input_path} ({len(text)} chars)", err=True)
|
|
2527
|
+
|
|
2528
|
+
from .document import DocumentChunker, Document
|
|
2529
|
+
from .models.document import ChunkingConfig
|
|
2530
|
+
|
|
2531
|
+
config = ChunkingConfig(
|
|
2532
|
+
target_tokens=max_tokens,
|
|
2533
|
+
max_tokens=max_tokens * 2,
|
|
2534
|
+
overlap_tokens=overlap,
|
|
2535
|
+
)
|
|
2536
|
+
|
|
2537
|
+
from pathlib import Path
|
|
2538
|
+
document = Document.from_text(text, title=Path(input_path).stem)
|
|
2539
|
+
chunker = DocumentChunker(config)
|
|
2540
|
+
chunks = chunker.chunk_document(document)
|
|
2541
|
+
|
|
2542
|
+
if output == "json":
|
|
2543
|
+
import json
|
|
2544
|
+
chunk_data = [
|
|
2545
|
+
{
|
|
2546
|
+
"index": c.chunk_index,
|
|
2547
|
+
"tokens": c.token_count,
|
|
2548
|
+
"chars": len(c.text),
|
|
2549
|
+
"pages": c.page_numbers,
|
|
2550
|
+
"overlap": c.overlap_chars,
|
|
2551
|
+
"preview": c.text[:100] + "..." if len(c.text) > 100 else c.text,
|
|
2552
|
+
}
|
|
2553
|
+
for c in chunks
|
|
2554
|
+
]
|
|
2555
|
+
click.echo(json.dumps({"chunks": chunk_data, "total": len(chunks)}, indent=2))
|
|
2556
|
+
else:
|
|
2557
|
+
click.echo(f"\nCreated {len(chunks)} chunk(s):\n")
|
|
2558
|
+
click.echo("-" * 80)
|
|
2559
|
+
|
|
2560
|
+
for chunk in chunks:
|
|
2561
|
+
click.echo(f"Chunk {chunk.chunk_index + 1}:")
|
|
2562
|
+
click.echo(f" Tokens: {chunk.token_count}")
|
|
2563
|
+
click.echo(f" Characters: {len(chunk.text)}")
|
|
2564
|
+
if chunk.page_numbers:
|
|
2565
|
+
click.echo(f" Pages: {chunk.page_numbers}")
|
|
2566
|
+
if chunk.overlap_chars > 0:
|
|
2567
|
+
click.echo(f" Overlap: {chunk.overlap_chars} chars")
|
|
2568
|
+
|
|
2569
|
+
preview = chunk.text[:200].replace("\n", " ")
|
|
2570
|
+
if len(chunk.text) > 200:
|
|
2571
|
+
preview += "..."
|
|
2572
|
+
click.echo(f" Preview: {preview}")
|
|
2573
|
+
click.echo("-" * 80)
|
|
2574
|
+
|
|
2575
|
+
|
|
2576
|
+
def _print_document_json(ctx):
|
|
2577
|
+
"""Print document context as JSON."""
|
|
2578
|
+
import json
|
|
2579
|
+
click.echo(json.dumps(ctx.as_dict(), indent=2, default=str))
|
|
2580
|
+
|
|
2581
|
+
|
|
2582
|
+
def _print_document_triples(ctx):
|
|
2583
|
+
"""Print document statements as triples."""
|
|
2584
|
+
for stmt in ctx.labeled_statements:
|
|
2585
|
+
parts = [stmt.subject_fqn, stmt.statement.predicate, stmt.object_fqn]
|
|
2586
|
+
if stmt.page_number:
|
|
2587
|
+
parts.append(f"p.{stmt.page_number}")
|
|
2588
|
+
click.echo("\t".join(parts))
|
|
2589
|
+
|
|
2590
|
+
|
|
2591
|
+
def _print_document_table(ctx, verbose: bool):
|
|
2592
|
+
"""Print document context in table format."""
|
|
2593
|
+
# Show summary if available
|
|
2594
|
+
if ctx.document.summary:
|
|
2595
|
+
click.echo("\nDocument Summary:")
|
|
2596
|
+
click.echo("-" * 40)
|
|
2597
|
+
click.echo(ctx.document.summary)
|
|
2598
|
+
click.echo("-" * 40)
|
|
2599
|
+
|
|
2600
|
+
if not ctx.labeled_statements:
|
|
2601
|
+
click.echo("\nNo statements extracted.")
|
|
2602
|
+
return
|
|
2603
|
+
|
|
2604
|
+
click.echo(f"\nExtracted {len(ctx.labeled_statements)} statement(s):\n")
|
|
2605
|
+
click.echo("-" * 80)
|
|
2606
|
+
|
|
2607
|
+
for i, stmt in enumerate(ctx.labeled_statements, 1):
|
|
2608
|
+
click.echo(f"{i}. {stmt.subject_fqn}")
|
|
2609
|
+
click.echo(f" --[{stmt.statement.predicate}]-->")
|
|
2610
|
+
click.echo(f" {stmt.object_fqn}")
|
|
2611
|
+
|
|
2612
|
+
# Show citation
|
|
2613
|
+
if stmt.citation:
|
|
2614
|
+
click.echo(f" Citation: {stmt.citation}")
|
|
2615
|
+
elif stmt.page_number:
|
|
2616
|
+
click.echo(f" Page: {stmt.page_number}")
|
|
2617
|
+
|
|
2618
|
+
# Show labels
|
|
2619
|
+
for label in stmt.labels:
|
|
2620
|
+
if isinstance(label.label_value, float):
|
|
2621
|
+
click.echo(f" {label.label_type}: {label.label_value:.3f}")
|
|
2622
|
+
else:
|
|
2623
|
+
click.echo(f" {label.label_type}: {label.label_value}")
|
|
2624
|
+
|
|
2625
|
+
# Show taxonomy (top 3)
|
|
2626
|
+
if stmt.taxonomy_results:
|
|
2627
|
+
sorted_taxonomy = sorted(stmt.taxonomy_results, key=lambda t: t.confidence, reverse=True)[:3]
|
|
2628
|
+
taxonomy_strs = [f"{t.category}:{t.label}" for t in sorted_taxonomy]
|
|
2629
|
+
click.echo(f" Topics: {', '.join(taxonomy_strs)}")
|
|
2630
|
+
|
|
2631
|
+
if verbose and stmt.statement.source_text:
|
|
2632
|
+
source = stmt.statement.source_text[:60] + "..." if len(stmt.statement.source_text) > 60 else stmt.statement.source_text
|
|
2633
|
+
click.echo(f" Source: \"{source}\"")
|
|
2634
|
+
|
|
2635
|
+
click.echo("-" * 80)
|
|
2636
|
+
|
|
2637
|
+
# Show timings in verbose mode
|
|
2638
|
+
if verbose and ctx.stage_timings:
|
|
2639
|
+
click.echo("\nStage timings:")
|
|
2640
|
+
for stage, duration in ctx.stage_timings.items():
|
|
2641
|
+
click.echo(f" {stage}: {duration:.3f}s")
|
|
2642
|
+
|
|
2643
|
+
|
|
638
2644
|
# =============================================================================
|
|
639
2645
|
# Helper functions
|
|
640
2646
|
# =============================================================================
|