corp-extractor 0.2.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of corp-extractor might be problematic. Click here for more details.
- corp_extractor-0.2.7.dist-info/METADATA +377 -0
- corp_extractor-0.2.7.dist-info/RECORD +11 -0
- corp_extractor-0.2.7.dist-info/WHEEL +4 -0
- corp_extractor-0.2.7.dist-info/entry_points.txt +3 -0
- statement_extractor/__init__.py +110 -0
- statement_extractor/canonicalization.py +196 -0
- statement_extractor/cli.py +215 -0
- statement_extractor/extractor.py +649 -0
- statement_extractor/models.py +284 -0
- statement_extractor/predicate_comparer.py +611 -0
- statement_extractor/scoring.py +419 -0
|
@@ -0,0 +1,377 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: corp-extractor
|
|
3
|
+
Version: 0.2.7
|
|
4
|
+
Summary: Extract structured statements from text using T5-Gemma 2 and Diverse Beam Search
|
|
5
|
+
Project-URL: Homepage, https://github.com/corp-o-rate/statement-extractor
|
|
6
|
+
Project-URL: Documentation, https://github.com/corp-o-rate/statement-extractor#readme
|
|
7
|
+
Project-URL: Repository, https://github.com/corp-o-rate/statement-extractor
|
|
8
|
+
Project-URL: Issues, https://github.com/corp-o-rate/statement-extractor/issues
|
|
9
|
+
Author-email: Corp-o-Rate <neil@corp-o-rate.com>
|
|
10
|
+
Maintainer-email: Corp-o-Rate <neil@corp-o-rate.com>
|
|
11
|
+
License: MIT
|
|
12
|
+
Keywords: diverse-beam-search,embeddings,gemma,information-extraction,knowledge-graph,nlp,statement-extraction,subject-predicate-object,t5,transformers,triples
|
|
13
|
+
Classifier: Development Status :: 4 - Beta
|
|
14
|
+
Classifier: Intended Audience :: Developers
|
|
15
|
+
Classifier: Intended Audience :: Science/Research
|
|
16
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
17
|
+
Classifier: Operating System :: OS Independent
|
|
18
|
+
Classifier: Programming Language :: Python :: 3
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
22
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
23
|
+
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
24
|
+
Classifier: Topic :: Text Processing :: Linguistic
|
|
25
|
+
Requires-Python: >=3.10
|
|
26
|
+
Requires-Dist: click>=8.0.0
|
|
27
|
+
Requires-Dist: numpy>=1.24.0
|
|
28
|
+
Requires-Dist: pydantic>=2.0.0
|
|
29
|
+
Requires-Dist: torch>=2.0.0
|
|
30
|
+
Requires-Dist: transformers>=5.0.0rc3
|
|
31
|
+
Provides-Extra: all
|
|
32
|
+
Requires-Dist: sentence-transformers>=2.2.0; extra == 'all'
|
|
33
|
+
Provides-Extra: dev
|
|
34
|
+
Requires-Dist: mypy>=1.0.0; extra == 'dev'
|
|
35
|
+
Requires-Dist: pytest-cov>=4.0.0; extra == 'dev'
|
|
36
|
+
Requires-Dist: pytest>=7.0.0; extra == 'dev'
|
|
37
|
+
Requires-Dist: ruff>=0.1.0; extra == 'dev'
|
|
38
|
+
Provides-Extra: embeddings
|
|
39
|
+
Requires-Dist: sentence-transformers>=2.2.0; extra == 'embeddings'
|
|
40
|
+
Description-Content-Type: text/markdown
|
|
41
|
+
|
|
42
|
+
# Corp Extractor
|
|
43
|
+
|
|
44
|
+
Extract structured subject-predicate-object statements from unstructured text using the T5-Gemma 2 model.
|
|
45
|
+
|
|
46
|
+
[](https://pypi.org/project/corp-extractor/)
|
|
47
|
+
[](https://pypi.org/project/corp-extractor/)
|
|
48
|
+
[](https://opensource.org/licenses/MIT)
|
|
49
|
+
|
|
50
|
+
## Features
|
|
51
|
+
|
|
52
|
+
- **Structured Extraction**: Converts unstructured text into subject-predicate-object triples
|
|
53
|
+
- **Entity Type Recognition**: Identifies 12 entity types (ORG, PERSON, GPE, LOC, PRODUCT, EVENT, etc.)
|
|
54
|
+
- **Quality Scoring** *(v0.2.0)*: Each triple scored for groundedness (0-1) based on source text
|
|
55
|
+
- **Beam Merging** *(v0.2.0)*: Combines top beams for better coverage instead of picking one
|
|
56
|
+
- **Embedding-based Dedup** *(v0.2.0)*: Uses semantic similarity to detect near-duplicate predicates
|
|
57
|
+
- **Predicate Taxonomies** *(v0.2.0)*: Normalize predicates to canonical forms via embeddings
|
|
58
|
+
- **Contextualized Matching** *(v0.2.2)*: Compares full "Subject Predicate Object" against source text for better accuracy
|
|
59
|
+
- **Entity Type Merging** *(v0.2.3)*: Automatically merges UNKNOWN entity types with specific types during deduplication
|
|
60
|
+
- **Reversal Detection** *(v0.2.3)*: Detects and corrects subject-object reversals using embedding comparison
|
|
61
|
+
- **Command Line Interface** *(v0.2.4)*: Full-featured CLI for terminal usage
|
|
62
|
+
- **Multiple Output Formats**: Get results as Pydantic models, JSON, XML, or dictionaries
|
|
63
|
+
|
|
64
|
+
## Installation
|
|
65
|
+
|
|
66
|
+
```bash
|
|
67
|
+
# Recommended: include embedding support for smart deduplication
|
|
68
|
+
pip install "corp-extractor[embeddings]"
|
|
69
|
+
|
|
70
|
+
# Minimal installation (no embedding features)
|
|
71
|
+
pip install corp-extractor
|
|
72
|
+
```
|
|
73
|
+
|
|
74
|
+
**Note**: This package requires `transformers>=5.0.0` (pre-release) for T5-Gemma2 model support. Install with `--pre` flag if needed:
|
|
75
|
+
```bash
|
|
76
|
+
pip install --pre "corp-extractor[embeddings]"
|
|
77
|
+
```
|
|
78
|
+
|
|
79
|
+
**For GPU support**, install PyTorch with CUDA first:
|
|
80
|
+
```bash
|
|
81
|
+
pip install torch --index-url https://download.pytorch.org/whl/cu121
|
|
82
|
+
pip install "corp-extractor[embeddings]"
|
|
83
|
+
```
|
|
84
|
+
|
|
85
|
+
## Quick Start
|
|
86
|
+
|
|
87
|
+
```python
|
|
88
|
+
from statement_extractor import extract_statements
|
|
89
|
+
|
|
90
|
+
result = extract_statements("""
|
|
91
|
+
Apple Inc. announced the iPhone 15 at their September event.
|
|
92
|
+
Tim Cook presented the new features to customers worldwide.
|
|
93
|
+
""")
|
|
94
|
+
|
|
95
|
+
for stmt in result:
|
|
96
|
+
print(f"{stmt.subject.text} ({stmt.subject.type})")
|
|
97
|
+
print(f" --[{stmt.predicate}]--> {stmt.object.text}")
|
|
98
|
+
print(f" Confidence: {stmt.confidence_score:.2f}") # NEW in v0.2.0
|
|
99
|
+
```
|
|
100
|
+
|
|
101
|
+
## Command Line Interface
|
|
102
|
+
|
|
103
|
+
The library includes a CLI for quick extraction from the terminal.
|
|
104
|
+
|
|
105
|
+
### Install Globally (Recommended)
|
|
106
|
+
|
|
107
|
+
For best results, install globally first:
|
|
108
|
+
|
|
109
|
+
```bash
|
|
110
|
+
# Using uv (recommended)
|
|
111
|
+
uv tool install "corp-extractor[embeddings]"
|
|
112
|
+
|
|
113
|
+
# Using pipx
|
|
114
|
+
pipx install "corp-extractor[embeddings]"
|
|
115
|
+
|
|
116
|
+
# Using pip
|
|
117
|
+
pip install "corp-extractor[embeddings]"
|
|
118
|
+
|
|
119
|
+
# Then use anywhere
|
|
120
|
+
corp-extractor "Your text here"
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
### Quick Run with uvx
|
|
124
|
+
|
|
125
|
+
Run directly without installing using [uv](https://docs.astral.sh/uv/):
|
|
126
|
+
|
|
127
|
+
```bash
|
|
128
|
+
uvx corp-extractor "Apple announced a new iPhone."
|
|
129
|
+
```
|
|
130
|
+
|
|
131
|
+
**Note**: First run downloads the model (~1.5GB) which may take a few minutes.
|
|
132
|
+
|
|
133
|
+
### Usage Examples
|
|
134
|
+
|
|
135
|
+
```bash
|
|
136
|
+
# Extract from text argument
|
|
137
|
+
corp-extractor "Apple Inc. announced the iPhone 15 at their September event."
|
|
138
|
+
|
|
139
|
+
# Extract from file
|
|
140
|
+
corp-extractor -f article.txt
|
|
141
|
+
|
|
142
|
+
# Pipe from stdin
|
|
143
|
+
cat article.txt | corp-extractor -
|
|
144
|
+
|
|
145
|
+
# Output as JSON
|
|
146
|
+
corp-extractor "Tim Cook is CEO of Apple." --json
|
|
147
|
+
|
|
148
|
+
# Output as XML
|
|
149
|
+
corp-extractor -f article.txt --xml
|
|
150
|
+
|
|
151
|
+
# Verbose output with confidence scores
|
|
152
|
+
corp-extractor -f article.txt --verbose
|
|
153
|
+
|
|
154
|
+
# Use more beams for better quality
|
|
155
|
+
corp-extractor -f article.txt --beams 8
|
|
156
|
+
|
|
157
|
+
# Use custom predicate taxonomy
|
|
158
|
+
corp-extractor -f article.txt --taxonomy predicates.txt
|
|
159
|
+
|
|
160
|
+
# Use GPU explicitly
|
|
161
|
+
corp-extractor -f article.txt --device cuda
|
|
162
|
+
```
|
|
163
|
+
|
|
164
|
+
### CLI Options
|
|
165
|
+
|
|
166
|
+
```
|
|
167
|
+
Usage: corp-extractor [OPTIONS] [TEXT]
|
|
168
|
+
|
|
169
|
+
Options:
|
|
170
|
+
-f, --file PATH Read input from file
|
|
171
|
+
-o, --output [table|json|xml] Output format (default: table)
|
|
172
|
+
--json Output as JSON (shortcut)
|
|
173
|
+
--xml Output as XML (shortcut)
|
|
174
|
+
-b, --beams INTEGER Number of beams (default: 4)
|
|
175
|
+
--diversity FLOAT Diversity penalty (default: 1.0)
|
|
176
|
+
--max-tokens INTEGER Max tokens to generate (default: 2048)
|
|
177
|
+
--no-dedup Disable deduplication
|
|
178
|
+
--no-embeddings Disable embedding-based dedup (faster)
|
|
179
|
+
--no-merge Disable beam merging
|
|
180
|
+
--dedup-threshold FLOAT Deduplication threshold (default: 0.65)
|
|
181
|
+
--min-confidence FLOAT Min confidence filter (default: 0)
|
|
182
|
+
--taxonomy PATH Load predicate taxonomy from file
|
|
183
|
+
--taxonomy-threshold FLOAT Taxonomy matching threshold (default: 0.5)
|
|
184
|
+
--device [auto|cuda|cpu] Device to use (default: auto)
|
|
185
|
+
-v, --verbose Show confidence scores and metadata
|
|
186
|
+
-q, --quiet Suppress progress messages
|
|
187
|
+
--version Show version
|
|
188
|
+
--help Show this message
|
|
189
|
+
```
|
|
190
|
+
|
|
191
|
+
## New in v0.2.0: Quality Scoring & Beam Merging
|
|
192
|
+
|
|
193
|
+
By default, the library now:
|
|
194
|
+
- **Scores each triple** for groundedness based on whether entities appear in source text
|
|
195
|
+
- **Merges top beams** instead of selecting one, improving coverage
|
|
196
|
+
- **Uses embeddings** to detect semantically similar predicates ("bought" ≈ "acquired")
|
|
197
|
+
|
|
198
|
+
```python
|
|
199
|
+
from statement_extractor import ExtractionOptions, ScoringConfig
|
|
200
|
+
|
|
201
|
+
# Precision mode - filter low-confidence triples
|
|
202
|
+
scoring = ScoringConfig(min_confidence=0.7)
|
|
203
|
+
options = ExtractionOptions(scoring_config=scoring)
|
|
204
|
+
result = extract_statements(text, options)
|
|
205
|
+
|
|
206
|
+
# Access confidence scores
|
|
207
|
+
for stmt in result:
|
|
208
|
+
print(f"{stmt} (confidence: {stmt.confidence_score:.2f})")
|
|
209
|
+
```
|
|
210
|
+
|
|
211
|
+
## New in v0.2.0: Predicate Taxonomies
|
|
212
|
+
|
|
213
|
+
Normalize predicates to canonical forms using embedding similarity:
|
|
214
|
+
|
|
215
|
+
```python
|
|
216
|
+
from statement_extractor import PredicateTaxonomy, ExtractionOptions
|
|
217
|
+
|
|
218
|
+
taxonomy = PredicateTaxonomy(predicates=[
|
|
219
|
+
"acquired", "founded", "works_for", "announced",
|
|
220
|
+
"invested_in", "partnered_with"
|
|
221
|
+
])
|
|
222
|
+
|
|
223
|
+
options = ExtractionOptions(predicate_taxonomy=taxonomy)
|
|
224
|
+
result = extract_statements(text, options)
|
|
225
|
+
|
|
226
|
+
# "bought" -> "acquired" via embedding similarity
|
|
227
|
+
for stmt in result:
|
|
228
|
+
if stmt.canonical_predicate:
|
|
229
|
+
print(f"{stmt.predicate} -> {stmt.canonical_predicate}")
|
|
230
|
+
```
|
|
231
|
+
|
|
232
|
+
## New in v0.2.2: Contextualized Matching
|
|
233
|
+
|
|
234
|
+
Predicate canonicalization and deduplication now use **contextualized matching**:
|
|
235
|
+
- Compares full "Subject Predicate Object" strings against source text
|
|
236
|
+
- Better accuracy because predicates are evaluated in context
|
|
237
|
+
- When duplicates are found, keeps the statement with the best match to source text
|
|
238
|
+
|
|
239
|
+
This means "Apple bought Beats" vs "Apple acquired Beats" are compared holistically, not just "bought" vs "acquired".
|
|
240
|
+
|
|
241
|
+
## New in v0.2.3: Entity Type Merging & Reversal Detection
|
|
242
|
+
|
|
243
|
+
### Entity Type Merging
|
|
244
|
+
|
|
245
|
+
When deduplicating statements, entity types are now automatically merged. If one statement has `UNKNOWN` type and a duplicate has a specific type (like `ORG` or `PERSON`), the specific type is preserved:
|
|
246
|
+
|
|
247
|
+
```python
|
|
248
|
+
# Before deduplication:
|
|
249
|
+
# Statement 1: AtlasBio Labs (UNKNOWN) --sued by--> CuraPharm (ORG)
|
|
250
|
+
# Statement 2: AtlasBio Labs (ORG) --sued by--> CuraPharm (ORG)
|
|
251
|
+
|
|
252
|
+
# After deduplication:
|
|
253
|
+
# Single statement: AtlasBio Labs (ORG) --sued by--> CuraPharm (ORG)
|
|
254
|
+
```
|
|
255
|
+
|
|
256
|
+
### Subject-Object Reversal Detection
|
|
257
|
+
|
|
258
|
+
The library now detects when subject and object may have been extracted in the wrong order by comparing embeddings against source text:
|
|
259
|
+
|
|
260
|
+
```python
|
|
261
|
+
from statement_extractor import PredicateComparer
|
|
262
|
+
|
|
263
|
+
comparer = PredicateComparer()
|
|
264
|
+
|
|
265
|
+
# Automatically detect and fix reversals
|
|
266
|
+
fixed_statements = comparer.detect_and_fix_reversals(statements)
|
|
267
|
+
|
|
268
|
+
for stmt in fixed_statements:
|
|
269
|
+
if stmt.was_reversed:
|
|
270
|
+
print(f"Fixed reversal: {stmt}")
|
|
271
|
+
```
|
|
272
|
+
|
|
273
|
+
**How it works:**
|
|
274
|
+
1. For each statement with source text, compares:
|
|
275
|
+
- "Subject Predicate Object" embedding vs source text
|
|
276
|
+
- "Object Predicate Subject" embedding vs source text
|
|
277
|
+
2. If the reversed form has higher similarity, swaps subject and object
|
|
278
|
+
3. Sets `was_reversed=True` to indicate the correction
|
|
279
|
+
|
|
280
|
+
During deduplication, reversed duplicates (e.g., "A -> P -> B" and "B -> P -> A") are now detected and merged, with the correct orientation determined by source text similarity.
|
|
281
|
+
|
|
282
|
+
## Disable Embeddings (Faster, No Extra Dependencies)
|
|
283
|
+
|
|
284
|
+
```python
|
|
285
|
+
options = ExtractionOptions(
|
|
286
|
+
embedding_dedup=False, # Use exact text matching
|
|
287
|
+
merge_beams=False, # Select single best beam
|
|
288
|
+
)
|
|
289
|
+
result = extract_statements(text, options)
|
|
290
|
+
```
|
|
291
|
+
|
|
292
|
+
## Output Formats
|
|
293
|
+
|
|
294
|
+
```python
|
|
295
|
+
from statement_extractor import (
|
|
296
|
+
extract_statements,
|
|
297
|
+
extract_statements_as_json,
|
|
298
|
+
extract_statements_as_xml,
|
|
299
|
+
extract_statements_as_dict,
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
# Pydantic models (default)
|
|
303
|
+
result = extract_statements(text)
|
|
304
|
+
|
|
305
|
+
# JSON string
|
|
306
|
+
json_output = extract_statements_as_json(text)
|
|
307
|
+
|
|
308
|
+
# Raw XML (model's native format)
|
|
309
|
+
xml_output = extract_statements_as_xml(text)
|
|
310
|
+
|
|
311
|
+
# Python dictionary
|
|
312
|
+
dict_output = extract_statements_as_dict(text)
|
|
313
|
+
```
|
|
314
|
+
|
|
315
|
+
## Batch Processing
|
|
316
|
+
|
|
317
|
+
```python
|
|
318
|
+
from statement_extractor import StatementExtractor
|
|
319
|
+
|
|
320
|
+
extractor = StatementExtractor(device="cuda") # or "cpu"
|
|
321
|
+
|
|
322
|
+
texts = ["Text 1...", "Text 2...", "Text 3..."]
|
|
323
|
+
for text in texts:
|
|
324
|
+
result = extractor.extract(text)
|
|
325
|
+
print(f"Found {len(result)} statements")
|
|
326
|
+
```
|
|
327
|
+
|
|
328
|
+
## Entity Types
|
|
329
|
+
|
|
330
|
+
| Type | Description | Example |
|
|
331
|
+
|------|-------------|---------|
|
|
332
|
+
| `ORG` | Organizations | Apple Inc., United Nations |
|
|
333
|
+
| `PERSON` | People | Tim Cook, Elon Musk |
|
|
334
|
+
| `GPE` | Geopolitical entities | USA, California, Paris |
|
|
335
|
+
| `LOC` | Non-GPE locations | Mount Everest, Pacific Ocean |
|
|
336
|
+
| `PRODUCT` | Products | iPhone, Model S |
|
|
337
|
+
| `EVENT` | Events | World Cup, CES 2024 |
|
|
338
|
+
| `WORK_OF_ART` | Creative works | Mona Lisa, Game of Thrones |
|
|
339
|
+
| `LAW` | Legal documents | GDPR, Clean Air Act |
|
|
340
|
+
| `DATE` | Dates | 2024, January 15 |
|
|
341
|
+
| `MONEY` | Monetary values | $50 million, €100 |
|
|
342
|
+
| `PERCENT` | Percentages | 25%, 0.5% |
|
|
343
|
+
| `QUANTITY` | Quantities | 500 employees, 1.5 tons |
|
|
344
|
+
| `UNKNOWN` | Unrecognized | (fallback) |
|
|
345
|
+
|
|
346
|
+
## How It Works
|
|
347
|
+
|
|
348
|
+
This library uses the T5-Gemma 2 statement extraction model with **Diverse Beam Search** ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424)):
|
|
349
|
+
|
|
350
|
+
1. **Diverse Beam Search**: Generates 4+ candidate outputs using beam groups with diversity penalty
|
|
351
|
+
2. **Quality Scoring** *(v0.2.0)*: Each triple scored for groundedness in source text
|
|
352
|
+
3. **Beam Merging** *(v0.2.0)*: Top beams combined for better coverage
|
|
353
|
+
4. **Embedding Dedup** *(v0.2.0)*: Semantic similarity removes near-duplicate predicates
|
|
354
|
+
5. **Predicate Normalization** *(v0.2.0)*: Optional taxonomy matching via embeddings
|
|
355
|
+
6. **Contextualized Matching** *(v0.2.2)*: Full statement context used for canonicalization and dedup
|
|
356
|
+
7. **Entity Type Merging** *(v0.2.3)*: UNKNOWN types merged with specific types during dedup
|
|
357
|
+
8. **Reversal Detection** *(v0.2.3)*: Subject-object reversals detected and corrected via embedding comparison
|
|
358
|
+
|
|
359
|
+
## Requirements
|
|
360
|
+
|
|
361
|
+
- Python 3.10+
|
|
362
|
+
- PyTorch 2.0+
|
|
363
|
+
- Transformers 4.35+
|
|
364
|
+
- Pydantic 2.0+
|
|
365
|
+
- sentence-transformers 2.2+ *(optional, for embedding features)*
|
|
366
|
+
- ~2GB VRAM (GPU) or ~4GB RAM (CPU)
|
|
367
|
+
|
|
368
|
+
## Links
|
|
369
|
+
|
|
370
|
+
- [Model on HuggingFace](https://huggingface.co/Corp-o-Rate-Community/statement-extractor)
|
|
371
|
+
- [Web Demo](https://statement-extractor.corp-o-rate.com)
|
|
372
|
+
- [Diverse Beam Search Paper](https://arxiv.org/abs/1610.02424)
|
|
373
|
+
- [Corp-o-Rate](https://corp-o-rate.com)
|
|
374
|
+
|
|
375
|
+
## License
|
|
376
|
+
|
|
377
|
+
MIT License - see LICENSE file for details.
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
statement_extractor/__init__.py,sha256=MIZgn-lD9-XGJapzdyYxMhEJFRrTzftbRklrhwA4e8w,2967
|
|
2
|
+
statement_extractor/canonicalization.py,sha256=ZMLs6RLWJa_rOJ8XZ7PoHFU13-zeJkOMDnvK-ZaFa5s,5991
|
|
3
|
+
statement_extractor/cli.py,sha256=kJnZm_mbq4np1vTxSjczMZM5zGuDlC8Z5xLJd8O3xZ4,7605
|
|
4
|
+
statement_extractor/extractor.py,sha256=PX0SiJnYUnh06seyH5W77FcPpcvLXwEM8IGsuVuRh0Q,22158
|
|
5
|
+
statement_extractor/models.py,sha256=xDF3pDPhIiqiMwFMPV94aBEgZGbSe-x2TkshahOiCog,10739
|
|
6
|
+
statement_extractor/predicate_comparer.py,sha256=iwBfNJFNOFv8ODKN9F9EtmknpCeSThOpnu6P_PJSmgE,24898
|
|
7
|
+
statement_extractor/scoring.py,sha256=Wa1BW6jXtHD7dZkUXwdwE39hwFo2ko6BuIogBc4E2Lk,14493
|
|
8
|
+
corp_extractor-0.2.7.dist-info/METADATA,sha256=ldfaiJqQEkCF8vlVq2H3t5MJOH9_C1QSAz80s33nSVU,13591
|
|
9
|
+
corp_extractor-0.2.7.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
10
|
+
corp_extractor-0.2.7.dist-info/entry_points.txt,sha256=i0iKFqPIusvb-QTQ1zNnFgAqatgVah-jIhahbs5TToQ,115
|
|
11
|
+
corp_extractor-0.2.7.dist-info/RECORD,,
|
|
@@ -0,0 +1,110 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Statement Extractor - Extract structured statements from text using T5-Gemma 2.
|
|
3
|
+
|
|
4
|
+
A Python library for extracting subject-predicate-object triples from unstructured text.
|
|
5
|
+
Uses Diverse Beam Search (Vijayakumar et al., 2016) for high-quality extraction.
|
|
6
|
+
|
|
7
|
+
Paper: https://arxiv.org/abs/1610.02424
|
|
8
|
+
|
|
9
|
+
Features:
|
|
10
|
+
- Quality-based beam scoring and merging
|
|
11
|
+
- Embedding-based predicate comparison for smart deduplication
|
|
12
|
+
- Configurable precision/recall tradeoff
|
|
13
|
+
- Support for predicate taxonomies
|
|
14
|
+
|
|
15
|
+
Example:
|
|
16
|
+
>>> from statement_extractor import extract_statements
|
|
17
|
+
>>> result = extract_statements("Apple Inc. announced a new iPhone today.")
|
|
18
|
+
>>> for stmt in result:
|
|
19
|
+
... print(f"{stmt.subject.text} -> {stmt.predicate} -> {stmt.object.text}")
|
|
20
|
+
Apple Inc. -> announced -> a new iPhone
|
|
21
|
+
|
|
22
|
+
>>> # Access confidence scores
|
|
23
|
+
>>> for stmt in result:
|
|
24
|
+
... print(f"{stmt} (confidence: {stmt.confidence_score:.2f})")
|
|
25
|
+
|
|
26
|
+
>>> # Get as different formats
|
|
27
|
+
>>> xml = extract_statements_as_xml("Some text...")
|
|
28
|
+
>>> json_str = extract_statements_as_json("Some text...")
|
|
29
|
+
>>> data = extract_statements_as_dict("Some text...")
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
__version__ = "0.2.5"
|
|
33
|
+
|
|
34
|
+
# Core models
|
|
35
|
+
from .models import (
|
|
36
|
+
Entity,
|
|
37
|
+
EntityType,
|
|
38
|
+
ExtractionOptions,
|
|
39
|
+
ExtractionResult,
|
|
40
|
+
Statement,
|
|
41
|
+
# New in 0.2.0
|
|
42
|
+
PredicateMatch,
|
|
43
|
+
PredicateTaxonomy,
|
|
44
|
+
PredicateComparisonConfig,
|
|
45
|
+
ScoringConfig,
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
# Main extractor
|
|
49
|
+
from .extractor import (
|
|
50
|
+
StatementExtractor,
|
|
51
|
+
extract_statements,
|
|
52
|
+
extract_statements_as_dict,
|
|
53
|
+
extract_statements_as_json,
|
|
54
|
+
extract_statements_as_xml,
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
# Canonicalization utilities
|
|
58
|
+
from .canonicalization import (
|
|
59
|
+
Canonicalizer,
|
|
60
|
+
default_entity_canonicalizer,
|
|
61
|
+
deduplicate_statements_exact,
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
# Scoring utilities
|
|
65
|
+
from .scoring import (
|
|
66
|
+
BeamScorer,
|
|
67
|
+
TripleScorer,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
__all__ = [
|
|
71
|
+
# Version
|
|
72
|
+
"__version__",
|
|
73
|
+
# Core models
|
|
74
|
+
"Entity",
|
|
75
|
+
"EntityType",
|
|
76
|
+
"ExtractionOptions",
|
|
77
|
+
"ExtractionResult",
|
|
78
|
+
"Statement",
|
|
79
|
+
# Configuration models (new in 0.2.0)
|
|
80
|
+
"PredicateMatch",
|
|
81
|
+
"PredicateTaxonomy",
|
|
82
|
+
"PredicateComparisonConfig",
|
|
83
|
+
"ScoringConfig",
|
|
84
|
+
# Extractor class
|
|
85
|
+
"StatementExtractor",
|
|
86
|
+
# Convenience functions
|
|
87
|
+
"extract_statements",
|
|
88
|
+
"extract_statements_as_dict",
|
|
89
|
+
"extract_statements_as_json",
|
|
90
|
+
"extract_statements_as_xml",
|
|
91
|
+
# Canonicalization
|
|
92
|
+
"Canonicalizer",
|
|
93
|
+
"default_entity_canonicalizer",
|
|
94
|
+
"deduplicate_statements_exact",
|
|
95
|
+
# Scoring
|
|
96
|
+
"BeamScorer",
|
|
97
|
+
"TripleScorer",
|
|
98
|
+
]
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
# Lazy imports for optional dependencies
|
|
102
|
+
def __getattr__(name: str):
|
|
103
|
+
"""Lazy import for optional modules."""
|
|
104
|
+
if name == "PredicateComparer":
|
|
105
|
+
from .predicate_comparer import PredicateComparer
|
|
106
|
+
return PredicateComparer
|
|
107
|
+
if name == "EmbeddingDependencyError":
|
|
108
|
+
from .predicate_comparer import EmbeddingDependencyError
|
|
109
|
+
return EmbeddingDependencyError
|
|
110
|
+
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|