corp-extractor 0.2.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- corp_extractor-0.2.3.dist-info/METADATA +280 -0
- corp_extractor-0.2.3.dist-info/RECORD +9 -0
- corp_extractor-0.2.3.dist-info/WHEEL +4 -0
- statement_extractor/__init__.py +110 -0
- statement_extractor/canonicalization.py +196 -0
- statement_extractor/extractor.py +649 -0
- statement_extractor/models.py +284 -0
- statement_extractor/predicate_comparer.py +611 -0
- statement_extractor/scoring.py +419 -0
|
@@ -0,0 +1,280 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: corp-extractor
|
|
3
|
+
Version: 0.2.3
|
|
4
|
+
Summary: Extract structured statements from text using T5-Gemma 2 and Diverse Beam Search
|
|
5
|
+
Project-URL: Homepage, https://github.com/corp-o-rate/statement-extractor
|
|
6
|
+
Project-URL: Documentation, https://github.com/corp-o-rate/statement-extractor#readme
|
|
7
|
+
Project-URL: Repository, https://github.com/corp-o-rate/statement-extractor
|
|
8
|
+
Project-URL: Issues, https://github.com/corp-o-rate/statement-extractor/issues
|
|
9
|
+
Author-email: Corp-o-Rate <neil@corp-o-rate.com>
|
|
10
|
+
Maintainer-email: Corp-o-Rate <neil@corp-o-rate.com>
|
|
11
|
+
License: MIT
|
|
12
|
+
Keywords: diverse-beam-search,embeddings,gemma,information-extraction,knowledge-graph,nlp,statement-extraction,subject-predicate-object,t5,transformers,triples
|
|
13
|
+
Classifier: Development Status :: 4 - Beta
|
|
14
|
+
Classifier: Intended Audience :: Developers
|
|
15
|
+
Classifier: Intended Audience :: Science/Research
|
|
16
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
17
|
+
Classifier: Operating System :: OS Independent
|
|
18
|
+
Classifier: Programming Language :: Python :: 3
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
22
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
23
|
+
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
24
|
+
Classifier: Topic :: Text Processing :: Linguistic
|
|
25
|
+
Requires-Python: >=3.10
|
|
26
|
+
Requires-Dist: numpy>=1.24.0
|
|
27
|
+
Requires-Dist: pydantic>=2.0.0
|
|
28
|
+
Requires-Dist: torch>=2.0.0
|
|
29
|
+
Requires-Dist: transformers>=4.35.0
|
|
30
|
+
Provides-Extra: all
|
|
31
|
+
Requires-Dist: sentence-transformers>=2.2.0; extra == 'all'
|
|
32
|
+
Provides-Extra: dev
|
|
33
|
+
Requires-Dist: mypy>=1.0.0; extra == 'dev'
|
|
34
|
+
Requires-Dist: pytest-cov>=4.0.0; extra == 'dev'
|
|
35
|
+
Requires-Dist: pytest>=7.0.0; extra == 'dev'
|
|
36
|
+
Requires-Dist: ruff>=0.1.0; extra == 'dev'
|
|
37
|
+
Provides-Extra: embeddings
|
|
38
|
+
Requires-Dist: sentence-transformers>=2.2.0; extra == 'embeddings'
|
|
39
|
+
Description-Content-Type: text/markdown
|
|
40
|
+
|
|
41
|
+
# Corp Extractor
|
|
42
|
+
|
|
43
|
+
Extract structured subject-predicate-object statements from unstructured text using the T5-Gemma 2 model.
|
|
44
|
+
|
|
45
|
+
[](https://pypi.org/project/corp-extractor/)
|
|
46
|
+
[](https://pypi.org/project/corp-extractor/)
|
|
47
|
+
[](https://opensource.org/licenses/MIT)
|
|
48
|
+
|
|
49
|
+
## Features
|
|
50
|
+
|
|
51
|
+
- **Structured Extraction**: Converts unstructured text into subject-predicate-object triples
|
|
52
|
+
- **Entity Type Recognition**: Identifies 12 entity types (ORG, PERSON, GPE, LOC, PRODUCT, EVENT, etc.)
|
|
53
|
+
- **Quality Scoring** *(v0.2.0)*: Each triple scored for groundedness (0-1) based on source text
|
|
54
|
+
- **Beam Merging** *(v0.2.0)*: Combines top beams for better coverage instead of picking one
|
|
55
|
+
- **Embedding-based Dedup** *(v0.2.0)*: Uses semantic similarity to detect near-duplicate predicates
|
|
56
|
+
- **Predicate Taxonomies** *(v0.2.0)*: Normalize predicates to canonical forms via embeddings
|
|
57
|
+
- **Contextualized Matching** *(v0.2.2)*: Compares full "Subject Predicate Object" against source text for better accuracy
|
|
58
|
+
- **Entity Type Merging** *(v0.2.3)*: Automatically merges UNKNOWN entity types with specific types during deduplication
|
|
59
|
+
- **Reversal Detection** *(v0.2.3)*: Detects and corrects subject-object reversals using embedding comparison
|
|
60
|
+
- **Multiple Output Formats**: Get results as Pydantic models, JSON, XML, or dictionaries
|
|
61
|
+
|
|
62
|
+
## Installation
|
|
63
|
+
|
|
64
|
+
```bash
|
|
65
|
+
# Recommended: include embedding support for smart deduplication
|
|
66
|
+
pip install corp-extractor[embeddings]
|
|
67
|
+
|
|
68
|
+
# Minimal installation (no embedding features)
|
|
69
|
+
pip install corp-extractor
|
|
70
|
+
```
|
|
71
|
+
|
|
72
|
+
**Note**: For GPU support, install PyTorch with CUDA first:
|
|
73
|
+
```bash
|
|
74
|
+
pip install torch --index-url https://download.pytorch.org/whl/cu121
|
|
75
|
+
pip install corp-extractor[embeddings]
|
|
76
|
+
```
|
|
77
|
+
|
|
78
|
+
## Quick Start
|
|
79
|
+
|
|
80
|
+
```python
|
|
81
|
+
from statement_extractor import extract_statements
|
|
82
|
+
|
|
83
|
+
result = extract_statements("""
|
|
84
|
+
Apple Inc. announced the iPhone 15 at their September event.
|
|
85
|
+
Tim Cook presented the new features to customers worldwide.
|
|
86
|
+
""")
|
|
87
|
+
|
|
88
|
+
for stmt in result:
|
|
89
|
+
print(f"{stmt.subject.text} ({stmt.subject.type})")
|
|
90
|
+
print(f" --[{stmt.predicate}]--> {stmt.object.text}")
|
|
91
|
+
print(f" Confidence: {stmt.confidence_score:.2f}") # NEW in v0.2.0
|
|
92
|
+
```
|
|
93
|
+
|
|
94
|
+
## New in v0.2.0: Quality Scoring & Beam Merging
|
|
95
|
+
|
|
96
|
+
By default, the library now:
|
|
97
|
+
- **Scores each triple** for groundedness based on whether entities appear in source text
|
|
98
|
+
- **Merges top beams** instead of selecting one, improving coverage
|
|
99
|
+
- **Uses embeddings** to detect semantically similar predicates ("bought" ≈ "acquired")
|
|
100
|
+
|
|
101
|
+
```python
|
|
102
|
+
from statement_extractor import ExtractionOptions, ScoringConfig
|
|
103
|
+
|
|
104
|
+
# Precision mode - filter low-confidence triples
|
|
105
|
+
scoring = ScoringConfig(min_confidence=0.7)
|
|
106
|
+
options = ExtractionOptions(scoring_config=scoring)
|
|
107
|
+
result = extract_statements(text, options)
|
|
108
|
+
|
|
109
|
+
# Access confidence scores
|
|
110
|
+
for stmt in result:
|
|
111
|
+
print(f"{stmt} (confidence: {stmt.confidence_score:.2f})")
|
|
112
|
+
```
|
|
113
|
+
|
|
114
|
+
## New in v0.2.0: Predicate Taxonomies
|
|
115
|
+
|
|
116
|
+
Normalize predicates to canonical forms using embedding similarity:
|
|
117
|
+
|
|
118
|
+
```python
|
|
119
|
+
from statement_extractor import PredicateTaxonomy, ExtractionOptions
|
|
120
|
+
|
|
121
|
+
taxonomy = PredicateTaxonomy(predicates=[
|
|
122
|
+
"acquired", "founded", "works_for", "announced",
|
|
123
|
+
"invested_in", "partnered_with"
|
|
124
|
+
])
|
|
125
|
+
|
|
126
|
+
options = ExtractionOptions(predicate_taxonomy=taxonomy)
|
|
127
|
+
result = extract_statements(text, options)
|
|
128
|
+
|
|
129
|
+
# "bought" -> "acquired" via embedding similarity
|
|
130
|
+
for stmt in result:
|
|
131
|
+
if stmt.canonical_predicate:
|
|
132
|
+
print(f"{stmt.predicate} -> {stmt.canonical_predicate}")
|
|
133
|
+
```
|
|
134
|
+
|
|
135
|
+
## New in v0.2.2: Contextualized Matching
|
|
136
|
+
|
|
137
|
+
Predicate canonicalization and deduplication now use **contextualized matching**:
|
|
138
|
+
- Compares full "Subject Predicate Object" strings against source text
|
|
139
|
+
- Better accuracy because predicates are evaluated in context
|
|
140
|
+
- When duplicates are found, keeps the statement with the best match to source text
|
|
141
|
+
|
|
142
|
+
This means "Apple bought Beats" vs "Apple acquired Beats" are compared holistically, not just "bought" vs "acquired".
|
|
143
|
+
|
|
144
|
+
## New in v0.2.3: Entity Type Merging & Reversal Detection
|
|
145
|
+
|
|
146
|
+
### Entity Type Merging
|
|
147
|
+
|
|
148
|
+
When deduplicating statements, entity types are now automatically merged. If one statement has `UNKNOWN` type and a duplicate has a specific type (like `ORG` or `PERSON`), the specific type is preserved:
|
|
149
|
+
|
|
150
|
+
```python
|
|
151
|
+
# Before deduplication:
|
|
152
|
+
# Statement 1: AtlasBio Labs (UNKNOWN) --sued by--> CuraPharm (ORG)
|
|
153
|
+
# Statement 2: AtlasBio Labs (ORG) --sued by--> CuraPharm (ORG)
|
|
154
|
+
|
|
155
|
+
# After deduplication:
|
|
156
|
+
# Single statement: AtlasBio Labs (ORG) --sued by--> CuraPharm (ORG)
|
|
157
|
+
```
|
|
158
|
+
|
|
159
|
+
### Subject-Object Reversal Detection
|
|
160
|
+
|
|
161
|
+
The library now detects when subject and object may have been extracted in the wrong order by comparing embeddings against source text:
|
|
162
|
+
|
|
163
|
+
```python
|
|
164
|
+
from statement_extractor import PredicateComparer
|
|
165
|
+
|
|
166
|
+
comparer = PredicateComparer()
|
|
167
|
+
|
|
168
|
+
# Automatically detect and fix reversals
|
|
169
|
+
fixed_statements = comparer.detect_and_fix_reversals(statements)
|
|
170
|
+
|
|
171
|
+
for stmt in fixed_statements:
|
|
172
|
+
if stmt.was_reversed:
|
|
173
|
+
print(f"Fixed reversal: {stmt}")
|
|
174
|
+
```
|
|
175
|
+
|
|
176
|
+
**How it works:**
|
|
177
|
+
1. For each statement with source text, compares:
|
|
178
|
+
- "Subject Predicate Object" embedding vs source text
|
|
179
|
+
- "Object Predicate Subject" embedding vs source text
|
|
180
|
+
2. If the reversed form has higher similarity, swaps subject and object
|
|
181
|
+
3. Sets `was_reversed=True` to indicate the correction
|
|
182
|
+
|
|
183
|
+
During deduplication, reversed duplicates (e.g., "A -> P -> B" and "B -> P -> A") are now detected and merged, with the correct orientation determined by source text similarity.
|
|
184
|
+
|
|
185
|
+
## Disable Embeddings (Faster, No Extra Dependencies)
|
|
186
|
+
|
|
187
|
+
```python
|
|
188
|
+
options = ExtractionOptions(
|
|
189
|
+
embedding_dedup=False, # Use exact text matching
|
|
190
|
+
merge_beams=False, # Select single best beam
|
|
191
|
+
)
|
|
192
|
+
result = extract_statements(text, options)
|
|
193
|
+
```
|
|
194
|
+
|
|
195
|
+
## Output Formats
|
|
196
|
+
|
|
197
|
+
```python
|
|
198
|
+
from statement_extractor import (
|
|
199
|
+
extract_statements,
|
|
200
|
+
extract_statements_as_json,
|
|
201
|
+
extract_statements_as_xml,
|
|
202
|
+
extract_statements_as_dict,
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
# Pydantic models (default)
|
|
206
|
+
result = extract_statements(text)
|
|
207
|
+
|
|
208
|
+
# JSON string
|
|
209
|
+
json_output = extract_statements_as_json(text)
|
|
210
|
+
|
|
211
|
+
# Raw XML (model's native format)
|
|
212
|
+
xml_output = extract_statements_as_xml(text)
|
|
213
|
+
|
|
214
|
+
# Python dictionary
|
|
215
|
+
dict_output = extract_statements_as_dict(text)
|
|
216
|
+
```
|
|
217
|
+
|
|
218
|
+
## Batch Processing
|
|
219
|
+
|
|
220
|
+
```python
|
|
221
|
+
from statement_extractor import StatementExtractor
|
|
222
|
+
|
|
223
|
+
extractor = StatementExtractor(device="cuda") # or "cpu"
|
|
224
|
+
|
|
225
|
+
texts = ["Text 1...", "Text 2...", "Text 3..."]
|
|
226
|
+
for text in texts:
|
|
227
|
+
result = extractor.extract(text)
|
|
228
|
+
print(f"Found {len(result)} statements")
|
|
229
|
+
```
|
|
230
|
+
|
|
231
|
+
## Entity Types
|
|
232
|
+
|
|
233
|
+
| Type | Description | Example |
|
|
234
|
+
|------|-------------|---------|
|
|
235
|
+
| `ORG` | Organizations | Apple Inc., United Nations |
|
|
236
|
+
| `PERSON` | People | Tim Cook, Elon Musk |
|
|
237
|
+
| `GPE` | Geopolitical entities | USA, California, Paris |
|
|
238
|
+
| `LOC` | Non-GPE locations | Mount Everest, Pacific Ocean |
|
|
239
|
+
| `PRODUCT` | Products | iPhone, Model S |
|
|
240
|
+
| `EVENT` | Events | World Cup, CES 2024 |
|
|
241
|
+
| `WORK_OF_ART` | Creative works | Mona Lisa, Game of Thrones |
|
|
242
|
+
| `LAW` | Legal documents | GDPR, Clean Air Act |
|
|
243
|
+
| `DATE` | Dates | 2024, January 15 |
|
|
244
|
+
| `MONEY` | Monetary values | $50 million, €100 |
|
|
245
|
+
| `PERCENT` | Percentages | 25%, 0.5% |
|
|
246
|
+
| `QUANTITY` | Quantities | 500 employees, 1.5 tons |
|
|
247
|
+
| `UNKNOWN` | Unrecognized | (fallback) |
|
|
248
|
+
|
|
249
|
+
## How It Works
|
|
250
|
+
|
|
251
|
+
This library uses the T5-Gemma 2 statement extraction model with **Diverse Beam Search** ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424)):
|
|
252
|
+
|
|
253
|
+
1. **Diverse Beam Search**: Generates 4+ candidate outputs using beam groups with diversity penalty
|
|
254
|
+
2. **Quality Scoring** *(v0.2.0)*: Each triple scored for groundedness in source text
|
|
255
|
+
3. **Beam Merging** *(v0.2.0)*: Top beams combined for better coverage
|
|
256
|
+
4. **Embedding Dedup** *(v0.2.0)*: Semantic similarity removes near-duplicate predicates
|
|
257
|
+
5. **Predicate Normalization** *(v0.2.0)*: Optional taxonomy matching via embeddings
|
|
258
|
+
6. **Contextualized Matching** *(v0.2.2)*: Full statement context used for canonicalization and dedup
|
|
259
|
+
7. **Entity Type Merging** *(v0.2.3)*: UNKNOWN types merged with specific types during dedup
|
|
260
|
+
8. **Reversal Detection** *(v0.2.3)*: Subject-object reversals detected and corrected via embedding comparison
|
|
261
|
+
|
|
262
|
+
## Requirements
|
|
263
|
+
|
|
264
|
+
- Python 3.10+
|
|
265
|
+
- PyTorch 2.0+
|
|
266
|
+
- Transformers 4.35+
|
|
267
|
+
- Pydantic 2.0+
|
|
268
|
+
- sentence-transformers 2.2+ *(optional, for embedding features)*
|
|
269
|
+
- ~2GB VRAM (GPU) or ~4GB RAM (CPU)
|
|
270
|
+
|
|
271
|
+
## Links
|
|
272
|
+
|
|
273
|
+
- [Model on HuggingFace](https://huggingface.co/Corp-o-Rate-Community/statement-extractor)
|
|
274
|
+
- [Web Demo](https://statement-extractor.corp-o-rate.com)
|
|
275
|
+
- [Diverse Beam Search Paper](https://arxiv.org/abs/1610.02424)
|
|
276
|
+
- [Corp-o-Rate](https://corp-o-rate.com)
|
|
277
|
+
|
|
278
|
+
## License
|
|
279
|
+
|
|
280
|
+
MIT License - see LICENSE file for details.
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
statement_extractor/__init__.py,sha256=4Ht8GJdgik_iti7zpG71Oi5EEAnck6AYDvy7soRqIOg,2967
|
|
2
|
+
statement_extractor/canonicalization.py,sha256=ZMLs6RLWJa_rOJ8XZ7PoHFU13-zeJkOMDnvK-ZaFa5s,5991
|
|
3
|
+
statement_extractor/extractor.py,sha256=PX0SiJnYUnh06seyH5W77FcPpcvLXwEM8IGsuVuRh0Q,22158
|
|
4
|
+
statement_extractor/models.py,sha256=xDF3pDPhIiqiMwFMPV94aBEgZGbSe-x2TkshahOiCog,10739
|
|
5
|
+
statement_extractor/predicate_comparer.py,sha256=iwBfNJFNOFv8ODKN9F9EtmknpCeSThOpnu6P_PJSmgE,24898
|
|
6
|
+
statement_extractor/scoring.py,sha256=Wa1BW6jXtHD7dZkUXwdwE39hwFo2ko6BuIogBc4E2Lk,14493
|
|
7
|
+
corp_extractor-0.2.3.dist-info/METADATA,sha256=dCJbLWIj7hgzpkC4zYvNmnEAhNnizUEq_caea6AamIU,10724
|
|
8
|
+
corp_extractor-0.2.3.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
9
|
+
corp_extractor-0.2.3.dist-info/RECORD,,
|
|
@@ -0,0 +1,110 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Statement Extractor - Extract structured statements from text using T5-Gemma 2.
|
|
3
|
+
|
|
4
|
+
A Python library for extracting subject-predicate-object triples from unstructured text.
|
|
5
|
+
Uses Diverse Beam Search (Vijayakumar et al., 2016) for high-quality extraction.
|
|
6
|
+
|
|
7
|
+
Paper: https://arxiv.org/abs/1610.02424
|
|
8
|
+
|
|
9
|
+
Features:
|
|
10
|
+
- Quality-based beam scoring and merging
|
|
11
|
+
- Embedding-based predicate comparison for smart deduplication
|
|
12
|
+
- Configurable precision/recall tradeoff
|
|
13
|
+
- Support for predicate taxonomies
|
|
14
|
+
|
|
15
|
+
Example:
|
|
16
|
+
>>> from statement_extractor import extract_statements
|
|
17
|
+
>>> result = extract_statements("Apple Inc. announced a new iPhone today.")
|
|
18
|
+
>>> for stmt in result:
|
|
19
|
+
... print(f"{stmt.subject.text} -> {stmt.predicate} -> {stmt.object.text}")
|
|
20
|
+
Apple Inc. -> announced -> a new iPhone
|
|
21
|
+
|
|
22
|
+
>>> # Access confidence scores
|
|
23
|
+
>>> for stmt in result:
|
|
24
|
+
... print(f"{stmt} (confidence: {stmt.confidence_score:.2f})")
|
|
25
|
+
|
|
26
|
+
>>> # Get as different formats
|
|
27
|
+
>>> xml = extract_statements_as_xml("Some text...")
|
|
28
|
+
>>> json_str = extract_statements_as_json("Some text...")
|
|
29
|
+
>>> data = extract_statements_as_dict("Some text...")
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
__version__ = "0.2.2"
|
|
33
|
+
|
|
34
|
+
# Core models
|
|
35
|
+
from .models import (
|
|
36
|
+
Entity,
|
|
37
|
+
EntityType,
|
|
38
|
+
ExtractionOptions,
|
|
39
|
+
ExtractionResult,
|
|
40
|
+
Statement,
|
|
41
|
+
# New in 0.2.0
|
|
42
|
+
PredicateMatch,
|
|
43
|
+
PredicateTaxonomy,
|
|
44
|
+
PredicateComparisonConfig,
|
|
45
|
+
ScoringConfig,
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
# Main extractor
|
|
49
|
+
from .extractor import (
|
|
50
|
+
StatementExtractor,
|
|
51
|
+
extract_statements,
|
|
52
|
+
extract_statements_as_dict,
|
|
53
|
+
extract_statements_as_json,
|
|
54
|
+
extract_statements_as_xml,
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
# Canonicalization utilities
|
|
58
|
+
from .canonicalization import (
|
|
59
|
+
Canonicalizer,
|
|
60
|
+
default_entity_canonicalizer,
|
|
61
|
+
deduplicate_statements_exact,
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
# Scoring utilities
|
|
65
|
+
from .scoring import (
|
|
66
|
+
BeamScorer,
|
|
67
|
+
TripleScorer,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
__all__ = [
|
|
71
|
+
# Version
|
|
72
|
+
"__version__",
|
|
73
|
+
# Core models
|
|
74
|
+
"Entity",
|
|
75
|
+
"EntityType",
|
|
76
|
+
"ExtractionOptions",
|
|
77
|
+
"ExtractionResult",
|
|
78
|
+
"Statement",
|
|
79
|
+
# Configuration models (new in 0.2.0)
|
|
80
|
+
"PredicateMatch",
|
|
81
|
+
"PredicateTaxonomy",
|
|
82
|
+
"PredicateComparisonConfig",
|
|
83
|
+
"ScoringConfig",
|
|
84
|
+
# Extractor class
|
|
85
|
+
"StatementExtractor",
|
|
86
|
+
# Convenience functions
|
|
87
|
+
"extract_statements",
|
|
88
|
+
"extract_statements_as_dict",
|
|
89
|
+
"extract_statements_as_json",
|
|
90
|
+
"extract_statements_as_xml",
|
|
91
|
+
# Canonicalization
|
|
92
|
+
"Canonicalizer",
|
|
93
|
+
"default_entity_canonicalizer",
|
|
94
|
+
"deduplicate_statements_exact",
|
|
95
|
+
# Scoring
|
|
96
|
+
"BeamScorer",
|
|
97
|
+
"TripleScorer",
|
|
98
|
+
]
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
# Lazy imports for optional dependencies
|
|
102
|
+
def __getattr__(name: str):
|
|
103
|
+
"""Lazy import for optional modules."""
|
|
104
|
+
if name == "PredicateComparer":
|
|
105
|
+
from .predicate_comparer import PredicateComparer
|
|
106
|
+
return PredicateComparer
|
|
107
|
+
if name == "EmbeddingDependencyError":
|
|
108
|
+
from .predicate_comparer import EmbeddingDependencyError
|
|
109
|
+
return EmbeddingDependencyError
|
|
110
|
+
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|
|
@@ -0,0 +1,196 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Entity canonicalization for statement deduplication.
|
|
3
|
+
|
|
4
|
+
Provides default canonicalization functions and a Canonicalizer class
|
|
5
|
+
for normalizing entity text before comparison.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import re
|
|
9
|
+
from typing import Callable, Optional
|
|
10
|
+
|
|
11
|
+
from .models import Statement
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
# Common determiners to remove from the start of entity text
|
|
15
|
+
DETERMINERS = frozenset(["the", "a", "an", "this", "that", "these", "those"])
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def default_entity_canonicalizer(text: str) -> str:
|
|
19
|
+
"""
|
|
20
|
+
Default entity canonicalization function.
|
|
21
|
+
|
|
22
|
+
Transformations:
|
|
23
|
+
- Trim leading/trailing whitespace
|
|
24
|
+
- Convert to lowercase
|
|
25
|
+
- Remove leading determiners (the, a, an, etc.)
|
|
26
|
+
- Normalize internal whitespace (multiple spaces -> single)
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
text: The entity text to canonicalize
|
|
30
|
+
|
|
31
|
+
Returns:
|
|
32
|
+
Canonicalized text
|
|
33
|
+
|
|
34
|
+
Example:
|
|
35
|
+
>>> default_entity_canonicalizer(" The Apple Inc. ")
|
|
36
|
+
'apple inc.'
|
|
37
|
+
>>> default_entity_canonicalizer("A new product")
|
|
38
|
+
'new product'
|
|
39
|
+
"""
|
|
40
|
+
# Trim and lowercase
|
|
41
|
+
result = text.strip().lower()
|
|
42
|
+
|
|
43
|
+
# Normalize internal whitespace
|
|
44
|
+
result = re.sub(r'\s+', ' ', result)
|
|
45
|
+
|
|
46
|
+
# Remove leading determiners
|
|
47
|
+
words = result.split()
|
|
48
|
+
if words and words[0] in DETERMINERS:
|
|
49
|
+
result = ' '.join(words[1:])
|
|
50
|
+
|
|
51
|
+
return result.strip()
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class Canonicalizer:
|
|
55
|
+
"""
|
|
56
|
+
Canonicalize entities for deduplication.
|
|
57
|
+
|
|
58
|
+
Supports custom canonicalization functions for entities.
|
|
59
|
+
Predicate comparison uses embeddings (see PredicateComparer).
|
|
60
|
+
|
|
61
|
+
Example:
|
|
62
|
+
>>> canon = Canonicalizer()
|
|
63
|
+
>>> canon.canonicalize_entity("The Apple Inc.")
|
|
64
|
+
'apple inc.'
|
|
65
|
+
|
|
66
|
+
>>> # With custom function
|
|
67
|
+
>>> canon = Canonicalizer(entity_fn=lambda x: x.upper())
|
|
68
|
+
>>> canon.canonicalize_entity("Apple Inc.")
|
|
69
|
+
'APPLE INC.'
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
def __init__(
|
|
73
|
+
self,
|
|
74
|
+
entity_fn: Optional[Callable[[str], str]] = None,
|
|
75
|
+
):
|
|
76
|
+
"""
|
|
77
|
+
Initialize the canonicalizer.
|
|
78
|
+
|
|
79
|
+
Args:
|
|
80
|
+
entity_fn: Custom function to canonicalize entity text.
|
|
81
|
+
If None, uses default_entity_canonicalizer.
|
|
82
|
+
"""
|
|
83
|
+
self.entity_fn = entity_fn or default_entity_canonicalizer
|
|
84
|
+
|
|
85
|
+
def canonicalize_entity(self, text: str) -> str:
|
|
86
|
+
"""
|
|
87
|
+
Canonicalize an entity string.
|
|
88
|
+
|
|
89
|
+
Args:
|
|
90
|
+
text: Entity text to canonicalize
|
|
91
|
+
|
|
92
|
+
Returns:
|
|
93
|
+
Canonicalized text
|
|
94
|
+
"""
|
|
95
|
+
return self.entity_fn(text)
|
|
96
|
+
|
|
97
|
+
def canonicalize_statement_entities(
|
|
98
|
+
self,
|
|
99
|
+
statement: Statement
|
|
100
|
+
) -> tuple[str, str]:
|
|
101
|
+
"""
|
|
102
|
+
Return canonicalized (subject, object) tuple.
|
|
103
|
+
|
|
104
|
+
Note: Predicate comparison uses embeddings, not text canonicalization.
|
|
105
|
+
|
|
106
|
+
Args:
|
|
107
|
+
statement: Statement to canonicalize
|
|
108
|
+
|
|
109
|
+
Returns:
|
|
110
|
+
Tuple of (canonicalized_subject, canonicalized_object)
|
|
111
|
+
"""
|
|
112
|
+
return (
|
|
113
|
+
self.canonicalize_entity(statement.subject.text),
|
|
114
|
+
self.canonicalize_entity(statement.object.text),
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
def create_dedup_key(
|
|
118
|
+
self,
|
|
119
|
+
statement: Statement,
|
|
120
|
+
predicate_canonical: Optional[str] = None
|
|
121
|
+
) -> tuple[str, str, str]:
|
|
122
|
+
"""
|
|
123
|
+
Create a deduplication key for a statement.
|
|
124
|
+
|
|
125
|
+
For exact-match deduplication (when not using embedding-based comparison).
|
|
126
|
+
|
|
127
|
+
Args:
|
|
128
|
+
statement: Statement to create key for
|
|
129
|
+
predicate_canonical: Optional canonical predicate (if taxonomy was used)
|
|
130
|
+
|
|
131
|
+
Returns:
|
|
132
|
+
Tuple of (subject, predicate, object) for deduplication
|
|
133
|
+
"""
|
|
134
|
+
subj = self.canonicalize_entity(statement.subject.text)
|
|
135
|
+
obj = self.canonicalize_entity(statement.object.text)
|
|
136
|
+
pred = predicate_canonical or statement.predicate.lower().strip()
|
|
137
|
+
return (subj, pred, obj)
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def deduplicate_statements_exact(
|
|
141
|
+
statements: list[Statement],
|
|
142
|
+
entity_canonicalizer: Optional[Callable[[str], str]] = None,
|
|
143
|
+
detect_reversals: bool = True,
|
|
144
|
+
) -> list[Statement]:
|
|
145
|
+
"""
|
|
146
|
+
Deduplicate statements using exact text matching.
|
|
147
|
+
|
|
148
|
+
Use this when embedding-based deduplication is disabled.
|
|
149
|
+
When duplicates are found, entity types are merged - specific types
|
|
150
|
+
(ORG, PERSON, etc.) take precedence over UNKNOWN.
|
|
151
|
+
|
|
152
|
+
When detect_reversals=True, also detects reversed duplicates where
|
|
153
|
+
subject and object are swapped. The first occurrence determines the
|
|
154
|
+
canonical orientation.
|
|
155
|
+
|
|
156
|
+
Args:
|
|
157
|
+
statements: List of statements to deduplicate
|
|
158
|
+
entity_canonicalizer: Optional custom canonicalization function
|
|
159
|
+
detect_reversals: Whether to detect reversed duplicates (default True)
|
|
160
|
+
|
|
161
|
+
Returns:
|
|
162
|
+
Deduplicated list with merged entity types
|
|
163
|
+
"""
|
|
164
|
+
if len(statements) <= 1:
|
|
165
|
+
return statements
|
|
166
|
+
|
|
167
|
+
canonicalizer = Canonicalizer(entity_fn=entity_canonicalizer)
|
|
168
|
+
|
|
169
|
+
# Map from dedup key to index in unique list
|
|
170
|
+
seen: dict[tuple[str, str, str], int] = {}
|
|
171
|
+
unique: list[Statement] = []
|
|
172
|
+
|
|
173
|
+
for stmt in statements:
|
|
174
|
+
key = canonicalizer.create_dedup_key(stmt)
|
|
175
|
+
# Also compute reversed key (object, predicate, subject)
|
|
176
|
+
reversed_key = (key[2], key[1], key[0])
|
|
177
|
+
|
|
178
|
+
if key in seen:
|
|
179
|
+
# Direct duplicate found - merge entity types
|
|
180
|
+
existing_idx = seen[key]
|
|
181
|
+
existing_stmt = unique[existing_idx]
|
|
182
|
+
merged_stmt = existing_stmt.merge_entity_types_from(stmt)
|
|
183
|
+
unique[existing_idx] = merged_stmt
|
|
184
|
+
elif detect_reversals and reversed_key in seen:
|
|
185
|
+
# Reversed duplicate found - merge entity types (accounting for reversal)
|
|
186
|
+
existing_idx = seen[reversed_key]
|
|
187
|
+
existing_stmt = unique[existing_idx]
|
|
188
|
+
# Merge types from the reversed statement
|
|
189
|
+
merged_stmt = existing_stmt.merge_entity_types_from(stmt.reversed())
|
|
190
|
+
unique[existing_idx] = merged_stmt
|
|
191
|
+
else:
|
|
192
|
+
# New unique statement
|
|
193
|
+
seen[key] = len(unique)
|
|
194
|
+
unique.append(stmt)
|
|
195
|
+
|
|
196
|
+
return unique
|