copulas 0.10.1.dev0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of copulas might be problematic. Click here for more details.
- copulas/__init__.py +332 -0
- copulas/bivariate/__init__.py +175 -0
- copulas/bivariate/base.py +449 -0
- copulas/bivariate/clayton.py +162 -0
- copulas/bivariate/frank.py +169 -0
- copulas/bivariate/gumbel.py +144 -0
- copulas/bivariate/independence.py +81 -0
- copulas/bivariate/utils.py +19 -0
- copulas/datasets.py +221 -0
- copulas/multivariate/__init__.py +14 -0
- copulas/multivariate/base.py +199 -0
- copulas/multivariate/gaussian.py +314 -0
- copulas/multivariate/tree.py +693 -0
- copulas/multivariate/vine.py +356 -0
- copulas/optimize/__init__.py +153 -0
- copulas/univariate/__init__.py +25 -0
- copulas/univariate/base.py +650 -0
- copulas/univariate/beta.py +42 -0
- copulas/univariate/gamma.py +38 -0
- copulas/univariate/gaussian.py +33 -0
- copulas/univariate/gaussian_kde.py +193 -0
- copulas/univariate/log_laplace.py +38 -0
- copulas/univariate/selection.py +36 -0
- copulas/univariate/student_t.py +35 -0
- copulas/univariate/truncated_gaussian.py +74 -0
- copulas/univariate/uniform.py +33 -0
- copulas/visualization.py +350 -0
- copulas-0.10.1.dev0.dist-info/LICENSE +106 -0
- copulas-0.10.1.dev0.dist-info/METADATA +223 -0
- copulas-0.10.1.dev0.dist-info/RECORD +32 -0
- copulas-0.10.1.dev0.dist-info/WHEEL +5 -0
- copulas-0.10.1.dev0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
"""GammaUnivariate module."""
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from scipy.stats import gamma
|
|
5
|
+
|
|
6
|
+
from copulas.univariate.base import BoundedType, ParametricType, ScipyModel
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class GammaUnivariate(ScipyModel):
|
|
10
|
+
"""Wrapper around scipy.stats.gamma.
|
|
11
|
+
|
|
12
|
+
Documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
PARAMETRIC = ParametricType.PARAMETRIC
|
|
16
|
+
BOUNDED = BoundedType.SEMI_BOUNDED
|
|
17
|
+
MODEL_CLASS = gamma
|
|
18
|
+
|
|
19
|
+
def _fit_constant(self, X):
|
|
20
|
+
self._params = {
|
|
21
|
+
'a': 0.0,
|
|
22
|
+
'loc': np.unique(X)[0],
|
|
23
|
+
'scale': 0.0,
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
def _fit(self, X):
|
|
27
|
+
a, loc, scale = gamma.fit(X)
|
|
28
|
+
self._params = {
|
|
29
|
+
'a': a,
|
|
30
|
+
'loc': loc,
|
|
31
|
+
'scale': scale,
|
|
32
|
+
}
|
|
33
|
+
|
|
34
|
+
def _is_constant(self):
|
|
35
|
+
return self._params['scale'] == 0
|
|
36
|
+
|
|
37
|
+
def _extract_constant(self):
|
|
38
|
+
return self._params['loc']
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
"""GaussianUnivariate module."""
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from scipy.stats import norm
|
|
5
|
+
|
|
6
|
+
from copulas.univariate.base import BoundedType, ParametricType, ScipyModel
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class GaussianUnivariate(ScipyModel):
|
|
10
|
+
"""Gaussian univariate model."""
|
|
11
|
+
|
|
12
|
+
PARAMETRIC = ParametricType.PARAMETRIC
|
|
13
|
+
BOUNDED = BoundedType.UNBOUNDED
|
|
14
|
+
|
|
15
|
+
MODEL_CLASS = norm
|
|
16
|
+
|
|
17
|
+
def _fit_constant(self, X):
|
|
18
|
+
self._params = {
|
|
19
|
+
'loc': np.unique(X)[0],
|
|
20
|
+
'scale': 0
|
|
21
|
+
}
|
|
22
|
+
|
|
23
|
+
def _fit(self, X):
|
|
24
|
+
self._params = {
|
|
25
|
+
'loc': np.mean(X),
|
|
26
|
+
'scale': np.std(X)
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
def _is_constant(self):
|
|
30
|
+
return self._params['scale'] == 0
|
|
31
|
+
|
|
32
|
+
def _extract_constant(self):
|
|
33
|
+
return self._params['loc']
|
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
"""GaussianKDE module."""
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from scipy.special import ndtr
|
|
5
|
+
from scipy.stats import gaussian_kde
|
|
6
|
+
|
|
7
|
+
from copulas import EPSILON, random_state, store_args, validate_random_state
|
|
8
|
+
from copulas.optimize import bisect, chandrupatla
|
|
9
|
+
from copulas.univariate.base import BoundedType, ParametricType, ScipyModel
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class GaussianKDE(ScipyModel):
|
|
13
|
+
"""A wrapper for gaussian Kernel density estimation.
|
|
14
|
+
|
|
15
|
+
It was implemented in scipy.stats toolbox. gaussian_kde is slower than statsmodels
|
|
16
|
+
but allows more flexibility.
|
|
17
|
+
|
|
18
|
+
When a sample_size is provided the fit method will sample the
|
|
19
|
+
data, and mask the real information. Also, ensure the number of
|
|
20
|
+
entries will be always the value of sample_size.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
sample_size(int): amount of parameters to sample
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
PARAMETRIC = ParametricType.NON_PARAMETRIC
|
|
27
|
+
BOUNDED = BoundedType.UNBOUNDED
|
|
28
|
+
MODEL_CLASS = gaussian_kde
|
|
29
|
+
|
|
30
|
+
@store_args
|
|
31
|
+
def __init__(self, sample_size=None, random_state=None, bw_method=None, weights=None):
|
|
32
|
+
self.random_state = validate_random_state(random_state)
|
|
33
|
+
self._sample_size = sample_size
|
|
34
|
+
self.bw_method = bw_method
|
|
35
|
+
self.weights = weights
|
|
36
|
+
|
|
37
|
+
def _get_model(self):
|
|
38
|
+
dataset = self._params['dataset']
|
|
39
|
+
self._sample_size = self._sample_size or len(dataset)
|
|
40
|
+
return gaussian_kde(dataset, bw_method=self.bw_method, weights=self.weights)
|
|
41
|
+
|
|
42
|
+
def _get_bounds(self):
|
|
43
|
+
X = self._params['dataset']
|
|
44
|
+
lower = np.min(X) - (5 * np.std(X))
|
|
45
|
+
upper = np.max(X) + (5 * np.std(X))
|
|
46
|
+
|
|
47
|
+
return lower, upper
|
|
48
|
+
|
|
49
|
+
def probability_density(self, X):
|
|
50
|
+
"""Compute the probability density for each point in X.
|
|
51
|
+
|
|
52
|
+
Arguments:
|
|
53
|
+
X (numpy.ndarray):
|
|
54
|
+
Values for which the probability density will be computed.
|
|
55
|
+
It must have shape (n, 1).
|
|
56
|
+
|
|
57
|
+
Returns:
|
|
58
|
+
numpy.ndarray:
|
|
59
|
+
Probability density values for points in X.
|
|
60
|
+
|
|
61
|
+
Raises:
|
|
62
|
+
NotFittedError:
|
|
63
|
+
if the model is not fitted.
|
|
64
|
+
"""
|
|
65
|
+
self.check_fit()
|
|
66
|
+
return self._model.evaluate(X)
|
|
67
|
+
|
|
68
|
+
@random_state
|
|
69
|
+
def sample(self, n_samples=1):
|
|
70
|
+
"""Sample values from this model.
|
|
71
|
+
|
|
72
|
+
Argument:
|
|
73
|
+
n_samples (int):
|
|
74
|
+
Number of values to sample
|
|
75
|
+
|
|
76
|
+
Returns:
|
|
77
|
+
numpy.ndarray:
|
|
78
|
+
Array of shape (n_samples, 1) with values randomly
|
|
79
|
+
sampled from this model distribution.
|
|
80
|
+
|
|
81
|
+
Raises:
|
|
82
|
+
NotFittedError:
|
|
83
|
+
if the model is not fitted.
|
|
84
|
+
"""
|
|
85
|
+
self.check_fit()
|
|
86
|
+
return self._model.resample(size=n_samples)[0]
|
|
87
|
+
|
|
88
|
+
def cumulative_distribution(self, X):
|
|
89
|
+
"""Compute the cumulative distribution value for each point in X.
|
|
90
|
+
|
|
91
|
+
Arguments:
|
|
92
|
+
X (numpy.ndarray):
|
|
93
|
+
Values for which the cumulative distribution will be computed.
|
|
94
|
+
It must have shape (n, 1).
|
|
95
|
+
|
|
96
|
+
Returns:
|
|
97
|
+
numpy.ndarray:
|
|
98
|
+
Cumulative distribution values for points in X.
|
|
99
|
+
|
|
100
|
+
Raises:
|
|
101
|
+
NotFittedError:
|
|
102
|
+
if the model is not fitted.
|
|
103
|
+
"""
|
|
104
|
+
self.check_fit()
|
|
105
|
+
X = np.array(X)
|
|
106
|
+
stdev = np.sqrt(self._model.covariance[0, 0])
|
|
107
|
+
lower = ndtr((self._get_bounds()[0] - self._model.dataset) / stdev)[0]
|
|
108
|
+
uppers = ndtr((X[:, None] - self._model.dataset) / stdev)
|
|
109
|
+
return (uppers - lower).dot(self._model.weights)
|
|
110
|
+
|
|
111
|
+
def percent_point(self, U, method='chandrupatla'):
|
|
112
|
+
"""Compute the inverse cumulative distribution value for each point in U.
|
|
113
|
+
|
|
114
|
+
Arguments:
|
|
115
|
+
U (numpy.ndarray):
|
|
116
|
+
Values for which the cumulative distribution will be computed.
|
|
117
|
+
It must have shape (n, 1) and values must be in [0,1].
|
|
118
|
+
method (str):
|
|
119
|
+
Whether to use the `chandrupatla` or `bisect` solver.
|
|
120
|
+
|
|
121
|
+
Returns:
|
|
122
|
+
numpy.ndarray:
|
|
123
|
+
Inverse cumulative distribution values for points in U.
|
|
124
|
+
|
|
125
|
+
Raises:
|
|
126
|
+
NotFittedError:
|
|
127
|
+
if the model is not fitted.
|
|
128
|
+
"""
|
|
129
|
+
self.check_fit()
|
|
130
|
+
|
|
131
|
+
if len(U.shape) > 1:
|
|
132
|
+
raise ValueError(f'Expected 1d array, got {(U, )}.')
|
|
133
|
+
|
|
134
|
+
if np.any(U > 1.0) or np.any(U < 0.0):
|
|
135
|
+
raise ValueError('Expected values in range [0.0, 1.0].')
|
|
136
|
+
|
|
137
|
+
is_one = U >= 1.0 - EPSILON
|
|
138
|
+
is_zero = U <= EPSILON
|
|
139
|
+
is_valid = ~(is_zero | is_one)
|
|
140
|
+
|
|
141
|
+
lower, upper = self._get_bounds()
|
|
142
|
+
|
|
143
|
+
def _f(X):
|
|
144
|
+
return self.cumulative_distribution(X) - U[is_valid]
|
|
145
|
+
|
|
146
|
+
X = np.zeros(U.shape)
|
|
147
|
+
X[is_one] = float('inf')
|
|
148
|
+
X[is_zero] = float('-inf')
|
|
149
|
+
if is_valid.any():
|
|
150
|
+
lower = np.full(U[is_valid].shape, lower)
|
|
151
|
+
upper = np.full(U[is_valid].shape, upper)
|
|
152
|
+
if method == 'bisect':
|
|
153
|
+
X[is_valid] = bisect(_f, lower, upper)
|
|
154
|
+
else:
|
|
155
|
+
X[is_valid] = chandrupatla(_f, lower, upper)
|
|
156
|
+
|
|
157
|
+
return X
|
|
158
|
+
|
|
159
|
+
def _fit_constant(self, X):
|
|
160
|
+
sample_size = self._sample_size or len(X)
|
|
161
|
+
constant = np.unique(X)[0]
|
|
162
|
+
self._params = {
|
|
163
|
+
'dataset': [constant] * sample_size,
|
|
164
|
+
}
|
|
165
|
+
|
|
166
|
+
def _fit(self, X):
|
|
167
|
+
if self._sample_size:
|
|
168
|
+
X = gaussian_kde(X, bw_method=self.bw_method,
|
|
169
|
+
weights=self.weights).resample(self._sample_size)
|
|
170
|
+
self._params = {
|
|
171
|
+
'dataset': X.tolist()
|
|
172
|
+
}
|
|
173
|
+
self._model = self._get_model()
|
|
174
|
+
|
|
175
|
+
def _is_constant(self):
|
|
176
|
+
return len(np.unique(self._params['dataset'])) == 1
|
|
177
|
+
|
|
178
|
+
def _extract_constant(self):
|
|
179
|
+
return self._params['dataset'][0]
|
|
180
|
+
|
|
181
|
+
def _set_params(self, params):
|
|
182
|
+
"""Set the parameters of this univariate.
|
|
183
|
+
|
|
184
|
+
Args:
|
|
185
|
+
params (dict):
|
|
186
|
+
Parameters to recreate this instance.
|
|
187
|
+
"""
|
|
188
|
+
self._params = params.copy()
|
|
189
|
+
if self._is_constant():
|
|
190
|
+
constant = self._extract_constant()
|
|
191
|
+
self._set_constant_value(constant)
|
|
192
|
+
else:
|
|
193
|
+
self._model = self._get_model()
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
"""LogLaplace module."""
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from scipy.stats import loglaplace
|
|
5
|
+
|
|
6
|
+
from copulas.univariate.base import BoundedType, ParametricType, ScipyModel
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class LogLaplace(ScipyModel):
|
|
10
|
+
"""Wrapper around scipy.stats.loglaplace.
|
|
11
|
+
|
|
12
|
+
Documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loglaplace.html
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
PARAMETRIC = ParametricType.PARAMETRIC
|
|
16
|
+
BOUNDED = BoundedType.SEMI_BOUNDED
|
|
17
|
+
MODEL_CLASS = loglaplace
|
|
18
|
+
|
|
19
|
+
def _fit_constant(self, X):
|
|
20
|
+
self._params = {
|
|
21
|
+
'c': 2.0,
|
|
22
|
+
'loc': np.unique(X)[0],
|
|
23
|
+
'scale': 0.0,
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
def _fit(self, X):
|
|
27
|
+
c, loc, scale = loglaplace.fit(X)
|
|
28
|
+
self._params = {
|
|
29
|
+
'c': c,
|
|
30
|
+
'loc': loc,
|
|
31
|
+
'scale': scale,
|
|
32
|
+
}
|
|
33
|
+
|
|
34
|
+
def _is_constant(self):
|
|
35
|
+
return self._params['scale'] == 0
|
|
36
|
+
|
|
37
|
+
def _extract_constant(self):
|
|
38
|
+
return self._params['loc']
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
"""Univariate selection function."""
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from scipy.stats import kstest
|
|
5
|
+
|
|
6
|
+
from copulas import get_instance
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def select_univariate(X, candidates):
|
|
10
|
+
"""Select the best univariate class for this data.
|
|
11
|
+
|
|
12
|
+
Args:
|
|
13
|
+
X (pandas.DataFrame):
|
|
14
|
+
Data for which be best univariate must be found.
|
|
15
|
+
candidates (list[Univariate]):
|
|
16
|
+
List of Univariate subclasses (or instances of those) to choose from.
|
|
17
|
+
|
|
18
|
+
Returns:
|
|
19
|
+
Univariate:
|
|
20
|
+
Instance of the selected candidate.
|
|
21
|
+
"""
|
|
22
|
+
best_ks = np.inf
|
|
23
|
+
best_model = None
|
|
24
|
+
for model in candidates:
|
|
25
|
+
try:
|
|
26
|
+
instance = get_instance(model)
|
|
27
|
+
instance.fit(X)
|
|
28
|
+
ks, _ = kstest(X, instance.cdf)
|
|
29
|
+
if ks < best_ks:
|
|
30
|
+
best_ks = ks
|
|
31
|
+
best_model = model
|
|
32
|
+
except Exception:
|
|
33
|
+
# Distribution not supported
|
|
34
|
+
pass
|
|
35
|
+
|
|
36
|
+
return get_instance(best_model)
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
"""StudentTUnivariate module."""
|
|
2
|
+
|
|
3
|
+
from scipy.stats import t
|
|
4
|
+
|
|
5
|
+
from copulas.univariate.base import BoundedType, ParametricType, ScipyModel
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class StudentTUnivariate(ScipyModel):
|
|
9
|
+
"""Wrapper around scipy.stats.t.
|
|
10
|
+
|
|
11
|
+
Documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.t.html
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
PARAMETRIC = ParametricType.PARAMETRIC
|
|
15
|
+
BOUNDED = BoundedType.UNBOUNDED
|
|
16
|
+
|
|
17
|
+
MODEL_CLASS = t
|
|
18
|
+
|
|
19
|
+
def _fit_constant(self, X):
|
|
20
|
+
self._fit(X)
|
|
21
|
+
self._params['scale'] = 0
|
|
22
|
+
|
|
23
|
+
def _fit(self, X):
|
|
24
|
+
dataframe, loc, scale = t.fit(X)
|
|
25
|
+
self._params = {
|
|
26
|
+
'df': dataframe,
|
|
27
|
+
'loc': loc,
|
|
28
|
+
'scale': scale
|
|
29
|
+
}
|
|
30
|
+
|
|
31
|
+
def _is_constant(self):
|
|
32
|
+
return self._params['scale'] == 0
|
|
33
|
+
|
|
34
|
+
def _extract_constant(self):
|
|
35
|
+
return self._params['loc']
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
"""TruncatedGaussian module."""
|
|
2
|
+
|
|
3
|
+
import warnings
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
from scipy.optimize import fmin_slsqp
|
|
7
|
+
from scipy.stats import truncnorm
|
|
8
|
+
|
|
9
|
+
from copulas import EPSILON, store_args, validate_random_state
|
|
10
|
+
from copulas.univariate.base import BoundedType, ParametricType, ScipyModel
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class TruncatedGaussian(ScipyModel):
|
|
14
|
+
"""Wrapper around scipy.stats.truncnorm.
|
|
15
|
+
|
|
16
|
+
Documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
PARAMETRIC = ParametricType.PARAMETRIC
|
|
20
|
+
BOUNDED = BoundedType.BOUNDED
|
|
21
|
+
MODEL_CLASS = truncnorm
|
|
22
|
+
|
|
23
|
+
@store_args
|
|
24
|
+
def __init__(self, minimum=None, maximum=None, random_state=None):
|
|
25
|
+
self.random_state = validate_random_state(random_state)
|
|
26
|
+
self.min = minimum
|
|
27
|
+
self.max = maximum
|
|
28
|
+
|
|
29
|
+
def _fit_constant(self, X):
|
|
30
|
+
constant = np.unique(X)[0]
|
|
31
|
+
self._params = {
|
|
32
|
+
'a': constant,
|
|
33
|
+
'b': constant,
|
|
34
|
+
'loc': constant,
|
|
35
|
+
'scale': 0.0
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
def _fit(self, X):
|
|
39
|
+
if self.min is None:
|
|
40
|
+
self.min = X.min() - EPSILON
|
|
41
|
+
|
|
42
|
+
if self.max is None:
|
|
43
|
+
self.max = X.max() + EPSILON
|
|
44
|
+
|
|
45
|
+
def nnlf(params):
|
|
46
|
+
loc, scale = params
|
|
47
|
+
a = (self.min - loc) / scale
|
|
48
|
+
b = (self.max - loc) / scale
|
|
49
|
+
return truncnorm.nnlf((a, b, loc, scale), X)
|
|
50
|
+
|
|
51
|
+
initial_params = X.mean(), X.std()
|
|
52
|
+
with warnings.catch_warnings():
|
|
53
|
+
warnings.simplefilter('ignore', category=RuntimeWarning)
|
|
54
|
+
optimal = fmin_slsqp(nnlf, initial_params, iprint=False, bounds=[
|
|
55
|
+
(self.min, self.max),
|
|
56
|
+
(0.0, (self.max - self.min)**2)
|
|
57
|
+
])
|
|
58
|
+
|
|
59
|
+
loc, scale = optimal
|
|
60
|
+
a = (self.min - loc) / scale
|
|
61
|
+
b = (self.max - loc) / scale
|
|
62
|
+
|
|
63
|
+
self._params = {
|
|
64
|
+
'a': a,
|
|
65
|
+
'b': b,
|
|
66
|
+
'loc': loc,
|
|
67
|
+
'scale': scale
|
|
68
|
+
}
|
|
69
|
+
|
|
70
|
+
def _is_constant(self):
|
|
71
|
+
return self._params['a'] == self._params['b']
|
|
72
|
+
|
|
73
|
+
def _extract_constant(self):
|
|
74
|
+
return self._params['loc']
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
"""UniformUnivariate module."""
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from scipy.stats import uniform
|
|
5
|
+
|
|
6
|
+
from copulas.univariate.base import BoundedType, ParametricType, ScipyModel
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class UniformUnivariate(ScipyModel):
|
|
10
|
+
"""Uniform univariate model."""
|
|
11
|
+
|
|
12
|
+
PARAMETRIC = ParametricType.PARAMETRIC
|
|
13
|
+
BOUNDED = BoundedType.BOUNDED
|
|
14
|
+
|
|
15
|
+
MODEL_CLASS = uniform
|
|
16
|
+
|
|
17
|
+
def _fit_constant(self, X):
|
|
18
|
+
self._params = {
|
|
19
|
+
'loc': np.min(X),
|
|
20
|
+
'scale': np.max(X) - np.min(X)
|
|
21
|
+
}
|
|
22
|
+
|
|
23
|
+
def _fit(self, X):
|
|
24
|
+
self._params = {
|
|
25
|
+
'loc': np.min(X),
|
|
26
|
+
'scale': np.max(X) - np.min(X)
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
def _is_constant(self):
|
|
30
|
+
return self._params['scale'] == 0
|
|
31
|
+
|
|
32
|
+
def _extract_constant(self):
|
|
33
|
+
return self._params['loc']
|