copick-utils 1.1.0__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
copick_utils/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
1
  # SPDX-FileCopyrightText: 2024-present Kyle Harrington <czi@kyleharrington.com>
2
2
  #
3
3
  # SPDX-License-Identifier: MIT
4
- __version__ = "1.1.0"
4
+ __version__ = "1.2.0"
@@ -0,0 +1,34 @@
1
+ import click
2
+
3
+
4
+ @click.command(
5
+ context_settings={"show_default": True},
6
+ short_help="Download tilt series and alignments from the CryoET Data Portal.",
7
+ no_args_is_help=True,
8
+ )
9
+ @click.option(
10
+ "-ds",
11
+ "--dataset",
12
+ required=True,
13
+ type=str,
14
+ help="Dataset ID to download from the CryoET Data Portal.",
15
+ )
16
+ @click.option(
17
+ "-o",
18
+ "--output",
19
+ required=True,
20
+ default=".",
21
+ type=str,
22
+ help="Output directory to save the downloaded files.",
23
+ )
24
+ def project(dataset: str, output: str):
25
+ """
26
+ Download tilt series and alignments from the CryoET Data Portal for sub-tomogram averaging with py2rely.
27
+ """
28
+ download_project(dataset, output)
29
+
30
+
31
+ def download_project(dataset: str, output: str):
32
+ import copick_utils.io.portal as portal
33
+
34
+ portal.download_aretomo_files(dataset, output)
@@ -0,0 +1,11 @@
1
+ """CLI commands for downloading data from the CryoET Data Portal.
2
+
3
+ This module imports all download commands from specialized files for better organization.
4
+ """
5
+
6
+ from copick_utils.cli.download import project
7
+
8
+ # All commands are now available for import by the main CLI
9
+ __all__ = [
10
+ "project",
11
+ ]
@@ -0,0 +1,149 @@
1
+ """
2
+ A minimal example using minimal libraries / imports to download relevant AreTomo files
3
+ from the CryoET Data Portal. Downloads the corresponding files, using the run ID as the
4
+ base filename.
5
+
6
+ Original implementation by Daniel Ji and Utz Ermel.
7
+ """
8
+ import multiprocessing
9
+ import os
10
+
11
+ import cryoet_data_portal as cdp
12
+ import mdocfile
13
+ import numpy as np
14
+ import pandas as pd
15
+ import requests
16
+ import s3fs
17
+
18
+ global_client = cdp.Client()
19
+
20
+
21
+ def download_aretomo_files(dataset_id: int, output_dir: str):
22
+ print(f"Fetching tiltseries for dataset id {dataset_id}...", flush=True)
23
+ tiltseries_list: list[cdp.TiltSeries] = [
24
+ tiltseries for run in cdp.Dataset.get_by_id(global_client, dataset_id).runs for tiltseries in run.tiltseries
25
+ ] # a bit slow for some reason, can take some time
26
+ tiltseries_run_ids_and_ts_ids = [(ts.run.id, ts.id) for ts in tiltseries_list]
27
+ print(
28
+ f"Found {len(tiltseries_run_ids_and_ts_ids)} tiltseries for dataset id {dataset_id}. Starting downloads...",
29
+ flush=True,
30
+ )
31
+ with multiprocessing.Pool(processes=8) as pool: # adjust number of processes as needed
32
+ for _ in pool.imap_unordered(
33
+ _worker_download_aretomo_files_for_tiltseries,
34
+ [
35
+ (dataset_id, run_name, output_dir, tiltseries_id)
36
+ for run_name, tiltseries_id in tiltseries_run_ids_and_ts_ids
37
+ ],
38
+ ):
39
+ pass
40
+
41
+
42
+ def _worker_download_aretomo_files_for_tiltseries(args):
43
+ dataset_id, run_name, output_dir, tiltseries_id = args
44
+ download_aretomo_files_for_tiltseries(dataset_id, run_name, output_dir, tiltseries_id)
45
+
46
+
47
+ # note: this function assumes that there is only one tiltseries per run
48
+ # note: the tiltseries name is equivlaent to the run name
49
+ # if tiltseries_id is provided, will be prioritized over dataset_id + run_name
50
+ def download_aretomo_files_for_tiltseries(dataset_id: int, run_name: str, output_dir: str, tiltseries_id: int = None):
51
+ print(f"[{run_name}] Downloading AreTomo files for tiltseries id {tiltseries_id}...", flush=True)
52
+
53
+ client = cdp.Client()
54
+ s3 = s3fs.S3FileSystem(anon=True)
55
+ if not tiltseries_id:
56
+ all_tiltseries = cdp.TiltSeries.find(
57
+ client,
58
+ query_filters=[cdp.TiltSeries.run.dataset_id == dataset_id, cdp.TiltSeries.run.name == run_name],
59
+ )
60
+ if len(all_tiltseries) == 0:
61
+ raise ValueError(f"No tiltseries found for dataset_id {dataset_id} and run_name {run_name}")
62
+ if len(all_tiltseries) > 1:
63
+ raise ValueError(f"Multiple tiltseries found for dataset_id {dataset_id} and run_name {run_name}")
64
+ tiltseries = all_tiltseries[0]
65
+ else:
66
+ tiltseries = cdp.TiltSeries.get_by_id(client, tiltseries_id)
67
+
68
+ # get the s3 folder path and then glob for *.tlt / *.rawtlt files to download them, renaming the base to match the run id
69
+ s3_folder_path = tiltseries.s3_mrc_file.rsplit("/", 1)[0] + "/"
70
+ tlt_files = s3.glob(s3_folder_path + "*.tlt") + s3.glob(s3_folder_path + "*.rawtlt")
71
+ for tlt_file in tlt_files:
72
+ base_name = os.path.basename(tlt_file)
73
+ ext = os.path.splitext(base_name)[1]
74
+ dest_file = os.path.join(output_dir, f"{tiltseries.run.id}{ext}")
75
+ s3.get(tlt_file, dest_file)
76
+ print(f"[{tiltseries.run.id}] Downloaded {base_name} as {os.path.basename(dest_file)}.", flush=True)
77
+
78
+ # do the same for "*CTF*.txt" files and "*ctf*.txt" files
79
+ ctf_files = s3.glob(s3_folder_path + "*CTF*.txt") + s3.glob(s3_folder_path + "*ctf*.txt")
80
+ if len(ctf_files) == 0:
81
+ print(f"WARNING: No CTF files found for tiltseries id {tiltseries.id}")
82
+ else:
83
+ ctf_file = ctf_files[0]
84
+ base_name = os.path.basename(ctf_file)
85
+ if len(ctf_files) > 1:
86
+ print(f"WARNING: Multiple CTF files found for tiltseries id {tiltseries.id}, using {base_name}")
87
+ ext = os.path.splitext(base_name)[1]
88
+ dest_file = os.path.join(output_dir, f"{tiltseries.run.id}_CTF.txt")
89
+ s3.get(ctf_file, dest_file)
90
+ print(f"[{tiltseries.run.id}] Downloaded {base_name} as {os.path.basename(dest_file)}.", flush=True)
91
+
92
+ # now find the corresponding alignment for this tiltseries and download the "*.aln" file
93
+ if len(tiltseries.alignments) == 0:
94
+ print(f"WARNING: No alignments found for tiltseries id {tiltseries.id}")
95
+ elif len(tiltseries.alignments) > 1:
96
+ print(f"WARNING: Multiple alignments found for tiltseries id {tiltseries.id}")
97
+ else:
98
+ alignment = tiltseries.alignments[0]
99
+ s3_alignment_folder_path = alignment.s3_alignment_metadata.rsplit("/", 1)[0] + "/"
100
+ aln_files = s3.glob(s3_alignment_folder_path + "*.aln")
101
+ if len(aln_files) == 0:
102
+ raise ValueError(f"No .aln files found for run name {tiltseries.run.name} and alignment id {alignment.id}")
103
+ aln_file = aln_files[0]
104
+ base_name = os.path.basename(aln_file)
105
+ if len(aln_files) > 1:
106
+ print(f"WARNING: Multiple .aln files found for run name {tiltseries.run.name}, using {base_name}")
107
+ ext = os.path.splitext(base_name)[1]
108
+ dest_file = os.path.join(output_dir, f"{tiltseries.run.id}{ext}")
109
+ s3.get(aln_file, dest_file)
110
+ print(f"[{tiltseries.run.id}] Downloaded {base_name} as {os.path.basename(dest_file)}.", flush=True)
111
+
112
+ # now get the mdoc file from the Frames/ folder
113
+ frames = tiltseries.run.frames
114
+ if len(frames) == 0:
115
+ raise ValueError(f"No frames found for run name {tiltseries.run.name}")
116
+ frame = frames[0]
117
+ s3_frames_folder_path = frame.s3_frame_path.rsplit("/", 1)[0] + "/"
118
+ mdoc_files = s3.glob(s3_frames_folder_path + "*.mdoc")
119
+ if len(mdoc_files) == 0:
120
+ raise ValueError(f"No .mdoc files found for run name {tiltseries.run.name}")
121
+ mdoc_file = mdoc_files[0]
122
+ base_name = os.path.basename(mdoc_file)
123
+ if len(mdoc_files) > 1:
124
+ print(f"WARNING: Multiple .mdoc files found for run name {tiltseries.run.name}, using {base_name}")
125
+ ext = os.path.splitext(base_name)[1]
126
+ dest_file = os.path.join(output_dir, f"{tiltseries.run.id}{ext}")
127
+ s3.get(mdoc_file, dest_file)
128
+ print(f"[{tiltseries.run.id}] Downloaded {base_name} as {os.path.basename(dest_file)}.", flush=True)
129
+
130
+ # download tiltseries mrc file
131
+ tiltseries_file = os.path.join(output_dir, f"{tiltseries.run.id}.mrc")
132
+ tiltseries_url = tiltseries.https_mrc_file
133
+ response = requests.get(tiltseries_url, stream=True)
134
+ response.raise_for_status()
135
+ with open(tiltseries_file, "wb") as f:
136
+ for chunk in response.iter_content(chunk_size=8192):
137
+ f.write(chunk)
138
+ print(f"[{tiltseries.run.id}] Downloaded tiltseries mrc file as {os.path.basename(tiltseries_file)}.", flush=True)
139
+
140
+ # create imod file for order list
141
+ mdoc = mdocfile.read(os.path.join(output_dir, f"{tiltseries.run.id}.mdoc"))
142
+ order_list = mdoc["TiltAngle"]
143
+ imodpath = os.path.join(output_dir, f"{tiltseries.run.id}_Imod")
144
+ os.makedirs(imodpath, exist_ok=True)
145
+ number = np.arange(len(order_list)) + 1
146
+
147
+ # save in csv with 'ImageNumber', 'TiltAngle' headers
148
+ df = pd.DataFrame({"ImageNumber": number, "TiltAngle": order_list})
149
+ df.to_csv(os.path.join(imodpath, f"{tiltseries.run.id}_order_list.csv"), index=False)
@@ -1,82 +1,125 @@
1
1
  import numpy as np
2
-
3
-
4
- def tomogram(run, voxel_size: float = 10, algorithm: str = "wbp", raise_error: bool = False):
5
- voxel_spacing_obj = run.get_voxel_spacing(voxel_size)
6
-
7
- if voxel_spacing_obj is None:
8
- # Query Avaiable Voxel Spacings
9
- availableVoxelSpacings = [tomo.voxel_size for tomo in run.voxel_spacings]
10
-
11
- # Report to the user which voxel spacings they can use
12
- message = (
13
- f"[Warning] No tomogram found for {run.name} with voxel size {voxel_size} and tomogram type {algorithm}"
14
- f"Available spacings are: {', '.join(map(str, availableVoxelSpacings))}"
15
- )
16
- if raise_error:
17
- raise ValueError(message)
18
- else:
19
- print(message)
2
+ from copick.util.uri import resolve_copick_objects
3
+
4
+
5
+ def tomogram(run, voxel_size: float = 10, algorithm: str = "wbp", raise_error: bool = False, verbose=True):
6
+ """
7
+ Reads a tomogram from a Copick run.
8
+
9
+ Parameters:
10
+ -----------
11
+ run: copick.Run
12
+ voxel_size: float
13
+ algorithm: str
14
+ raise_error: bool
15
+ verbose: bool
16
+ Returns:
17
+ --------
18
+ vol: np.ndarray - The tomogram.
19
+ """
20
+
21
+ # Get the tomogram from the Copick URI
22
+ try:
23
+ uri = f"{algorithm}@{voxel_size}"
24
+ vol = resolve_copick_objects(uri, run.root, "tomogram", run_name=run.name)
25
+ return vol[0].numpy()
26
+ except Exception as err: # Report which orbject is missing
27
+ # Try to resolve the tomogram using the Copick URI
28
+ voxel_spacing_obj = run.get_voxel_spacing(voxel_size)
29
+
30
+ if voxel_spacing_obj is None:
31
+ # Query Avaiable Voxel Spacings
32
+ availableVoxelSpacings = [tomo.voxel_size for tomo in run.voxel_spacings]
33
+
34
+ # Report to the user which voxel spacings they can use
35
+ message = (
36
+ f"[Warning] No tomogram found for {run.name} with uri: {uri}\n"
37
+ f"Available voxel sizes are: {', '.join(map(str, availableVoxelSpacings))}"
38
+ )
39
+ if raise_error:
40
+ raise ValueError(message) from err
41
+ elif verbose:
42
+ print(message)
20
43
  return None
21
44
 
22
- tomogram = voxel_spacing_obj.get_tomogram(algorithm)
23
- if tomogram is None:
24
- # Get available algorithms
25
- availableAlgorithms = [tomo.tomo_type for tomo in run.get_voxel_spacing(voxel_size).tomograms]
26
-
27
- # Report to the user which algorithms are available
28
- message = (
29
- f"[Warning] No tomogram found for {run.name} with voxel size {voxel_size} and tomogram type {algorithm}"
30
- f"Available algorithms are: {', '.join(availableAlgorithms)}"
31
- )
32
- if raise_error:
33
- raise ValueError(message)
34
- else:
35
- print(message)
45
+ tomogram = voxel_spacing_obj.get_tomogram(algorithm)
46
+ if tomogram is None:
47
+ # Get available algorithms
48
+ availableAlgorithms = [tomo.tomo_type for tomo in run.get_voxel_spacing(voxel_size).tomograms]
49
+
50
+ # Report to the user which algorithms are available
51
+ message = (
52
+ f"[Warning] No tomogram found for {run.name} with uri: {uri}\n"
53
+ f"Available algorithms @{voxel_size}A are: {', '.join(availableAlgorithms)}"
54
+ )
55
+ if raise_error:
56
+ raise ValueError(message) from err
57
+ elif verbose:
58
+ print(message)
36
59
  return None
37
60
 
38
- return tomogram.numpy()
39
61
 
62
+ def segmentation(run, voxel_spacing: float, name: str, user_id=None, session_id=None, raise_error=False, verbose=True):
63
+ """
64
+ Reads a segmentation from a Copick run.
65
+
66
+ Parameters:
67
+ -----------
68
+ run: copick.Run
69
+ voxel_spacing: float
70
+ name: str
71
+ user_id: str
72
+ session_id: str
73
+ raise_error: bool
74
+ verbose: bool
75
+ Returns:
76
+ --------
77
+ seg: np.ndarray - The segmentation.
78
+ """
79
+
80
+ # Construct the Target URI
81
+ if session_id is None and user_id is None:
82
+ uri = f"{name}@{voxel_spacing}"
83
+ elif session_id is None:
84
+ uri = f"{name}:{user_id}@{voxel_spacing}"
85
+ else:
86
+ uri = f"{name}:{user_id}/{session_id}@{voxel_spacing}"
87
+
88
+ # Try to resolve the segmentation using the Copick URI
89
+ try:
90
+ segs = resolve_copick_objects(uri, run.root, "segmentation", run_name=run.name)
91
+ return segs[0].numpy()
92
+ except Exception as err:
93
+ # Force the voxel spacing to be a float
94
+ voxel_spacing = float(voxel_spacing)
40
95
 
41
- def segmentation(run, voxel_spacing: float, segmentation_name: str, session_id=None, user_id=None, raise_error=False):
42
- seg = run.get_segmentations(
43
- name=segmentation_name,
44
- session_id=session_id,
45
- user_id=user_id,
46
- voxel_size=voxel_spacing,
47
- )
48
-
49
- # No Segmentations Are Available, Result in Error
50
- if len(seg) == 0:
51
96
  # Get all available segmentations with their metadata
52
97
  available_segs = run.get_segmentations(voxel_size=voxel_spacing)
53
- seg_info = [(s.name, s.user_id, s.session_id) for s in available_segs]
54
98
 
55
- # Format the information for display
56
- seg_details = [f"(name: {name}, user_id: {uid}, session_id: {sid})" for name, uid, sid in seg_info]
99
+ if len(available_segs) == 0:
100
+ available_segs = run.get_segmentations()
101
+ message = (
102
+ f"No segmentation found for URI: {uri}\n"
103
+ f"Available segmentations avaiable w/following voxel sizes: {', '.join(map(str, [s.voxel_size for s in available_segs]))}"
104
+ )
105
+ else:
106
+ seg_info = [(s.name, s.user_id, s.session_id) for s in available_segs]
57
107
 
58
- message = (
59
- f"\nNo segmentation found matching:\n"
60
- f" name: {segmentation_name}, user_id: {user_id}, session_id: {session_id}\n"
61
- f"Available segmentations in {run.name} are:\n " + "\n ".join(seg_details)
62
- )
108
+ # Format the information for display
109
+ seg_details = [f"(name: {name}, user_id: {uid}, session_id: {sid})" for name, uid, sid in seg_info]
110
+
111
+ message = (
112
+ f"\nNo segmentation at {voxel_spacing} A found matching:\n"
113
+ f" name: {name}, user_id: {user_id}, session_id: {session_id}\n"
114
+ f"Available segmentations in {run.name} are:\n " + "\n ".join(seg_details)
115
+ )
63
116
  if raise_error:
64
- raise ValueError(message)
65
- else:
117
+ raise ValueError(message) from err
118
+ elif verbose:
66
119
  print(message)
120
+ else:
67
121
  return None
68
122
 
69
- # No Segmentations Are Available, Result in Error
70
- if len(seg) > 1:
71
- print(
72
- f"[Warning] More Than 1 Segmentation is Available for the Query Information. "
73
- f"Available Segmentations are: {seg} "
74
- f"Defaulting to Loading: {seg[0]}\n",
75
- )
76
- seg = seg[0]
77
-
78
- return seg.numpy()
79
-
80
123
 
81
124
  def coordinates(
82
125
  run, # CoPick run object containing the segmentation data
@@ -85,7 +128,25 @@ def coordinates(
85
128
  session_id: str = None, # Identifier of the session that generated the picks
86
129
  voxel_size: float = 10, # Voxel size of the tomogram, used for scaling the coordinates
87
130
  raise_error: bool = False,
131
+ verbose: bool = True,
88
132
  ):
133
+ """
134
+ Reads the coordinates of the picks from a Copick run.
135
+
136
+ Parameters:
137
+ -----------
138
+ run: copick.Run
139
+ name: str
140
+ user_id: str
141
+ session_id: str
142
+ voxel_size: float
143
+ raise_error: bool
144
+ verbose: bool
145
+
146
+ Returns:
147
+ --------
148
+ coordinates: np.ndarray - The 3D coordinates of the picks in voxel space.
149
+ """
89
150
  # Retrieve the pick points associated with the specified object and user ID
90
151
  picks = run.get_picks(object_name=name, user_id=user_id, session_id=session_id)
91
152
 
@@ -105,18 +166,22 @@ def coordinates(
105
166
  )
106
167
  if raise_error:
107
168
  raise ValueError(message)
108
- else:
169
+ elif verbose:
109
170
  print(message)
110
- return None
171
+ return None
172
+
111
173
  elif len(picks) > 1:
112
174
  # Format pick information for display
113
175
  picks_info = [(p.pickable_object_name, p.user_id, p.session_id) for p in picks]
114
176
  picks_details = [f"(name: {name}, user_id: {uid}, session_id: {sid})" for name, uid, sid in picks_info]
115
177
 
116
- print(
117
- "[Warning] More than 1 pick is available for the query information."
118
- "\nAvailable picks are:\n " + "\n ".join(picks_details) + f"\nDefaulting to loading:\n {picks[0]}\n",
119
- )
178
+ if verbose:
179
+ print(
180
+ "[Warning] More than 1 pick is available for the query information."
181
+ "\nAvailable picks are:\n " + "\n ".join(picks_details) + f"\n"
182
+ f"Defaulting to loading:\n {picks[0]}\n",
183
+ )
184
+
120
185
  points = picks[0].points
121
186
 
122
187
  # Initialize an array to store the coordinates
@@ -28,17 +28,17 @@ def tomogram(run, input_volume, voxel_size=10, algorithm="wbp"):
28
28
  voxel_spacing = run.new_voxel_spacing(voxel_size=voxel_size)
29
29
 
30
30
  # Check if We Need to Create a New Tomogram for Given Algorithm
31
- tomogram = voxel_spacing.get_tomogram(algorithm)
32
- if tomogram is None:
33
- tomogram = voxel_spacing.new_tomogram(tomo_type=algorithm)
31
+ tomo = voxel_spacing.get_tomogram(algorithm)
32
+ if tomo is None:
33
+ tomo = voxel_spacing.new_tomogram(tomo_type=algorithm)
34
34
 
35
35
  # Write the tomogram data
36
- tomogram.from_numpy(input_volume)
36
+ tomo.from_numpy(input_volume)
37
37
 
38
38
 
39
39
  def segmentation(
40
40
  run,
41
- segmentation_volume,
41
+ seg_vol,
42
42
  user_id,
43
43
  name="segmentation",
44
44
  session_id="0",
@@ -52,7 +52,7 @@ def segmentation(
52
52
  -----------
53
53
  run : copick.Run
54
54
  The current Copick run object.
55
- segmentation_volume : np.ndarray
55
+ seg_vol : np.ndarray
56
56
  The segmentation data to be written.
57
57
  user_id : str
58
58
  The ID of the user creating the segmentation.
@@ -76,7 +76,7 @@ def segmentation(
76
76
 
77
77
  # If no segmentation exists or no segmentation at the given voxel size, create a new one
78
78
  if len(segmentations) == 0 or any(seg.voxel_size != voxel_size for seg in segmentations):
79
- segmentation = run.new_segmentation(
79
+ seg = run.new_segmentation(
80
80
  voxel_size=voxel_size,
81
81
  name=name,
82
82
  session_id=session_id,
@@ -85,7 +85,7 @@ def segmentation(
85
85
  )
86
86
  else:
87
87
  # Overwrite the current segmentation at the specified voxel size if it exists
88
- segmentation = next(seg for seg in segmentations if seg.voxel_size == voxel_size)
88
+ seg = next(seg for seg in segmentations if seg.voxel_size == voxel_size)
89
89
 
90
90
  # Write the segmentation data
91
- segmentation.from_numpy(segmentation_volume, dtype=np.uint8)
91
+ seg.from_numpy(seg_vol, dtype=np.uint8)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: copick-utils
3
- Version: 1.1.0
3
+ Version: 1.2.0
4
4
  Summary: Utilities for copick
5
5
  Project-URL: Repository, https://github.com/KyleHarrington/copick-utils.git
6
6
  Project-URL: Issues, https://github.com/KyleHarrington/copick-utils/issues
@@ -33,6 +33,7 @@ Requires-Dist: click-option-group
33
33
  Requires-Dist: copick>=1.16.0
34
34
  Requires-Dist: manifold3d
35
35
  Requires-Dist: mapbox-earcut
36
+ Requires-Dist: mdocfile
36
37
  Requires-Dist: numpy
37
38
  Requires-Dist: rtree
38
39
  Requires-Dist: scikit-image
@@ -1,9 +1,11 @@
1
- copick_utils/__init__.py,sha256=Ob4phsN9gDkTb7bS7E38AH24iqiXU9mfPP12_gWtw2g,135
1
+ copick_utils/__init__.py,sha256=XY1t2MuZi-EFIR_wNRRTMCYSR3FyJStb4E0oxUyQoA8,135
2
2
  copick_utils/cli/__init__.py,sha256=51i1xC-N2laWLdZLdpsKMSB9LdO3BEdqDdWIbyxJ8f0,634
3
3
  copick_utils/cli/clipmesh.py,sha256=M1MP8lw16diGHajipFXbZDQ4ZrsTvFiqAaHji0Smmtc,6172
4
4
  copick_utils/cli/clippicks.py,sha256=7lmEZj8GDyVqc9l_rvGhAFTYWUhSEnwZcWu8w9LStBU,5857
5
5
  copick_utils/cli/clipseg.py,sha256=atx01VUBdk5xLSwEHh43bN7HEKV2bjVgDmaNaLwJQ5E,6437
6
6
  copick_utils/cli/conversion_commands.py,sha256=7I729S_9R7l67NzwfKaEWZAxcq0NbBhflZHKxTXaZhk,1045
7
+ copick_utils/cli/download.py,sha256=mwGlfpHHOIcGWRKCwfNrOs97udsAv8dvOh2d9-If7Bc,831
8
+ copick_utils/cli/download_commands.py,sha256=XgDyoXAA79c0w30HuUWQEucmVH73YpOIjsnkYnUN7Es,298
7
9
  copick_utils/cli/enclosed.py,sha256=gsJxapWCqH4IOMDyTTd_akv4L1qzuBfbRJEDBES6Wik,7209
8
10
  copick_utils/cli/filter_components.py,sha256=hOs8h0648Ws-rzVxTh7w8Futjk4aEOpavoqrJMvr-2Q,6163
9
11
  copick_utils/cli/fit_spline.py,sha256=BdLujzR9sen6IGlmZ9pGbhqs6Kjzk5MuAgmq3ewyMhk,6491
@@ -46,8 +48,9 @@ copick_utils/converters/surface_from_picks.py,sha256=PHRVtdaDikygT3kmTJKUnw2Gvj_
46
48
  copick_utils/features/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
49
  copick_utils/features/skimage.py,sha256=Sz-348tTT44lLS825z14iIOM3L_tALXQctUF1HbnWnw,4209
48
50
  copick_utils/io/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
- copick_utils/io/readers.py,sha256=bE7IBPohNjsFgD6HRPTrWte6OjaJ0NrF4RS8Dwgf3nA,5435
50
- copick_utils/io/writers.py,sha256=iYyNkpBgrD0_N0N-LoyCOfIrk46WHWocKvkUUQYXMRg,2985
51
+ copick_utils/io/portal.py,sha256=fqk0ihdrkM8ayc5tfG5EIleYqKC-JehxL88TcYNySq8,7264
52
+ copick_utils/io/readers.py,sha256=Ll1NPEasPbddQK-oE7XIBC2EV15VuzGeK-V2oApl9Cg,7278
53
+ copick_utils/io/writers.py,sha256=mv34fLZLKa4q5cBJ2pP1tenwDz8qWoahk0suCcpsK-w,2906
51
54
  copick_utils/logical/__init__.py,sha256=coOdLd7vH6TCsoHj9T1Hj5hqnfiGM5CrVkmjVB-HdbM,1181
52
55
  copick_utils/logical/distance_operations.py,sha256=cVn8YywwrgNEaKJxnZ6KbsJwwx7fJ2VDDaUEgat0b9A,24071
53
56
  copick_utils/logical/enclosed_operations.py,sha256=f388K37vS4wCN5D0FL5lnvO29pd23pmC0LlXhNuNsS0,8583
@@ -66,8 +69,8 @@ copick_utils/process/split_labels.py,sha256=5BZw4gzh57_4DgmYErwSwjWzBJKkiYbf3qu4
66
69
  copick_utils/process/validbox.py,sha256=5uEbVjmyNJxp__2XJal1jP7Ecpqv2uZsBkAy26zpxx8,9494
67
70
  copick_utils/util/__init__.py,sha256=V76KYVdhERpiXkCsaap4WQBbvfXG04x3vGvdSayzpmk,190
68
71
  copick_utils/util/config_models.py,sha256=vzih8OsmvKQk8rULYyY6f6yiRHUnk48KKrCES5Pvq4w,21964
69
- copick_utils-1.1.0.dist-info/METADATA,sha256=ZA06pl5dUEy2OZF5AcQdpNOBl2g-AjDRcackrAaVS9M,4562
70
- copick_utils-1.1.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
71
- copick_utils-1.1.0.dist-info/entry_points.txt,sha256=qw3xz_Bs_-KijogXZ-vUU9efvQG0AlSF3SgG4HpNr50,1555
72
- copick_utils-1.1.0.dist-info/licenses/LICENSE,sha256=3UHKsYd99Gh_qf1a9s8G5sdKqafgbGs5WIMoeX0OcdY,1105
73
- copick_utils-1.1.0.dist-info/RECORD,,
72
+ copick_utils-1.2.0.dist-info/METADATA,sha256=90qt-hq06uei8nx3nEIa8sGHpimmm59xcYJqBQMJ2fI,4586
73
+ copick_utils-1.2.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
74
+ copick_utils-1.2.0.dist-info/entry_points.txt,sha256=Vve0xfXIa463rKfI6ELKATtHzacLxNvgWffyLkYIrzQ,1636
75
+ copick_utils-1.2.0.dist-info/licenses/LICENSE,sha256=3UHKsYd99Gh_qf1a9s8G5sdKqafgbGs5WIMoeX0OcdY,1105
76
+ copick_utils-1.2.0.dist-info/RECORD,,
@@ -10,6 +10,9 @@ picks2surface = copick_utils.cli.conversion_commands:picks2surface
10
10
  seg2mesh = copick_utils.cli.conversion_commands:seg2mesh
11
11
  seg2picks = copick_utils.cli.conversion_commands:seg2picks
12
12
 
13
+ [copick.download.commands]
14
+ project = copick_utils.cli.download_commands:project
15
+
13
16
  [copick.logical.commands]
14
17
  clipmesh = copick_utils.cli.logical_commands:clipmesh
15
18
  clippicks = copick_utils.cli.logical_commands:clippicks