coordinate-system 7.0.1__cp313-cp313-win_amd64.whl → 7.0.2__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -23,13 +23,23 @@ Group Correspondence:
23
23
  - FourierFrame ∈ GL(1,C) = U(1) × R⁺
24
24
  - U3Frame ∈ U(3) = SU(3) × U(1)
25
25
 
26
- Version: 7.0.1
27
- DOI: https://doi.org/10.5281/zenodo.18217542
26
+ **Authors:** Pan Guojun
27
+ Version: 7.0.1
28
+ **DOI:** https://doi.org/10.5281/zenodo.14435613
28
29
  """
29
30
 
30
31
  __version__ = '7.0.1'
31
32
 
32
- from .coordinate_system import vec3, vec2
33
+ from .coordinate_system import (
34
+ vec3,
35
+ vec2,
36
+ cross,
37
+ cross_right,
38
+ set_handedness,
39
+ get_handedness,
40
+ is_left_handed,
41
+ is_right_handed,
42
+ )
33
43
  from .coordinate_system import quat
34
44
  from .coordinate_system import coord3
35
45
 
@@ -41,24 +51,32 @@ from .differential_geometry import (
41
51
  Torus,
42
52
 
43
53
  # Core classes
44
- MetricTensor,
45
- GradientResult,
46
- IntrinsicGradientOperator,
47
- IntrinsicGradientCurvatureCalculator,
48
- CurvatureCalculator,
54
+ MetricTensor,
55
+ GradientResult,
56
+ IntrinsicGradientOperator,
57
+ IntrinsicGradientCurvatureCalculator,
58
+ LieGroupCurvatureCalculator,
59
+ CurvatureCalculator,
49
60
 
50
61
  # Intrinsic gradient method functions (default)
51
- compute_gaussian_curvature,
52
- compute_mean_curvature,
53
- compute_riemann_curvature,
54
- compute_all_curvatures,
55
- compute_intrinsic_gradient,
56
-
57
- # Classical method functions
58
- gaussian_curvature_classical,
59
- mean_curvature_classical,
60
- principal_curvatures_classical,
61
- all_curvatures_classical,
62
+ compute_gaussian_curvature,
63
+ compute_mean_curvature,
64
+ compute_riemann_curvature,
65
+ compute_curvature_tensor,
66
+ compute_all_curvatures,
67
+ compute_intrinsic_gradient,
68
+
69
+ # Intrinsic gradient legacy aliases
70
+ intrinsic_gradient_gaussian_curvature,
71
+ intrinsic_gradient_mean_curvature,
72
+ intrinsic_gradient_principal_curvatures,
73
+ intrinsic_gradient_all_curvatures,
74
+
75
+ # Classical method functions
76
+ gaussian_curvature_classical,
77
+ mean_curvature_classical,
78
+ principal_curvatures_classical,
79
+ all_curvatures_classical,
62
80
 
63
81
  # Backward compatibility aliases
64
82
  gaussian_curvature,
@@ -66,8 +84,9 @@ from .differential_geometry import (
66
84
  principal_curvatures,
67
85
  all_curvatures,
68
86
 
69
- # Method comparison
70
- compare_methods,
87
+ # Method comparison
88
+ compare_methods,
89
+ gaussian_curvature_lie,
71
90
 
72
91
  # Utility functions
73
92
  derivative_5pt,
@@ -115,10 +134,11 @@ from .u3_frame import (
115
134
  )
116
135
 
117
136
  # Complex Geometric Physics module (Christmas Equation, CFUT)
118
- from .complex_geometric_physics import (
119
- # Core classes (U3Frame imported from u3_frame module above)
120
- EnergyMomentumTensor,
121
- ChristmasEquation,
137
+ from .complex_geometric_physics import (
138
+ # Core classes (U3Frame imported from u3_frame module above)
139
+ ComplexFrame,
140
+ EnergyMomentumTensor,
141
+ ChristmasEquation,
122
142
 
123
143
  # Utility functions
124
144
  create_flat_spacetime_frame,
@@ -158,22 +178,28 @@ __all__ = [
158
178
  # Constants
159
179
  'ZERO3', 'UNITX', 'UNITY', 'UNITZ', 'ONE3', 'ONE4', 'ONEC',
160
180
 
161
- # Core types
162
- 'vec3', 'vec2', 'quat', 'coord3', 'lerp',
181
+ # Core types
182
+ 'vec3', 'vec2', 'quat', 'coord3', 'lerp', 'cross', 'cross_right',
183
+ 'set_handedness', 'get_handedness', 'is_left_handed', 'is_right_handed',
163
184
 
164
185
  # Differential geometry - Surface classes
165
186
  'Surface', 'Sphere', 'Torus',
166
187
 
167
188
  # Differential geometry - Core classes
168
189
  'MetricTensor', 'GradientResult',
169
- 'IntrinsicGradientOperator', 'IntrinsicGradientCurvatureCalculator',
170
- 'CurvatureCalculator',
190
+ 'IntrinsicGradientOperator', 'IntrinsicGradientCurvatureCalculator',
191
+ 'LieGroupCurvatureCalculator',
192
+ 'CurvatureCalculator',
171
193
 
172
194
  # Differential geometry - Intrinsic gradient method (default)
173
- 'compute_gaussian_curvature', 'compute_mean_curvature',
174
- 'compute_riemann_curvature', 'compute_all_curvatures',
175
- 'compute_intrinsic_gradient',
176
-
195
+ 'compute_gaussian_curvature', 'compute_mean_curvature',
196
+ 'compute_riemann_curvature', 'compute_curvature_tensor', 'compute_all_curvatures',
197
+ 'compute_intrinsic_gradient',
198
+
199
+ # Differential geometry - Intrinsic gradient legacy aliases
200
+ 'intrinsic_gradient_gaussian_curvature', 'intrinsic_gradient_mean_curvature',
201
+ 'intrinsic_gradient_principal_curvatures', 'intrinsic_gradient_all_curvatures',
202
+
177
203
  # Differential geometry - Classical method
178
204
  'gaussian_curvature_classical', 'mean_curvature_classical',
179
205
  'principal_curvatures_classical', 'all_curvatures_classical',
@@ -183,8 +209,8 @@ __all__ = [
183
209
  'principal_curvatures', 'all_curvatures',
184
210
 
185
211
  # Differential geometry - Comparison and utilities
186
- 'compare_methods',
187
- 'derivative_5pt', 'derivative_2nd_5pt', 'richardson_extrapolation',
212
+ 'compare_methods', 'gaussian_curvature_lie',
213
+ 'derivative_5pt', 'derivative_2nd_5pt', 'richardson_extrapolation',
188
214
 
189
215
  # Spectral geometry module (FourierFrame, GL(1,C))
190
216
  'FourierFrame', 'FourierFrameSpectrum',
@@ -193,11 +219,17 @@ __all__ = [
193
219
  'spectral_transform', 'inverse_spectral_transform',
194
220
  'HBAR', 'GPU_AVAILABLE',
195
221
 
196
- # U(3) Frame module (Gauge theory)
197
- 'U3Frame', 'SU3Component',
198
- 'GaugeConnection', 'FieldStrength',
199
- 'SymmetryBreakingPotential',
200
-
222
+ # U(3) Frame module (Gauge theory)
223
+ 'U3Frame', 'SU3Component',
224
+ 'GaugeConnection', 'FieldStrength',
225
+ 'SymmetryBreakingPotential',
226
+
227
+ # Complex Geometric Physics
228
+ 'ComplexFrame', 'EnergyMomentumTensor', 'ChristmasEquation',
229
+ 'create_flat_spacetime_frame', 'create_curved_spacetime_frame',
230
+ 'create_gauge_field_frame', 'M_PLANCK', 'LAMBDA_TOPO',
231
+ 'ALPHA_FS', 'LAMBDA_C', 'ALPHA_PROJECTION',
232
+
201
233
  # Visualization
202
234
  'CoordinateSystemVisualizer', 'CurveVisualizer', 'ParametricCurve',
203
235
  'visualize_coord_system', 'visualize_curve',
@@ -284,16 +316,26 @@ class CoordTuple(tuple):
284
316
  return (result.x, result.y, result.z)
285
317
 
286
318
 
287
- # Store original coord3 operators
288
- _original_coord3_mul = coord3.__mul__
289
- _original_coord3_rmul = coord3.__rmul__
290
- _original_coord3_truediv = getattr(coord3, '__truediv__', None)
291
-
292
-
293
- def _new_coord3_mul(self, other):
294
- """Enhanced multiplication operator for coord3."""
295
- if isinstance(other, tuple):
296
- other = CoordTuple(other)
319
+ # Store original coord3 operators
320
+ _original_coord3_init = coord3.__init__
321
+ _original_coord3_mul = coord3.__mul__
322
+ _original_coord3_rmul = coord3.__rmul__
323
+ _original_coord3_truediv = getattr(coord3, '__truediv__', None)
324
+
325
+
326
+ def _new_coord3_init(self, *args, **kwargs):
327
+ """Extended coord3 initializer with two-axis convenience."""
328
+ if len(args) == 2 and all(isinstance(arg, vec3) for arg in args):
329
+ ux, uy = args
330
+ uz = ux.cross(uy)
331
+ return _original_coord3_init(self, ux, uy, uz)
332
+ return _original_coord3_init(self, *args, **kwargs)
333
+
334
+
335
+ def _new_coord3_mul(self, other):
336
+ """Enhanced multiplication operator for coord3."""
337
+ if isinstance(other, tuple):
338
+ other = CoordTuple(other)
297
339
  return other * self
298
340
  return _original_coord3_mul(self, other)
299
341
 
@@ -316,7 +358,8 @@ def _new_coord3_truediv(self, other):
316
358
  raise TypeError(f"unsupported operand type(s) for /: 'coord3' and {type(other).__name__}")
317
359
 
318
360
 
319
- # Apply enhancements to coord3 operators
320
- coord3.__mul__ = _new_coord3_mul
321
- coord3.__rmul__ = _new_coord3_rmul
322
- coord3.__truediv__ = _new_coord3_truediv
361
+ # Apply enhancements to coord3 operators
362
+ coord3.__init__ = _new_coord3_init
363
+ coord3.__mul__ = _new_coord3_mul
364
+ coord3.__rmul__ = _new_coord3_rmul
365
+ coord3.__truediv__ = _new_coord3_truediv
@@ -1,33 +1,34 @@
1
- """
2
- Complex Geometric Physics - Unified Framework
3
- ================================================================================
4
-
5
- Implementation of the "Christmas Equation" and Complex Frame Unified Theory (CFUT)
6
-
7
- The Christmas Equation (Complete complex form):
8
- M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
9
-
10
- Where:
11
- - Ĝ_μν: Einstein tensor from complex frame U(x)
12
- - _μ: Chern-Simons current (topological)
13
- - _μν^(top): Topological energy-momentum tensor
14
- - T̂_μν^(mat): Matter energy-momentum tensor
15
-
16
- Core Theory:
17
- - Universe as U(3) complex frame field: U(x) ∈ U(3)
18
- - Real-imaginary decomposition: U = U^(R) + iU^(I)
19
- - Real part: geometric properties (metric, curvature, spacetime)
20
- - Imaginary part: topological properties (phase winding, gauge symmetry)
21
-
22
- Physical Interpretation:
23
- - Geometry + Topology = Complex Matter + Topological Force
24
- - Unifies gravity, gauge fields, dark matter, and topology
25
-
26
- Author: Enhanced by AI following theoretical framework
27
- Date: 2025-01-14
28
- Version: 7.0.1
29
- DOI: https://doi.org/10.5281/zenodo.18217542
30
- """
1
+ """
2
+ Complex Geometric Physics - Unified Framework
3
+ ================================================================================
4
+
5
+ Implementation of the "Christmas Equation" and Complex Frame Unified Theory (CFUT).
6
+
7
+ The Christmas Equation (complete complex form):
8
+ (M_P^2 / 2) Ĝ_{μν}[U] + (λ / (32π^2)) ∇̂_{} K̄_{ν)}[U]
9
+ = T̂_{μν}^{(top)}[U] + T̂_{μν}^{(mat)}
10
+
11
+ Where:
12
+ - Ĝ_{μν}: Einstein tensor from complex frame U(x)
13
+ - _μ: Chern-Simons current (topological)
14
+ - T̂_{μν}^{(top)}: Topological energy-momentum tensor
15
+ - T̂_{μν}^{(mat)}: Matter energy-momentum tensor
16
+
17
+ Core Theory:
18
+ - Universe as U(3) complex frame field: U(x) U(3)
19
+ - Real-imaginary decomposition: U = U^(R) + i U^(I)
20
+ - Real part: geometric properties (metric, curvature, spacetime)
21
+ - Imaginary part: topological properties (phase winding, gauge symmetry)
22
+
23
+ Physical Interpretation:
24
+ - Geometry + Topology = Complex Matter + Topological Force
25
+ - Unifies gravity, gauge fields, dark matter, and topology
26
+
27
+ **Authors:** Pan Guojun
28
+ Date: 2025-01-14
29
+ Version: 7.0.1
30
+ **DOI:** https://doi.org/10.5281/zenodo.14435613
31
+ """
31
32
 
32
33
  __version__ = '7.0.1'
33
34
 
@@ -36,20 +37,20 @@ from typing import Tuple, Optional, Callable, Dict, Any
36
37
  from dataclasses import dataclass
37
38
  import warnings
38
39
 
39
- # Physical constants (SI units for precision calculations)
40
- HBAR_SI = 1.054571817e-34 # Reduced Planck constant [J·s]
41
- H_PLANCK_SI = 6.62607015e-34 # Planck constant [J·s]
40
+ # Physical constants (SI units for precision calculations)
41
+ HBAR_SI = 1.054571817e-34 # Reduced Planck constant [J·s]
42
+ H_PLANCK_SI = 6.62607015e-34 # Planck constant [J·s]
42
43
  C_LIGHT_SI = 2.99792458e8 # Speed of light [m/s]
43
44
  E_CHARGE_SI = 1.602176634e-19 # Elementary charge [C]
44
45
  EPSILON_0_SI = 8.8541878128e-12 # Vacuum permittivity [F/m]
45
46
  M_ELECTRON_SI = 9.1093837015e-31 # Electron mass [kg]
46
47
 
47
48
  # Derived constants
48
- ALPHA_FS = E_CHARGE_SI**2 / (4 * np.pi * EPSILON_0_SI * HBAR_SI * C_LIGHT_SI) # Fine structure constant ≈ 1/137
49
- LAMBDA_C = H_PLANCK_SI / (M_ELECTRON_SI * C_LIGHT_SI) # Compton wavelength [m]
50
- ALPHA_PROJECTION = ALPHA_FS * LAMBDA_C # Projection factor α ≈ 1.77×10⁻¹⁴ m
51
-
52
- # Physical constants (natural units: ℏ = c = 1)
49
+ ALPHA_FS = E_CHARGE_SI**2 / (4 * np.pi * EPSILON_0_SI * HBAR_SI * C_LIGHT_SI) # Fine structure constant ≈ 1/137
50
+ LAMBDA_C = H_PLANCK_SI / (M_ELECTRON_SI * C_LIGHT_SI) # Compton wavelength [m]
51
+ ALPHA_PROJECTION = ALPHA_FS * LAMBDA_C # Projection factor α ≈ 1.77×10⁻¹⁴ m
52
+
53
+ # Physical constants (natural units: ℏ = c = 1)
53
54
  M_PLANCK = 2.435e18 # Planck mass [GeV]
54
55
  LAMBDA_TOPO = 0.1008 # Topological coupling constant (from theory)
55
56
  HBAR = 1.0 # Reduced Planck constant (natural units)
@@ -67,30 +68,33 @@ except ImportError:
67
68
  FieldStrength = None
68
69
  warnings.warn("U3Frame not available. Some features will be limited.")
69
70
 
71
+ # Compatibility alias for older APIs.
72
+ ComplexFrame = U3Frame
73
+
70
74
 
71
75
  # ============================================================
72
76
  # Core Data Structures
73
77
  # ============================================================
74
78
 
75
79
  @dataclass
76
- class EnergyMomentumTensor:
77
- """
78
- Energy-momentum tensor T_μν
79
-
80
- Decomposition:
81
- T_μν = T_μν^(R) + iT_μν^(I)
82
- - Real part: mass-energy density
83
- - Imaginary part: charge current
84
- """
85
- real_part: np.ndarray # 4×4 real symmetric tensor
86
- imag_part: np.ndarray # 4×4 real tensor
80
+ class EnergyMomentumTensor:
81
+ """
82
+ Energy-momentum tensor T_{μν}
83
+
84
+ Decomposition:
85
+ T_{μν} = T_{μν}^{(R)} + i T_{μν}^{(I)}
86
+ - Real part: mass-energy density
87
+ - Imaginary part: charge current
88
+ """
89
+ real_part: np.ndarray # 4×4 real symmetric tensor
90
+ imag_part: np.ndarray # 4×4 real tensor
87
91
 
88
92
  def __post_init__(self):
89
- """Validate tensor structure"""
90
- if self.real_part.shape != (4, 4):
91
- raise ValueError(f"Real part must be 4×4, got {self.real_part.shape}")
92
- if self.imag_part.shape != (4, 4):
93
- raise ValueError(f"Imaginary part must be 4×4, got {self.imag_part.shape}")
93
+ """Validate tensor structure"""
94
+ if self.real_part.shape != (4, 4):
95
+ raise ValueError(f"Real part must be 4×4, got {self.real_part.shape}")
96
+ if self.imag_part.shape != (4, 4):
97
+ raise ValueError(f"Imaginary part must be 4×4, got {self.imag_part.shape}")
94
98
 
95
99
  @property
96
100
  def complex_tensor(self) -> np.ndarray:
@@ -110,46 +114,47 @@ class EnergyMomentumTensor:
110
114
  # Christmas Equation Implementation
111
115
  # ============================================================
112
116
 
113
- class ChristmasEquation:
114
- """
115
- The Christmas Equation - Unified field equation
116
-
117
- Complete form:
118
- M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
119
-
120
- Components:
121
- - Left side: Geometry + Topology
122
- - Right side: Topological source + Matter source
123
- """
124
-
125
- def __init__(self,
126
- planck_mass: float = M_PLANCK,
127
- topo_coupling: float = LAMBDA_TOPO,
128
- projection_factor: float = ALPHA_PROJECTION):
129
- """
130
- Initialize Christmas Equation solver
131
-
132
- Args:
133
- planck_mass: Planck mass M_P [GeV]
134
- topo_coupling: Topological coupling constant λ
135
- projection_factor: Projection factor α = α_fs × λ_c [m]
136
- """
117
+ class ChristmasEquation:
118
+ """
119
+ The Christmas Equation - unified field equation
120
+
121
+ Complete form:
122
+ (M_P^2 / 2) Ĝ_{μν}[U] + (λ / (32π^2)) ∇̂_{} K̄_{ν)}[U]
123
+ = T̂_{μν}^{(top)}[U] + T̂_{μν}^{(mat)}
124
+
125
+ Components:
126
+ - Left side: Geometry + Topology
127
+ - Right side: Topological source + Matter source
128
+ """
129
+
130
+ def __init__(self,
131
+ planck_mass: float = M_PLANCK,
132
+ topo_coupling: float = LAMBDA_TOPO,
133
+ projection_factor: float = ALPHA_PROJECTION):
134
+ """
135
+ Initialize Christmas Equation solver.
136
+
137
+ Args:
138
+ planck_mass: Planck mass M_P [GeV]
139
+ topo_coupling: Topological coupling constant λ
140
+ projection_factor: Projection factor α = α_fs × λ_c [m]
141
+ """
137
142
  self.M_P = planck_mass
138
143
  self.lambda_topo = topo_coupling
139
144
  self.alpha_proj = projection_factor
140
145
 
141
- def einstein_tensor(self, frame: U3Frame) -> np.ndarray:
142
- """
143
- Compute Einstein tensor Ĝ_μν from complex frame
144
-
145
- Ĝ_μν = R_μν - (1/2)g_μν R
146
-
147
- Args:
148
- frame: Complex frame field U(x)
149
-
150
- Returns:
151
- 3×3 Einstein tensor (spatial part)
152
- """
146
+ def einstein_tensor(self, frame: U3Frame) -> np.ndarray:
147
+ """
148
+ Compute Einstein tensor Ĝ_{μν} from complex frame.
149
+
150
+ Ĝ_{μν} = R_{μν} - (1/2) g_{μν} R
151
+
152
+ Args:
153
+ frame: Complex frame field U(x)
154
+
155
+ Returns:
156
+ 3×3 Einstein tensor (spatial part)
157
+ """
153
158
  # Extract metric from real part
154
159
  g = frame.metric_tensor
155
160
 
@@ -166,14 +171,14 @@ class ChristmasEquation:
166
171
 
167
172
  return G_tensor
168
173
 
169
- def chern_simons_current(self, frame: U3Frame) -> np.ndarray:
170
- """
171
- Compute Chern-Simons current K̄_μ from imaginary part
172
-
173
- K̄_μ = ε_μνρσ Tr(A^ν F^ρσ - (2/3)A^ν A^ρ A^σ)
174
-
175
- Args:
176
- frame: Complex frame field U(x)
174
+ def chern_simons_current(self, frame: U3Frame) -> np.ndarray:
175
+ """
176
+ Compute Chern-Simons current K̄_μ from imaginary part.
177
+
178
+ K̄_μ = ε_{μνρσ} Tr(A^ν F^{ρσ} - (2/3) A^ν A^ρ A^σ)
179
+
180
+ Args:
181
+ frame: Complex frame field U(x)
177
182
 
178
183
  Returns:
179
184
  4-vector Chern-Simons current
@@ -193,9 +198,9 @@ class ChristmasEquation:
193
198
 
194
199
  return K_current
195
200
 
196
- def topological_energy_momentum(self, frame: U3Frame) -> EnergyMomentumTensor:
197
- """
198
- Compute topological energy-momentum tensor T̂_μν^(top)
201
+ def topological_energy_momentum(self, frame: U3Frame) -> EnergyMomentumTensor:
202
+ """
203
+ Compute topological energy-momentum tensor T̂_{μν}^{(top)}.
199
204
 
200
205
  From topological defects (instantons, vortices)
201
206
 
@@ -222,13 +227,14 @@ class ChristmasEquation:
222
227
 
223
228
  return EnergyMomentumTensor(T_real, T_imag)
224
229
 
225
- def solve_christmas_equation(self,
226
- frame: U3Frame,
227
- matter_tensor: EnergyMomentumTensor) -> Dict[str, Any]:
228
- """
229
- Solve the Christmas Equation
230
-
231
- M_P²/2 Ĝ_μν + λ/(32π²) ∇̂_(μ K̄_ν) = T̂_μν^(top) + T̂_μν^(mat)
230
+ def solve_christmas_equation(self,
231
+ frame: U3Frame,
232
+ matter_tensor: EnergyMomentumTensor) -> Dict[str, Any]:
233
+ """
234
+ Solve the Christmas Equation.
235
+
236
+ (M_P^2 / 2) Ĝ_{μν} + (λ / (32π^2)) ∇̂_{} K̄_{ν)}
237
+ = T̂_{μν}^{(top)} + T̂_{μν}^{(mat)}
232
238
 
233
239
  Args:
234
240
  frame: Complex frame field U(x)
@@ -275,8 +281,8 @@ class ChristmasEquation:
275
281
  """
276
282
  Compute Ricci tensor from frame (simplified)
277
283
 
278
- In full implementation, use intrinsic gradient method:
279
- R_μν = [G_μ, G_ν] where G_μ = ∂_μ log U
284
+ In full implementation, use intrinsic gradient method:
285
+ R_{μν} = [G_μ, G_ν] where G_μ = ∂_μ log U
280
286
 
281
287
  Args:
282
288
  frame: Complex frame field
@@ -295,7 +301,7 @@ class ChristmasEquation:
295
301
 
296
302
  def _compute_field_strength(self, frame: U3Frame) -> np.ndarray:
297
303
  """
298
- Compute field strength tensor F_μν = ∂_μ A_ν - ∂_ν A_μ + [A_μ, A_ν]
304
+ Compute field strength tensor F_{μν} = ∂_μ A_ν - ∂_ν A_μ + [A_μ, A_ν]
299
305
 
300
306
  Args:
301
307
  frame: Complex frame field
@@ -305,14 +311,14 @@ class ChristmasEquation:
305
311
  """
306
312
  A = frame.gauge_potential
307
313
 
308
- # Simplified: F [A, A]
314
+ # Simplified: F ~= [A, A]
309
315
  F = A @ A - A.T @ A.T
310
316
 
311
317
  return F
312
318
 
313
319
  def _compute_topological_charge(self, frame: U3Frame) -> float:
314
320
  """
315
- Compute topological charge Q = (1/32π²) ∫ Tr(F ∧ F)
321
+ Compute topological charge Q = (1/(32π^2)) ∫ Tr(F ∧ F)
316
322
 
317
323
  Args:
318
324
  frame: Complex frame field
@@ -412,6 +418,7 @@ def create_gauge_field_frame(field_strength: float = 0.1,
412
418
  # ============================================================
413
419
 
414
420
  __all__ = [
421
+ 'ComplexFrame',
415
422
  'U3Frame',
416
423
  'EnergyMomentumTensor',
417
424
  'ChristmasEquation',
@@ -458,7 +465,7 @@ def demonstrate():
458
465
 
459
466
  solver = ChristmasEquation()
460
467
  print(f" Planck mass M_P: {solver.M_P:.3e} GeV")
461
- print(f" Topological coupling λ: {solver.lambda_topo:.4f}")
468
+ print(f" Topological coupling λ: {solver.lambda_topo:.4f}")
462
469
 
463
470
  # 3. Compute geometric quantities
464
471
  print("\n3. Geometric Quantities")
@@ -497,12 +504,13 @@ def demonstrate():
497
504
 
498
505
  # 6. Theory summary
499
506
  print("\n" + "=" * 80)
500
- print("Core Theory Summary:")
501
- print(" Christmas Equation: M_P²/2 Ĝ_μν + λ/(32π²) ∇̂_(μ K̄_ν) = T̂_μν^(top) + T̂_μν^(mat)")
502
- print(" U(x) = U^(R)(x) + iU^(I)(x) [Complex frame decomposition]")
503
- print(" Real part: Geometry (metric, curvature, spacetime)")
504
- print(" Imaginary part: Topology (phase, gauge field, winding)")
505
- print(" Unifies: Gravity + Gauge fields + Dark matter + Topology")
507
+ print("Core Theory Summary:")
508
+ print(" - Christmas Equation: (M_P^2 / 2) Ĝ_{μν} + (λ / (32π^2)) ∇̂_{} K̄_{ν)}"
509
+ " = T̂_{μν}^{(top)} + T̂_{μν}^{(mat)}")
510
+ print(" - U(x) = U^(R)(x) + iU^(I)(x) [Complex frame decomposition]")
511
+ print(" - Real part: Geometry (metric, curvature, spacetime)")
512
+ print(" - Imaginary part: Topology (phase, gauge field, winding)")
513
+ print(" - Unifies: Gravity + Gauge fields + Dark matter + Topology")
506
514
  print("=" * 80)
507
515
 
508
516
 
@@ -12,9 +12,10 @@ Main Features:
12
12
  - B-spline and frame field hybrid interpolation
13
13
  - Curvature distribution analysis
14
14
 
15
- Author: PanGuoJun
16
- Date: 2025-12-01
17
- """
15
+ **Authors:** Pan Guojun
16
+ Date: 2025-12-01
17
+ **DOI:** https://doi.org/10.5281/zenodo.14435613
18
+ """
18
19
 
19
20
  import math
20
21
  import numpy as np