coordinate-system 7.0.0__cp313-cp313-win_amd64.whl → 7.0.2__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- coordinate_system/__init__.py +102 -61
- coordinate_system/complex_geometric_physics.py +177 -178
- coordinate_system/coordinate_system.cp313-win_amd64.pyd +0 -0
- coordinate_system/curve_interpolation.py +4 -3
- coordinate_system/differential_geometry.py +81 -1
- coordinate_system/spectral_geometry.py +1169 -1185
- coordinate_system/u3_frame.py +25 -3
- coordinate_system/visualization.py +4 -3
- {coordinate_system-7.0.0.dist-info → coordinate_system-7.0.2.dist-info}/METADATA +36 -67
- coordinate_system-7.0.2.dist-info/RECORD +13 -0
- coordinate_system-7.0.0.dist-info/RECORD +0 -13
- {coordinate_system-7.0.0.dist-info → coordinate_system-7.0.2.dist-info}/LICENSE +0 -0
- {coordinate_system-7.0.0.dist-info → coordinate_system-7.0.2.dist-info}/WHEEL +0 -0
- {coordinate_system-7.0.0.dist-info → coordinate_system-7.0.2.dist-info}/top_level.txt +0 -0
coordinate_system/u3_frame.py
CHANGED
|
@@ -11,9 +11,10 @@ Core Theory:
|
|
|
11
11
|
- Gauge field as complex frame connection: A_μ ∈ 𝔲(3)
|
|
12
12
|
- Three phase angles corresponding to color degrees of freedom (red, green, blue)
|
|
13
13
|
|
|
14
|
-
|
|
14
|
+
**Authors:** Pan Guojun
|
|
15
15
|
Date: 2025-12-04
|
|
16
16
|
Version: 7.0.0-alpha
|
|
17
|
+
**DOI:** https://doi.org/10.5281/zenodo.14435613
|
|
17
18
|
"""
|
|
18
19
|
|
|
19
20
|
__version__ = '7.0.0-alpha'
|
|
@@ -129,6 +130,27 @@ class U3Frame:
|
|
|
129
130
|
"""Imaginary part: imaginary time direction"""
|
|
130
131
|
return np.column_stack([self.e1.imag, self.e2.imag, self.e3.imag])
|
|
131
132
|
|
|
133
|
+
@property
|
|
134
|
+
def metric_tensor(self) -> np.ndarray:
|
|
135
|
+
"""
|
|
136
|
+
Metric tensor from real part: g_μν = U^(R)ᵀ U^(R)
|
|
137
|
+
|
|
138
|
+
Returns:
|
|
139
|
+
3×3 metric tensor
|
|
140
|
+
"""
|
|
141
|
+
real = self.real_part
|
|
142
|
+
return real.T @ real
|
|
143
|
+
|
|
144
|
+
@property
|
|
145
|
+
def gauge_potential(self) -> np.ndarray:
|
|
146
|
+
"""
|
|
147
|
+
Gauge potential from imaginary part: A_μ ∝ U^(I)
|
|
148
|
+
|
|
149
|
+
Returns:
|
|
150
|
+
3×3 anti-Hermitian matrix
|
|
151
|
+
"""
|
|
152
|
+
return 1j * self.imag_part
|
|
153
|
+
|
|
132
154
|
# -------------------- Symmetry Decomposition --------------------
|
|
133
155
|
|
|
134
156
|
def to_su3_u1(self) -> Tuple['SU3Component', complex]:
|
|
@@ -372,7 +394,7 @@ class U3Frame:
|
|
|
372
394
|
|
|
373
395
|
@staticmethod
|
|
374
396
|
def _gell_mann_matrices() -> List[np.ndarray]:
|
|
375
|
-
"""Gell-Mann
|
|
397
|
+
"""Gell-Mann matrices (SU(3) generators)"""
|
|
376
398
|
λ = [
|
|
377
399
|
# λ₁
|
|
378
400
|
np.array([[0, 1, 0], [1, 0, 0], [0, 0, 0]], dtype=complex),
|
|
@@ -569,7 +591,7 @@ class GaugeConnection:
|
|
|
569
591
|
|
|
570
592
|
@staticmethod
|
|
571
593
|
def _pauli_matrices() -> List[np.ndarray]:
|
|
572
|
-
"""Pauli
|
|
594
|
+
"""Pauli matrices (SU(2) generators)"""
|
|
573
595
|
σ = [
|
|
574
596
|
np.array([[0, 1], [1, 0]], dtype=complex), # σ₁
|
|
575
597
|
np.array([[0, -1j], [1j, 0]], dtype=complex), # σ₂
|
|
@@ -11,9 +11,10 @@ Features:
|
|
|
11
11
|
- Frame field visualization on surfaces
|
|
12
12
|
- Multiple view angles and animation support
|
|
13
13
|
|
|
14
|
-
|
|
15
|
-
Date: 2025-12-03
|
|
16
|
-
|
|
14
|
+
**Authors:** Pan Guojun
|
|
15
|
+
Date: 2025-12-03
|
|
16
|
+
**DOI:** https://doi.org/10.5281/zenodo.14435613
|
|
17
|
+
"""
|
|
17
18
|
|
|
18
19
|
import numpy as np
|
|
19
20
|
import matplotlib.pyplot as plt
|
|
@@ -1,16 +1,16 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: coordinate_system
|
|
3
|
-
Version: 7.0.
|
|
3
|
+
Version: 7.0.2
|
|
4
4
|
Summary: High-performance 3D coordinate system library with unified differential geometry, quantum frame algebra, and Christmas Equation (CFUT)
|
|
5
5
|
Home-page: https://github.com/panguojun/Coordinate-System
|
|
6
|
-
Author:
|
|
7
|
-
Author-email:
|
|
6
|
+
Author: Pan Guojun
|
|
7
|
+
Author-email: Pan Guojun <18858146@qq.com>
|
|
8
8
|
License: MIT
|
|
9
9
|
Project-URL: Homepage, https://github.com/panguojun/Coordinate-System
|
|
10
10
|
Project-URL: Documentation, https://github.com/panguojun/Coordinate-System/blob/main/README.md
|
|
11
11
|
Project-URL: Repository, https://github.com/panguojun/Coordinate-System
|
|
12
12
|
Project-URL: Bug Reports, https://github.com/panguojun/Coordinate-System/issues
|
|
13
|
-
Project-URL: DOI, https://
|
|
13
|
+
Project-URL: DOI, https://doi.org/10.5281/zenodo.14435613
|
|
14
14
|
Keywords: 3d,math,vector,quaternion,coordinate-system,geometry,differential-geometry,curvature,spectral-analysis,christmas-equation,cfut,unified-field-theory,complex-frame
|
|
15
15
|
Platform: Windows
|
|
16
16
|
Platform: Linux
|
|
@@ -50,17 +50,26 @@ Requires-Dist: matplotlib>=3.3.0
|
|
|
50
50
|
[](https://pypi.org/project/coordinate-system/)
|
|
51
51
|
[](LICENSE)
|
|
52
52
|
|
|
53
|
-
**
|
|
54
|
-
**Version:** 7.0.
|
|
53
|
+
**Authors:** Pan Guojun
|
|
54
|
+
**Version:** 7.0.1
|
|
55
55
|
**License:** MIT
|
|
56
|
-
**DOI:**
|
|
56
|
+
**DOI:** https://doi.org/10.5281/zenodo.14435613
|
|
57
57
|
|
|
58
58
|
---
|
|
59
59
|
|
|
60
|
+
## What's New in v7.0.1 (2026-01-16)
|
|
61
|
+
|
|
62
|
+
- **Physical Constants**: Added SI unit constants for precision calculations (ALPHA_FS, LAMBDA_C, ALPHA_PROJECTION)
|
|
63
|
+
- **Projection Factor**: Implemented α = α_fs × λ_c ≈ 1.77×10⁻¹⁴ m for geometry-gauge coupling
|
|
64
|
+
- **Numerical Verification**: New `verify_cfut_theory.py` script with complete experimental validation
|
|
65
|
+
- **Equation Decomposition**: Real/imaginary parts analysis with classical limit verification
|
|
66
|
+
- **Experimental Comparison**: All calculations validated against CODATA 2018 data (error < 10⁻⁹)
|
|
67
|
+
- **Documentation**: Added `VERIFICATION_REPORT.md` with detailed numerical results
|
|
68
|
+
|
|
60
69
|
## What's New in v7.0.0-alpha (2026-01-14)
|
|
61
70
|
|
|
62
|
-
-
|
|
63
|
-
- **
|
|
71
|
+
- **Complex Geometric Physics Module**: New `complex_geometric_physics` module for field theory calculations
|
|
72
|
+
- **U(3) Frame Implementation**: U(3) complex field with real-imaginary decomposition
|
|
64
73
|
- **Einstein Tensor**: Compute Ĝ_μν from complex frame field U(x)
|
|
65
74
|
- **Chern-Simons Current**: Topological current K̄_μ for gauge field analysis
|
|
66
75
|
- **Energy-Momentum Tensor**: Real-imaginary decomposition for matter and topology
|
|
@@ -73,7 +82,7 @@ Requires-Dist: matplotlib>=3.3.0
|
|
|
73
82
|
```
|
|
74
83
|
coordinate_system/
|
|
75
84
|
├── coordinate_system.pyd/.so # C++ core (vec3, quat, coord3)
|
|
76
|
-
├── complex_geometric_physics.py #
|
|
85
|
+
├── complex_geometric_physics.py # Complex geometric physics module
|
|
77
86
|
├── spectral_geometry.py # FourierFrame [GL(1,C)], spectral analysis
|
|
78
87
|
├── u3_frame.py # U3Frame [U(3)], gauge field theory
|
|
79
88
|
├── differential_geometry.py # Surface curvature calculation
|
|
@@ -86,9 +95,8 @@ coordinate_system/
|
|
|
86
95
|
| Class | Group | DOF | Use Case |
|
|
87
96
|
|-------|-------|-----|----------|
|
|
88
97
|
| `coord3` | Sim(3) = R³ ⋊ (SO(3) × R⁺) | 10 | 3D coordinate transform |
|
|
89
|
-
| `ComplexFrame` | U(3) complex field | 18 | 🎄 Unified field theory (CFUT) |
|
|
90
98
|
| `FourierFrame` | GL(1,C) = U(1) × R⁺ | 2 | Spectral geometry, heat kernel |
|
|
91
|
-
| `U3Frame` | U(3) = SU(3) × U(1) | 9 | Gauge field theory |
|
|
99
|
+
| `U3Frame` | U(3) = SU(3) × U(1) | 9 | Gauge field theory, gauge transforms |
|
|
92
100
|
|
|
93
101
|
---
|
|
94
102
|
|
|
@@ -184,53 +192,6 @@ F_xy = conn_x.field_strength(conn_y)
|
|
|
184
192
|
S_YM = F_xy.yang_mills_action()
|
|
185
193
|
```
|
|
186
194
|
|
|
187
|
-
### 🎄 Complex Geometric Physics (Christmas Equation)
|
|
188
|
-
|
|
189
|
-
```python
|
|
190
|
-
from coordinate_system import (
|
|
191
|
-
ComplexFrame,
|
|
192
|
-
EnergyMomentumTensor,
|
|
193
|
-
ChristmasEquation,
|
|
194
|
-
create_flat_spacetime_frame,
|
|
195
|
-
create_curved_spacetime_frame,
|
|
196
|
-
create_gauge_field_frame,
|
|
197
|
-
M_PLANCK,
|
|
198
|
-
LAMBDA_TOPO
|
|
199
|
-
)
|
|
200
|
-
import numpy as np
|
|
201
|
-
|
|
202
|
-
# Create complex frames
|
|
203
|
-
flat_frame = create_flat_spacetime_frame()
|
|
204
|
-
curved_frame = create_curved_spacetime_frame(curvature=0.1)
|
|
205
|
-
gauge_frame = create_gauge_field_frame(field_strength=0.1)
|
|
206
|
-
|
|
207
|
-
# Initialize Christmas Equation solver
|
|
208
|
-
solver = ChristmasEquation()
|
|
209
|
-
print(f"Planck mass: {solver.M_P:.3e} GeV")
|
|
210
|
-
print(f"Topological coupling: {solver.lambda_topo:.4f}")
|
|
211
|
-
|
|
212
|
-
# Compute geometric quantities
|
|
213
|
-
G_tensor = solver.einstein_tensor(curved_frame)
|
|
214
|
-
K_current = solver.chern_simons_current(gauge_frame)
|
|
215
|
-
|
|
216
|
-
# Create matter energy-momentum tensor
|
|
217
|
-
matter_real = np.diag([1.0, 0.1, 0.1, 0.1])
|
|
218
|
-
matter_imag = np.zeros((4, 4))
|
|
219
|
-
T_matter = EnergyMomentumTensor(matter_real, matter_imag)
|
|
220
|
-
|
|
221
|
-
# Solve the Christmas Equation
|
|
222
|
-
# M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
|
|
223
|
-
solution = solver.solve_christmas_equation(gauge_frame, T_matter)
|
|
224
|
-
print(f"Geometric term norm: {np.linalg.norm(solution['geometric_term']):.6e}")
|
|
225
|
-
print(f"Topological term norm: {np.linalg.norm(solution['topological_term']):.6e}")
|
|
226
|
-
print(f"Equation balanced: {solution['balanced']}")
|
|
227
|
-
```
|
|
228
|
-
|
|
229
|
-
**The Christmas Equation** unifies geometry and topology:
|
|
230
|
-
- **Left side**: Geometry (Einstein tensor) + Topology (Chern-Simons current)
|
|
231
|
-
- **Right side**: Topological source + Matter source
|
|
232
|
-
- **Real part U^(R)**: Geometric properties (metric, curvature, spacetime)
|
|
233
|
-
- **Imaginary part U^(I)**: Topological properties (phase winding, gauge symmetry)
|
|
234
195
|
|
|
235
196
|
---
|
|
236
197
|
|
|
@@ -238,9 +199,7 @@ print(f"Equation balanced: {solution['balanced']}")
|
|
|
238
199
|
|
|
239
200
|
| Concept | Formula | Code |
|
|
240
201
|
|---------|---------|------|
|
|
241
|
-
|
|
|
242
|
-
| Einstein Tensor | $\hat{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} R$ | `ChristmasEquation.einstein_tensor()` |
|
|
243
|
-
| Chern-Simons Current | $\bar{K}_\mu = \varepsilon_{\mu\nu\rho\sigma} \text{Tr}(A^\nu F^{\rho\sigma})$ | `ChristmasEquation.chern_simons_current()` |
|
|
202
|
+
| Projection Factor (v7.0.1) | $\alpha = \alpha_{\text{fs}} \times \lambda_c \approx 1.77 \times 10^{-14}$ m | `ALPHA_PROJECTION` |
|
|
244
203
|
| Intrinsic Gradient | $G_\mu = \frac{d}{dx^\mu} \log C(x)$ | `IntrinsicGradient` |
|
|
245
204
|
| Curvature Tensor | $R_{\mu\nu} = [G_\mu, G_\nu]$ | `CurvatureFromFrame` |
|
|
246
205
|
| Gaussian Curvature | $K = -\langle [G_u, G_v] e_v, e_u \rangle / \sqrt{\det g}$ | `compute_gaussian_curvature` |
|
|
@@ -277,14 +236,24 @@ print(f"Equation balanced: {solution['balanced']}")
|
|
|
277
236
|
|
|
278
237
|
## Changelog
|
|
279
238
|
|
|
239
|
+
### v7.0.1 (2026-01-16)
|
|
240
|
+
- **Physical Constants**: Added SI unit constants (ALPHA_FS, LAMBDA_C, ALPHA_PROJECTION)
|
|
241
|
+
- **Projection Factor**: Implemented α = α_fs × λ_c ≈ 1.77×10⁻¹⁴ m for geometry-gauge coupling
|
|
242
|
+
- **Complex Geometric Physics**: Added `projection_factor` parameter to unified field solver
|
|
243
|
+
- **Numerical Verification**: New `verify_cfut_theory.py` script with complete validation
|
|
244
|
+
- **Equation Decomposition**: Real/imaginary parts analysis with classical limit verification
|
|
245
|
+
- **Experimental Validation**: All calculations compared with CODATA 2018 data (error < 10⁻⁹)
|
|
246
|
+
- **Documentation**: Added `VERIFICATION_REPORT.md` with detailed numerical results
|
|
247
|
+
- **Bug Fix**: Corrected Compton wavelength calculation (h instead of ℏ)
|
|
248
|
+
|
|
280
249
|
### v7.0.0-alpha (2026-01-14)
|
|
281
|
-
-
|
|
282
|
-
- **
|
|
283
|
-
- **
|
|
250
|
+
- **Complex Geometric Physics Module**: New `complex_geometric_physics.py` module
|
|
251
|
+
- **U(3) Frame Implementation**: U(3) complex field with real-imaginary decomposition
|
|
252
|
+
- **U3Frame**: U(x) = U^(R)(x) + iU^(I)(x) decomposition
|
|
284
253
|
- **EnergyMomentumTensor**: Real-imaginary tensor decomposition
|
|
285
|
-
- **
|
|
254
|
+
- **Unified Field Solver**: Einstein tensor, Chern-Simons current, topological energy-momentum
|
|
286
255
|
- **Complete English Translation**: All documentation and code comments in English
|
|
287
|
-
- **DOI
|
|
256
|
+
- **DOI:** https://doi.org/10.5281/zenodo.14435613
|
|
288
257
|
|
|
289
258
|
### v6.0.4 (2025-12-08)
|
|
290
259
|
- `frames.py` → `spectral_geometry.py`
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
coordinate_system/__init__.py,sha256=4dQeBXaVEKnZN2l63-GM8LKgbsse8D1xNZrSUZBNg7c,11137
|
|
2
|
+
coordinate_system/complex_geometric_physics.py,sha256=F5Nc8v6J3glH4GduEh2naUftInXCJz2icMeLUTBPGwk,17046
|
|
3
|
+
coordinate_system/coordinate_system.cp313-win_amd64.pyd,sha256=Tpw0YGsvA5c_iti-cZSOitB4FG0ZVM1nO7P8RAQLGmo,499200
|
|
4
|
+
coordinate_system/curve_interpolation.py,sha256=9NksSvdnSp1BFHPfmwYa6cUC_eyx5Ktp4NXqpzq8uk4,14805
|
|
5
|
+
coordinate_system/differential_geometry.py,sha256=zSy2eBjmNUYlaxdiMlaW2ehsS1h0dOLtq5IfAknhNYY,31648
|
|
6
|
+
coordinate_system/spectral_geometry.py,sha256=s2r3A7YBuk-NgF8udAxV88MfXd7CPnwJv9Un0kAbTZM,51995
|
|
7
|
+
coordinate_system/u3_frame.py,sha256=2U7cIYb93P9Cn3qE7Z67PsG6Vg8BOxFkYG32vse7bvA,29763
|
|
8
|
+
coordinate_system/visualization.py,sha256=rNx_ciPg2ITcNXWoANupdY2wpyGDHChLnxYGWDK_tTA,34265
|
|
9
|
+
coordinate_system-7.0.2.dist-info/LICENSE,sha256=tDnRkJxBYPzWdfh2gArRqrUPJxQZRZHJVs68qqBHIq4,1083
|
|
10
|
+
coordinate_system-7.0.2.dist-info/METADATA,sha256=ZyaDh4NMUiCm9LCvdtqYU1yRGktDNoFb2pkPo1-RSiA,10539
|
|
11
|
+
coordinate_system-7.0.2.dist-info/WHEEL,sha256=4-iQBlRoDdX1wfPofc7KLWa5Cys4eZSgXs6GVU8fKlQ,101
|
|
12
|
+
coordinate_system-7.0.2.dist-info/top_level.txt,sha256=R6LguuPPZ5esrIsDTqPGi9UxCvZPIXwn7KRKX87c79M,18
|
|
13
|
+
coordinate_system-7.0.2.dist-info/RECORD,,
|
|
@@ -1,13 +0,0 @@
|
|
|
1
|
-
coordinate_system/__init__.py,sha256=bsBHh-g2QAIGCSVaH61cJu1R4Dt3YCxVDkARrOXTTbw,9758
|
|
2
|
-
coordinate_system/complex_geometric_physics.py,sha256=Pgc7P596gGVmGdQSUSmzJTaVPf8Phyc4UOJGhJcuEPw,16860
|
|
3
|
-
coordinate_system/coordinate_system.cp313-win_amd64.pyd,sha256=_CgbuMbj1ZBVuDWEZiG35KlAmi2XACTGHfrRIDHFvKs,499200
|
|
4
|
-
coordinate_system/curve_interpolation.py,sha256=_HKsWozBNlD8TaVX1K0dzWTNFa_96Bqu6F_K4xhceSg,14753
|
|
5
|
-
coordinate_system/differential_geometry.py,sha256=SYPVI6cYk-TharLOQCjMd-4kK0Em5ETTU6y6zvjCL3E,29388
|
|
6
|
-
coordinate_system/spectral_geometry.py,sha256=k2Rb-wJSB5vZsCz-rTkHbiNd4IBhOCvDdsIezLsHewQ,51996
|
|
7
|
-
coordinate_system/u3_frame.py,sha256=I96QzPkQFaqhR4EvpygND6RWUkruy8zoeuUjuQit1L8,29239
|
|
8
|
-
coordinate_system/visualization.py,sha256=hnjQB66plimu24CimzW98ZBcFOBUCoJ9vhxjsQ417s0,34229
|
|
9
|
-
coordinate_system-7.0.0.dist-info/LICENSE,sha256=tDnRkJxBYPzWdfh2gArRqrUPJxQZRZHJVs68qqBHIq4,1083
|
|
10
|
-
coordinate_system-7.0.0.dist-info/METADATA,sha256=E7keYBAtJ4snfNY-4nRx9L7A3olEWoNE_yC-T88vWG8,11395
|
|
11
|
-
coordinate_system-7.0.0.dist-info/WHEEL,sha256=4-iQBlRoDdX1wfPofc7KLWa5Cys4eZSgXs6GVU8fKlQ,101
|
|
12
|
-
coordinate_system-7.0.0.dist-info/top_level.txt,sha256=R6LguuPPZ5esrIsDTqPGi9UxCvZPIXwn7KRKX87c79M,18
|
|
13
|
-
coordinate_system-7.0.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|