coordinate-system 7.0.0__cp313-cp313-win_amd64.whl → 7.0.2__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -11,9 +11,10 @@ Core Theory:
11
11
  - Gauge field as complex frame connection: A_μ ∈ 𝔲(3)
12
12
  - Three phase angles corresponding to color degrees of freedom (red, green, blue)
13
13
 
14
- Author: Enhanced by AI following theoretical framework
14
+ **Authors:** Pan Guojun
15
15
  Date: 2025-12-04
16
16
  Version: 7.0.0-alpha
17
+ **DOI:** https://doi.org/10.5281/zenodo.14435613
17
18
  """
18
19
 
19
20
  __version__ = '7.0.0-alpha'
@@ -129,6 +130,27 @@ class U3Frame:
129
130
  """Imaginary part: imaginary time direction"""
130
131
  return np.column_stack([self.e1.imag, self.e2.imag, self.e3.imag])
131
132
 
133
+ @property
134
+ def metric_tensor(self) -> np.ndarray:
135
+ """
136
+ Metric tensor from real part: g_μν = U^(R)ᵀ U^(R)
137
+
138
+ Returns:
139
+ 3×3 metric tensor
140
+ """
141
+ real = self.real_part
142
+ return real.T @ real
143
+
144
+ @property
145
+ def gauge_potential(self) -> np.ndarray:
146
+ """
147
+ Gauge potential from imaginary part: A_μ ∝ U^(I)
148
+
149
+ Returns:
150
+ 3×3 anti-Hermitian matrix
151
+ """
152
+ return 1j * self.imag_part
153
+
132
154
  # -------------------- Symmetry Decomposition --------------------
133
155
 
134
156
  def to_su3_u1(self) -> Tuple['SU3Component', complex]:
@@ -372,7 +394,7 @@ class U3Frame:
372
394
 
373
395
  @staticmethod
374
396
  def _gell_mann_matrices() -> List[np.ndarray]:
375
- """Gell-Mann 矩阵(SU(3) 生成元)"""
397
+ """Gell-Mann matrices (SU(3) generators)"""
376
398
  λ = [
377
399
  # λ₁
378
400
  np.array([[0, 1, 0], [1, 0, 0], [0, 0, 0]], dtype=complex),
@@ -569,7 +591,7 @@ class GaugeConnection:
569
591
 
570
592
  @staticmethod
571
593
  def _pauli_matrices() -> List[np.ndarray]:
572
- """Pauli 矩阵(SU(2) 生成元)"""
594
+ """Pauli matrices (SU(2) generators)"""
573
595
  σ = [
574
596
  np.array([[0, 1], [1, 0]], dtype=complex), # σ₁
575
597
  np.array([[0, -1j], [1j, 0]], dtype=complex), # σ₂
@@ -11,9 +11,10 @@ Features:
11
11
  - Frame field visualization on surfaces
12
12
  - Multiple view angles and animation support
13
13
 
14
- Author: Coordinate System Package
15
- Date: 2025-12-03
16
- """
14
+ **Authors:** Pan Guojun
15
+ Date: 2025-12-03
16
+ **DOI:** https://doi.org/10.5281/zenodo.14435613
17
+ """
17
18
 
18
19
  import numpy as np
19
20
  import matplotlib.pyplot as plt
@@ -1,16 +1,16 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: coordinate_system
3
- Version: 7.0.0
3
+ Version: 7.0.2
4
4
  Summary: High-performance 3D coordinate system library with unified differential geometry, quantum frame algebra, and Christmas Equation (CFUT)
5
5
  Home-page: https://github.com/panguojun/Coordinate-System
6
- Author: PanGuoJun
7
- Author-email: PanGuoJun <18858146@qq.com>
6
+ Author: Pan Guojun
7
+ Author-email: Pan Guojun <18858146@qq.com>
8
8
  License: MIT
9
9
  Project-URL: Homepage, https://github.com/panguojun/Coordinate-System
10
10
  Project-URL: Documentation, https://github.com/panguojun/Coordinate-System/blob/main/README.md
11
11
  Project-URL: Repository, https://github.com/panguojun/Coordinate-System
12
12
  Project-URL: Bug Reports, https://github.com/panguojun/Coordinate-System/issues
13
- Project-URL: DOI, https://zenodo.org/records/14435613
13
+ Project-URL: DOI, https://doi.org/10.5281/zenodo.14435613
14
14
  Keywords: 3d,math,vector,quaternion,coordinate-system,geometry,differential-geometry,curvature,spectral-analysis,christmas-equation,cfut,unified-field-theory,complex-frame
15
15
  Platform: Windows
16
16
  Platform: Linux
@@ -50,17 +50,26 @@ Requires-Dist: matplotlib>=3.3.0
50
50
  [![Python](https://img.shields.io/pypi/pyversions/coordinate-system.svg)](https://pypi.org/project/coordinate-system/)
51
51
  [![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)
52
52
 
53
- **Author:** PanGuoJun
54
- **Version:** 7.0.0-alpha
53
+ **Authors:** Pan Guojun
54
+ **Version:** 7.0.1
55
55
  **License:** MIT
56
- **DOI:** [10.5281/zenodo.14435613](https://zenodo.org/records/14435613)
56
+ **DOI:** https://doi.org/10.5281/zenodo.14435613
57
57
 
58
58
  ---
59
59
 
60
+ ## What's New in v7.0.1 (2026-01-16)
61
+
62
+ - **Physical Constants**: Added SI unit constants for precision calculations (ALPHA_FS, LAMBDA_C, ALPHA_PROJECTION)
63
+ - **Projection Factor**: Implemented α = α_fs × λ_c ≈ 1.77×10⁻¹⁴ m for geometry-gauge coupling
64
+ - **Numerical Verification**: New `verify_cfut_theory.py` script with complete experimental validation
65
+ - **Equation Decomposition**: Real/imaginary parts analysis with classical limit verification
66
+ - **Experimental Comparison**: All calculations validated against CODATA 2018 data (error < 10⁻⁹)
67
+ - **Documentation**: Added `VERIFICATION_REPORT.md` with detailed numerical results
68
+
60
69
  ## What's New in v7.0.0-alpha (2026-01-14)
61
70
 
62
- - **🎄 Christmas Equation**: New `complex_geometric_physics` module implementing unified field theory
63
- - **Complex Frame Unified Theory (CFUT)**: Geometry + Topology = Complex Matter + Topological Force
71
+ - **Complex Geometric Physics Module**: New `complex_geometric_physics` module for field theory calculations
72
+ - **U(3) Frame Implementation**: U(3) complex field with real-imaginary decomposition
64
73
  - **Einstein Tensor**: Compute Ĝ_μν from complex frame field U(x)
65
74
  - **Chern-Simons Current**: Topological current K̄_μ for gauge field analysis
66
75
  - **Energy-Momentum Tensor**: Real-imaginary decomposition for matter and topology
@@ -73,7 +82,7 @@ Requires-Dist: matplotlib>=3.3.0
73
82
  ```
74
83
  coordinate_system/
75
84
  ├── coordinate_system.pyd/.so # C++ core (vec3, quat, coord3)
76
- ├── complex_geometric_physics.py # 🎄 Christmas Equation, CFUT unified theory
85
+ ├── complex_geometric_physics.py # Complex geometric physics module
77
86
  ├── spectral_geometry.py # FourierFrame [GL(1,C)], spectral analysis
78
87
  ├── u3_frame.py # U3Frame [U(3)], gauge field theory
79
88
  ├── differential_geometry.py # Surface curvature calculation
@@ -86,9 +95,8 @@ coordinate_system/
86
95
  | Class | Group | DOF | Use Case |
87
96
  |-------|-------|-----|----------|
88
97
  | `coord3` | Sim(3) = R³ ⋊ (SO(3) × R⁺) | 10 | 3D coordinate transform |
89
- | `ComplexFrame` | U(3) complex field | 18 | 🎄 Unified field theory (CFUT) |
90
98
  | `FourierFrame` | GL(1,C) = U(1) × R⁺ | 2 | Spectral geometry, heat kernel |
91
- | `U3Frame` | U(3) = SU(3) × U(1) | 9 | Gauge field theory |
99
+ | `U3Frame` | U(3) = SU(3) × U(1) | 9 | Gauge field theory, gauge transforms |
92
100
 
93
101
  ---
94
102
 
@@ -184,53 +192,6 @@ F_xy = conn_x.field_strength(conn_y)
184
192
  S_YM = F_xy.yang_mills_action()
185
193
  ```
186
194
 
187
- ### 🎄 Complex Geometric Physics (Christmas Equation)
188
-
189
- ```python
190
- from coordinate_system import (
191
- ComplexFrame,
192
- EnergyMomentumTensor,
193
- ChristmasEquation,
194
- create_flat_spacetime_frame,
195
- create_curved_spacetime_frame,
196
- create_gauge_field_frame,
197
- M_PLANCK,
198
- LAMBDA_TOPO
199
- )
200
- import numpy as np
201
-
202
- # Create complex frames
203
- flat_frame = create_flat_spacetime_frame()
204
- curved_frame = create_curved_spacetime_frame(curvature=0.1)
205
- gauge_frame = create_gauge_field_frame(field_strength=0.1)
206
-
207
- # Initialize Christmas Equation solver
208
- solver = ChristmasEquation()
209
- print(f"Planck mass: {solver.M_P:.3e} GeV")
210
- print(f"Topological coupling: {solver.lambda_topo:.4f}")
211
-
212
- # Compute geometric quantities
213
- G_tensor = solver.einstein_tensor(curved_frame)
214
- K_current = solver.chern_simons_current(gauge_frame)
215
-
216
- # Create matter energy-momentum tensor
217
- matter_real = np.diag([1.0, 0.1, 0.1, 0.1])
218
- matter_imag = np.zeros((4, 4))
219
- T_matter = EnergyMomentumTensor(matter_real, matter_imag)
220
-
221
- # Solve the Christmas Equation
222
- # M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
223
- solution = solver.solve_christmas_equation(gauge_frame, T_matter)
224
- print(f"Geometric term norm: {np.linalg.norm(solution['geometric_term']):.6e}")
225
- print(f"Topological term norm: {np.linalg.norm(solution['topological_term']):.6e}")
226
- print(f"Equation balanced: {solution['balanced']}")
227
- ```
228
-
229
- **The Christmas Equation** unifies geometry and topology:
230
- - **Left side**: Geometry (Einstein tensor) + Topology (Chern-Simons current)
231
- - **Right side**: Topological source + Matter source
232
- - **Real part U^(R)**: Geometric properties (metric, curvature, spacetime)
233
- - **Imaginary part U^(I)**: Topological properties (phase winding, gauge symmetry)
234
195
 
235
196
  ---
236
197
 
@@ -238,9 +199,7 @@ print(f"Equation balanced: {solution['balanced']}")
238
199
 
239
200
  | Concept | Formula | Code |
240
201
  |---------|---------|------|
241
- | 🎄 **Christmas Equation** | $\frac{M_P^2}{2} \hat{G}_{\mu\nu}[U] + \frac{\lambda}{32\pi^2} \hat{\nabla}_{(\mu} \bar{K}_{\nu)}[U] = \hat{T}_{\mu\nu}^{(\text{top})}[U] + \hat{T}_{\mu\nu}^{(\text{mat})}$ | `ChristmasEquation.solve_christmas_equation()` |
242
- | Einstein Tensor | $\hat{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} R$ | `ChristmasEquation.einstein_tensor()` |
243
- | Chern-Simons Current | $\bar{K}_\mu = \varepsilon_{\mu\nu\rho\sigma} \text{Tr}(A^\nu F^{\rho\sigma})$ | `ChristmasEquation.chern_simons_current()` |
202
+ | Projection Factor (v7.0.1) | $\alpha = \alpha_{\text{fs}} \times \lambda_c \approx 1.77 \times 10^{-14}$ m | `ALPHA_PROJECTION` |
244
203
  | Intrinsic Gradient | $G_\mu = \frac{d}{dx^\mu} \log C(x)$ | `IntrinsicGradient` |
245
204
  | Curvature Tensor | $R_{\mu\nu} = [G_\mu, G_\nu]$ | `CurvatureFromFrame` |
246
205
  | Gaussian Curvature | $K = -\langle [G_u, G_v] e_v, e_u \rangle / \sqrt{\det g}$ | `compute_gaussian_curvature` |
@@ -277,14 +236,24 @@ print(f"Equation balanced: {solution['balanced']}")
277
236
 
278
237
  ## Changelog
279
238
 
239
+ ### v7.0.1 (2026-01-16)
240
+ - **Physical Constants**: Added SI unit constants (ALPHA_FS, LAMBDA_C, ALPHA_PROJECTION)
241
+ - **Projection Factor**: Implemented α = α_fs × λ_c ≈ 1.77×10⁻¹⁴ m for geometry-gauge coupling
242
+ - **Complex Geometric Physics**: Added `projection_factor` parameter to unified field solver
243
+ - **Numerical Verification**: New `verify_cfut_theory.py` script with complete validation
244
+ - **Equation Decomposition**: Real/imaginary parts analysis with classical limit verification
245
+ - **Experimental Validation**: All calculations compared with CODATA 2018 data (error < 10⁻⁹)
246
+ - **Documentation**: Added `VERIFICATION_REPORT.md` with detailed numerical results
247
+ - **Bug Fix**: Corrected Compton wavelength calculation (h instead of ℏ)
248
+
280
249
  ### v7.0.0-alpha (2026-01-14)
281
- - 🎄 **Christmas Equation**: New `complex_geometric_physics.py` module
282
- - **Complex Frame Unified Theory (CFUT)**: Unified field equation implementation
283
- - **ComplexFrame**: U(x) = U^(R)(x) + iU^(I)(x) decomposition
250
+ - **Complex Geometric Physics Module**: New `complex_geometric_physics.py` module
251
+ - **U(3) Frame Implementation**: U(3) complex field with real-imaginary decomposition
252
+ - **U3Frame**: U(x) = U^(R)(x) + iU^(I)(x) decomposition
284
253
  - **EnergyMomentumTensor**: Real-imaginary tensor decomposition
285
- - **ChristmasEquation**: Einstein tensor, Chern-Simons current, topological energy-momentum
254
+ - **Unified Field Solver**: Einstein tensor, Chern-Simons current, topological energy-momentum
286
255
  - **Complete English Translation**: All documentation and code comments in English
287
- - **DOI**: Added Zenodo DOI 10.5281/zenodo.14435613
256
+ - **DOI:** https://doi.org/10.5281/zenodo.14435613
288
257
 
289
258
  ### v6.0.4 (2025-12-08)
290
259
  - `frames.py` → `spectral_geometry.py`
@@ -0,0 +1,13 @@
1
+ coordinate_system/__init__.py,sha256=4dQeBXaVEKnZN2l63-GM8LKgbsse8D1xNZrSUZBNg7c,11137
2
+ coordinate_system/complex_geometric_physics.py,sha256=F5Nc8v6J3glH4GduEh2naUftInXCJz2icMeLUTBPGwk,17046
3
+ coordinate_system/coordinate_system.cp313-win_amd64.pyd,sha256=Tpw0YGsvA5c_iti-cZSOitB4FG0ZVM1nO7P8RAQLGmo,499200
4
+ coordinate_system/curve_interpolation.py,sha256=9NksSvdnSp1BFHPfmwYa6cUC_eyx5Ktp4NXqpzq8uk4,14805
5
+ coordinate_system/differential_geometry.py,sha256=zSy2eBjmNUYlaxdiMlaW2ehsS1h0dOLtq5IfAknhNYY,31648
6
+ coordinate_system/spectral_geometry.py,sha256=s2r3A7YBuk-NgF8udAxV88MfXd7CPnwJv9Un0kAbTZM,51995
7
+ coordinate_system/u3_frame.py,sha256=2U7cIYb93P9Cn3qE7Z67PsG6Vg8BOxFkYG32vse7bvA,29763
8
+ coordinate_system/visualization.py,sha256=rNx_ciPg2ITcNXWoANupdY2wpyGDHChLnxYGWDK_tTA,34265
9
+ coordinate_system-7.0.2.dist-info/LICENSE,sha256=tDnRkJxBYPzWdfh2gArRqrUPJxQZRZHJVs68qqBHIq4,1083
10
+ coordinate_system-7.0.2.dist-info/METADATA,sha256=ZyaDh4NMUiCm9LCvdtqYU1yRGktDNoFb2pkPo1-RSiA,10539
11
+ coordinate_system-7.0.2.dist-info/WHEEL,sha256=4-iQBlRoDdX1wfPofc7KLWa5Cys4eZSgXs6GVU8fKlQ,101
12
+ coordinate_system-7.0.2.dist-info/top_level.txt,sha256=R6LguuPPZ5esrIsDTqPGi9UxCvZPIXwn7KRKX87c79M,18
13
+ coordinate_system-7.0.2.dist-info/RECORD,,
@@ -1,13 +0,0 @@
1
- coordinate_system/__init__.py,sha256=bsBHh-g2QAIGCSVaH61cJu1R4Dt3YCxVDkARrOXTTbw,9758
2
- coordinate_system/complex_geometric_physics.py,sha256=Pgc7P596gGVmGdQSUSmzJTaVPf8Phyc4UOJGhJcuEPw,16860
3
- coordinate_system/coordinate_system.cp313-win_amd64.pyd,sha256=_CgbuMbj1ZBVuDWEZiG35KlAmi2XACTGHfrRIDHFvKs,499200
4
- coordinate_system/curve_interpolation.py,sha256=_HKsWozBNlD8TaVX1K0dzWTNFa_96Bqu6F_K4xhceSg,14753
5
- coordinate_system/differential_geometry.py,sha256=SYPVI6cYk-TharLOQCjMd-4kK0Em5ETTU6y6zvjCL3E,29388
6
- coordinate_system/spectral_geometry.py,sha256=k2Rb-wJSB5vZsCz-rTkHbiNd4IBhOCvDdsIezLsHewQ,51996
7
- coordinate_system/u3_frame.py,sha256=I96QzPkQFaqhR4EvpygND6RWUkruy8zoeuUjuQit1L8,29239
8
- coordinate_system/visualization.py,sha256=hnjQB66plimu24CimzW98ZBcFOBUCoJ9vhxjsQ417s0,34229
9
- coordinate_system-7.0.0.dist-info/LICENSE,sha256=tDnRkJxBYPzWdfh2gArRqrUPJxQZRZHJVs68qqBHIq4,1083
10
- coordinate_system-7.0.0.dist-info/METADATA,sha256=E7keYBAtJ4snfNY-4nRx9L7A3olEWoNE_yC-T88vWG8,11395
11
- coordinate_system-7.0.0.dist-info/WHEEL,sha256=4-iQBlRoDdX1wfPofc7KLWa5Cys4eZSgXs6GVU8fKlQ,101
12
- coordinate_system-7.0.0.dist-info/top_level.txt,sha256=R6LguuPPZ5esrIsDTqPGi9UxCvZPIXwn7KRKX87c79M,18
13
- coordinate_system-7.0.0.dist-info/RECORD,,