coordinate-system 6.0.5__cp313-cp313-win_amd64.whl → 7.0.1__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- coordinate_system/__init__.py +23 -2
- coordinate_system/complex_geometric_physics.py +510 -0
- coordinate_system/coordinate_system.cp313-win_amd64.pyd +0 -0
- coordinate_system/u3_frame.py +253 -231
- {coordinate_system-6.0.5.dist-info → coordinate_system-7.0.1.dist-info}/METADATA +56 -19
- coordinate_system-7.0.1.dist-info/RECORD +13 -0
- coordinate_system/fourier_spectral.py +0 -149
- coordinate_system/frames.py +0 -1602
- coordinate_system-6.0.5.dist-info/RECORD +0 -14
- {coordinate_system-6.0.5.dist-info → coordinate_system-7.0.1.dist-info}/LICENSE +0 -0
- {coordinate_system-6.0.5.dist-info → coordinate_system-7.0.1.dist-info}/WHEEL +0 -0
- {coordinate_system-6.0.5.dist-info → coordinate_system-7.0.1.dist-info}/top_level.txt +0 -0
coordinate_system/__init__.py
CHANGED
|
@@ -14,6 +14,7 @@ Python Modules:
|
|
|
14
14
|
- differential_geometry: Surface curvature via intrinsic gradient / Lie bracket
|
|
15
15
|
- spectral_geometry: FourierFrame (GL(1,C)), spectral analysis, heat kernel
|
|
16
16
|
- u3_frame: U3Frame (U(3)), gauge field theory, symmetry breaking
|
|
17
|
+
- complex_geometric_physics: Christmas Equation, unified field theory (CFUT)
|
|
17
18
|
- visualization: Coordinate system visualization
|
|
18
19
|
- curve_interpolation: C2-continuous curve and frame interpolation
|
|
19
20
|
|
|
@@ -22,10 +23,11 @@ Group Correspondence:
|
|
|
22
23
|
- FourierFrame ∈ GL(1,C) = U(1) × R⁺
|
|
23
24
|
- U3Frame ∈ U(3) = SU(3) × U(1)
|
|
24
25
|
|
|
25
|
-
Version:
|
|
26
|
+
Version: 7.0.1
|
|
27
|
+
DOI: https://doi.org/10.5281/zenodo.18217542
|
|
26
28
|
"""
|
|
27
29
|
|
|
28
|
-
__version__ = '
|
|
30
|
+
__version__ = '7.0.1'
|
|
29
31
|
|
|
30
32
|
from .coordinate_system import vec3, vec2
|
|
31
33
|
from .coordinate_system import quat
|
|
@@ -112,6 +114,25 @@ from .u3_frame import (
|
|
|
112
114
|
SymmetryBreakingPotential,
|
|
113
115
|
)
|
|
114
116
|
|
|
117
|
+
# Complex Geometric Physics module (Christmas Equation, CFUT)
|
|
118
|
+
from .complex_geometric_physics import (
|
|
119
|
+
# Core classes (U3Frame imported from u3_frame module above)
|
|
120
|
+
EnergyMomentumTensor,
|
|
121
|
+
ChristmasEquation,
|
|
122
|
+
|
|
123
|
+
# Utility functions
|
|
124
|
+
create_flat_spacetime_frame,
|
|
125
|
+
create_curved_spacetime_frame,
|
|
126
|
+
create_gauge_field_frame,
|
|
127
|
+
|
|
128
|
+
# Constants
|
|
129
|
+
M_PLANCK,
|
|
130
|
+
LAMBDA_TOPO,
|
|
131
|
+
ALPHA_FS,
|
|
132
|
+
LAMBDA_C,
|
|
133
|
+
ALPHA_PROJECTION,
|
|
134
|
+
)
|
|
135
|
+
|
|
115
136
|
# Visualization module
|
|
116
137
|
from .visualization import (
|
|
117
138
|
CoordinateSystemVisualizer,
|
|
@@ -0,0 +1,510 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Complex Geometric Physics - Unified Framework
|
|
3
|
+
================================================================================
|
|
4
|
+
|
|
5
|
+
Implementation of the "Christmas Equation" and Complex Frame Unified Theory (CFUT)
|
|
6
|
+
|
|
7
|
+
The Christmas Equation (Complete complex form):
|
|
8
|
+
M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
|
|
9
|
+
|
|
10
|
+
Where:
|
|
11
|
+
- Ĝ_μν: Einstein tensor from complex frame U(x)
|
|
12
|
+
- K̄_μ: Chern-Simons current (topological)
|
|
13
|
+
- T̂_μν^(top): Topological energy-momentum tensor
|
|
14
|
+
- T̂_μν^(mat): Matter energy-momentum tensor
|
|
15
|
+
|
|
16
|
+
Core Theory:
|
|
17
|
+
- Universe as U(3) complex frame field: U(x) ∈ U(3)
|
|
18
|
+
- Real-imaginary decomposition: U = U^(R) + iU^(I)
|
|
19
|
+
- Real part: geometric properties (metric, curvature, spacetime)
|
|
20
|
+
- Imaginary part: topological properties (phase winding, gauge symmetry)
|
|
21
|
+
|
|
22
|
+
Physical Interpretation:
|
|
23
|
+
- Geometry + Topology = Complex Matter + Topological Force
|
|
24
|
+
- Unifies gravity, gauge fields, dark matter, and topology
|
|
25
|
+
|
|
26
|
+
Author: Enhanced by AI following theoretical framework
|
|
27
|
+
Date: 2025-01-14
|
|
28
|
+
Version: 7.0.1
|
|
29
|
+
DOI: https://doi.org/10.5281/zenodo.18217542
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
__version__ = '7.0.1'
|
|
33
|
+
|
|
34
|
+
import numpy as np
|
|
35
|
+
from typing import Tuple, Optional, Callable, Dict, Any
|
|
36
|
+
from dataclasses import dataclass
|
|
37
|
+
import warnings
|
|
38
|
+
|
|
39
|
+
# Physical constants (SI units for precision calculations)
|
|
40
|
+
HBAR_SI = 1.054571817e-34 # Reduced Planck constant [J·s]
|
|
41
|
+
H_PLANCK_SI = 6.62607015e-34 # Planck constant [J·s]
|
|
42
|
+
C_LIGHT_SI = 2.99792458e8 # Speed of light [m/s]
|
|
43
|
+
E_CHARGE_SI = 1.602176634e-19 # Elementary charge [C]
|
|
44
|
+
EPSILON_0_SI = 8.8541878128e-12 # Vacuum permittivity [F/m]
|
|
45
|
+
M_ELECTRON_SI = 9.1093837015e-31 # Electron mass [kg]
|
|
46
|
+
|
|
47
|
+
# Derived constants
|
|
48
|
+
ALPHA_FS = E_CHARGE_SI**2 / (4 * np.pi * EPSILON_0_SI * HBAR_SI * C_LIGHT_SI) # Fine structure constant ≈ 1/137
|
|
49
|
+
LAMBDA_C = H_PLANCK_SI / (M_ELECTRON_SI * C_LIGHT_SI) # Compton wavelength [m]
|
|
50
|
+
ALPHA_PROJECTION = ALPHA_FS * LAMBDA_C # Projection factor α ≈ 1.77×10⁻¹⁴ m
|
|
51
|
+
|
|
52
|
+
# Physical constants (natural units: ℏ = c = 1)
|
|
53
|
+
M_PLANCK = 2.435e18 # Planck mass [GeV]
|
|
54
|
+
LAMBDA_TOPO = 0.1008 # Topological coupling constant (from theory)
|
|
55
|
+
HBAR = 1.0 # Reduced Planck constant (natural units)
|
|
56
|
+
C_SPEED = 1.0 # Speed of light (natural units)
|
|
57
|
+
|
|
58
|
+
# Try to import U3Frame
|
|
59
|
+
try:
|
|
60
|
+
from .u3_frame import U3Frame, GaugeConnection, FieldStrength
|
|
61
|
+
except ImportError:
|
|
62
|
+
try:
|
|
63
|
+
from u3_frame import U3Frame, GaugeConnection, FieldStrength
|
|
64
|
+
except ImportError:
|
|
65
|
+
U3Frame = None
|
|
66
|
+
GaugeConnection = None
|
|
67
|
+
FieldStrength = None
|
|
68
|
+
warnings.warn("U3Frame not available. Some features will be limited.")
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
# ============================================================
|
|
72
|
+
# Core Data Structures
|
|
73
|
+
# ============================================================
|
|
74
|
+
|
|
75
|
+
@dataclass
|
|
76
|
+
class EnergyMomentumTensor:
|
|
77
|
+
"""
|
|
78
|
+
Energy-momentum tensor T_μν
|
|
79
|
+
|
|
80
|
+
Decomposition:
|
|
81
|
+
T_μν = T_μν^(R) + iT_μν^(I)
|
|
82
|
+
- Real part: mass-energy density
|
|
83
|
+
- Imaginary part: charge current
|
|
84
|
+
"""
|
|
85
|
+
real_part: np.ndarray # 4×4 real symmetric tensor
|
|
86
|
+
imag_part: np.ndarray # 4×4 real tensor
|
|
87
|
+
|
|
88
|
+
def __post_init__(self):
|
|
89
|
+
"""Validate tensor structure"""
|
|
90
|
+
if self.real_part.shape != (4, 4):
|
|
91
|
+
raise ValueError(f"Real part must be 4×4, got {self.real_part.shape}")
|
|
92
|
+
if self.imag_part.shape != (4, 4):
|
|
93
|
+
raise ValueError(f"Imaginary part must be 4×4, got {self.imag_part.shape}")
|
|
94
|
+
|
|
95
|
+
@property
|
|
96
|
+
def complex_tensor(self) -> np.ndarray:
|
|
97
|
+
"""Full complex tensor T = T^(R) + iT^(I)"""
|
|
98
|
+
return self.real_part + 1j * self.imag_part
|
|
99
|
+
|
|
100
|
+
def trace(self) -> complex:
|
|
101
|
+
"""Trace of energy-momentum tensor"""
|
|
102
|
+
return np.trace(self.complex_tensor)
|
|
103
|
+
|
|
104
|
+
def energy_density(self) -> float:
|
|
105
|
+
"""Energy density T_00"""
|
|
106
|
+
return self.real_part[0, 0]
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
# ============================================================
|
|
110
|
+
# Christmas Equation Implementation
|
|
111
|
+
# ============================================================
|
|
112
|
+
|
|
113
|
+
class ChristmasEquation:
|
|
114
|
+
"""
|
|
115
|
+
The Christmas Equation - Unified field equation
|
|
116
|
+
|
|
117
|
+
Complete form:
|
|
118
|
+
M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
|
|
119
|
+
|
|
120
|
+
Components:
|
|
121
|
+
- Left side: Geometry + Topology
|
|
122
|
+
- Right side: Topological source + Matter source
|
|
123
|
+
"""
|
|
124
|
+
|
|
125
|
+
def __init__(self,
|
|
126
|
+
planck_mass: float = M_PLANCK,
|
|
127
|
+
topo_coupling: float = LAMBDA_TOPO,
|
|
128
|
+
projection_factor: float = ALPHA_PROJECTION):
|
|
129
|
+
"""
|
|
130
|
+
Initialize Christmas Equation solver
|
|
131
|
+
|
|
132
|
+
Args:
|
|
133
|
+
planck_mass: Planck mass M_P [GeV]
|
|
134
|
+
topo_coupling: Topological coupling constant λ
|
|
135
|
+
projection_factor: Projection factor α = α_fs × λ_c [m]
|
|
136
|
+
"""
|
|
137
|
+
self.M_P = planck_mass
|
|
138
|
+
self.lambda_topo = topo_coupling
|
|
139
|
+
self.alpha_proj = projection_factor
|
|
140
|
+
|
|
141
|
+
def einstein_tensor(self, frame: U3Frame) -> np.ndarray:
|
|
142
|
+
"""
|
|
143
|
+
Compute Einstein tensor Ĝ_μν from complex frame
|
|
144
|
+
|
|
145
|
+
Ĝ_μν = R_μν - (1/2)g_μν R
|
|
146
|
+
|
|
147
|
+
Args:
|
|
148
|
+
frame: Complex frame field U(x)
|
|
149
|
+
|
|
150
|
+
Returns:
|
|
151
|
+
3×3 Einstein tensor (spatial part)
|
|
152
|
+
"""
|
|
153
|
+
# Extract metric from real part
|
|
154
|
+
g = frame.metric_tensor
|
|
155
|
+
|
|
156
|
+
# Compute Ricci tensor (simplified for demonstration)
|
|
157
|
+
# In full implementation, use intrinsic gradient method
|
|
158
|
+
R_tensor = self._compute_ricci_tensor(frame)
|
|
159
|
+
|
|
160
|
+
# Ricci scalar
|
|
161
|
+
g_inv = np.linalg.inv(g)
|
|
162
|
+
R_scalar = np.trace(g_inv @ R_tensor)
|
|
163
|
+
|
|
164
|
+
# Einstein tensor
|
|
165
|
+
G_tensor = R_tensor - 0.5 * g * R_scalar
|
|
166
|
+
|
|
167
|
+
return G_tensor
|
|
168
|
+
|
|
169
|
+
def chern_simons_current(self, frame: U3Frame) -> np.ndarray:
|
|
170
|
+
"""
|
|
171
|
+
Compute Chern-Simons current K̄_μ from imaginary part
|
|
172
|
+
|
|
173
|
+
K̄_μ = ε_μνρσ Tr(A^ν F^ρσ - (2/3)A^ν A^ρ A^σ)
|
|
174
|
+
|
|
175
|
+
Args:
|
|
176
|
+
frame: Complex frame field U(x)
|
|
177
|
+
|
|
178
|
+
Returns:
|
|
179
|
+
4-vector Chern-Simons current
|
|
180
|
+
"""
|
|
181
|
+
# Extract gauge potential from imaginary part
|
|
182
|
+
A = frame.gauge_potential
|
|
183
|
+
|
|
184
|
+
# Compute field strength (simplified)
|
|
185
|
+
F = self._compute_field_strength(frame)
|
|
186
|
+
|
|
187
|
+
# Chern-Simons current (simplified 3D version)
|
|
188
|
+
K_current = np.zeros(4)
|
|
189
|
+
|
|
190
|
+
# Spatial components (simplified calculation)
|
|
191
|
+
for mu in range(3):
|
|
192
|
+
K_current[mu] = np.trace(A @ F).real
|
|
193
|
+
|
|
194
|
+
return K_current
|
|
195
|
+
|
|
196
|
+
def topological_energy_momentum(self, frame: U3Frame) -> EnergyMomentumTensor:
|
|
197
|
+
"""
|
|
198
|
+
Compute topological energy-momentum tensor T̂_μν^(top)
|
|
199
|
+
|
|
200
|
+
From topological defects (instantons, vortices)
|
|
201
|
+
|
|
202
|
+
Args:
|
|
203
|
+
frame: Complex frame field U(x)
|
|
204
|
+
|
|
205
|
+
Returns:
|
|
206
|
+
Topological energy-momentum tensor
|
|
207
|
+
"""
|
|
208
|
+
# Topological charge density
|
|
209
|
+
topo_charge = self._compute_topological_charge(frame)
|
|
210
|
+
|
|
211
|
+
# Construct tensor (simplified)
|
|
212
|
+
T_real = np.zeros((4, 4))
|
|
213
|
+
T_imag = np.zeros((4, 4))
|
|
214
|
+
|
|
215
|
+
# Energy density from topological charge
|
|
216
|
+
T_real[0, 0] = topo_charge
|
|
217
|
+
|
|
218
|
+
# Topological flow (imaginary part)
|
|
219
|
+
K = self.chern_simons_current(frame)
|
|
220
|
+
for mu in range(4):
|
|
221
|
+
T_imag[0, mu] = K[mu]
|
|
222
|
+
|
|
223
|
+
return EnergyMomentumTensor(T_real, T_imag)
|
|
224
|
+
|
|
225
|
+
def solve_christmas_equation(self,
|
|
226
|
+
frame: U3Frame,
|
|
227
|
+
matter_tensor: EnergyMomentumTensor) -> Dict[str, Any]:
|
|
228
|
+
"""
|
|
229
|
+
Solve the Christmas Equation
|
|
230
|
+
|
|
231
|
+
M_P²/2 Ĝ_μν + λ/(32π²) ∇̂_(μ K̄_ν) = T̂_μν^(top) + T̂_μν^(mat)
|
|
232
|
+
|
|
233
|
+
Args:
|
|
234
|
+
frame: Complex frame field U(x)
|
|
235
|
+
matter_tensor: Matter energy-momentum tensor
|
|
236
|
+
|
|
237
|
+
Returns:
|
|
238
|
+
Dictionary with solution components
|
|
239
|
+
"""
|
|
240
|
+
# Left side: Geometry + Topology
|
|
241
|
+
G_tensor = self.einstein_tensor(frame)
|
|
242
|
+
K_current = self.chern_simons_current(frame)
|
|
243
|
+
|
|
244
|
+
# Geometric term
|
|
245
|
+
geo_term = (self.M_P**2 / 2) * G_tensor
|
|
246
|
+
|
|
247
|
+
# Topological term (simplified)
|
|
248
|
+
topo_term = (self.lambda_topo / (32 * np.pi**2)) * np.outer(K_current[:3], K_current[:3])
|
|
249
|
+
|
|
250
|
+
# Right side: Topological + Matter sources
|
|
251
|
+
T_topo = self.topological_energy_momentum(frame)
|
|
252
|
+
T_total = EnergyMomentumTensor(
|
|
253
|
+
T_topo.real_part + matter_tensor.real_part,
|
|
254
|
+
T_topo.imag_part + matter_tensor.imag_part
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
# Check equation balance (residual)
|
|
258
|
+
left_side = geo_term + topo_term
|
|
259
|
+
right_side = T_total.real_part[:3, :3]
|
|
260
|
+
residual = np.linalg.norm(left_side - right_side)
|
|
261
|
+
|
|
262
|
+
return {
|
|
263
|
+
'geometric_term': geo_term,
|
|
264
|
+
'topological_term': topo_term,
|
|
265
|
+
'topological_source': T_topo,
|
|
266
|
+
'matter_source': matter_tensor,
|
|
267
|
+
'total_source': T_total,
|
|
268
|
+
'residual': residual,
|
|
269
|
+
'balanced': residual < 1e-6
|
|
270
|
+
}
|
|
271
|
+
|
|
272
|
+
# -------------------- Internal Helper Methods --------------------
|
|
273
|
+
|
|
274
|
+
def _compute_ricci_tensor(self, frame: U3Frame) -> np.ndarray:
|
|
275
|
+
"""
|
|
276
|
+
Compute Ricci tensor from frame (simplified)
|
|
277
|
+
|
|
278
|
+
In full implementation, use intrinsic gradient method:
|
|
279
|
+
R_μν = [G_μ, G_ν] where G_μ = ∂_μ log U
|
|
280
|
+
|
|
281
|
+
Args:
|
|
282
|
+
frame: Complex frame field
|
|
283
|
+
|
|
284
|
+
Returns:
|
|
285
|
+
3×3 Ricci tensor
|
|
286
|
+
"""
|
|
287
|
+
# Simplified calculation for demonstration
|
|
288
|
+
g = frame.metric_tensor
|
|
289
|
+
g_inv = np.linalg.inv(g)
|
|
290
|
+
|
|
291
|
+
# Approximate curvature from metric variation
|
|
292
|
+
R = np.eye(3) * 0.1 # Placeholder
|
|
293
|
+
|
|
294
|
+
return R
|
|
295
|
+
|
|
296
|
+
def _compute_field_strength(self, frame: U3Frame) -> np.ndarray:
|
|
297
|
+
"""
|
|
298
|
+
Compute field strength tensor F_μν = ∂_μ A_ν - ∂_ν A_μ + [A_μ, A_ν]
|
|
299
|
+
|
|
300
|
+
Args:
|
|
301
|
+
frame: Complex frame field
|
|
302
|
+
|
|
303
|
+
Returns:
|
|
304
|
+
3×3 field strength tensor
|
|
305
|
+
"""
|
|
306
|
+
A = frame.gauge_potential
|
|
307
|
+
|
|
308
|
+
# Simplified: F ≈ [A, A]
|
|
309
|
+
F = A @ A - A.T @ A.T
|
|
310
|
+
|
|
311
|
+
return F
|
|
312
|
+
|
|
313
|
+
def _compute_topological_charge(self, frame: U3Frame) -> float:
|
|
314
|
+
"""
|
|
315
|
+
Compute topological charge Q = (1/32π²) ∫ Tr(F ∧ F)
|
|
316
|
+
|
|
317
|
+
Args:
|
|
318
|
+
frame: Complex frame field
|
|
319
|
+
|
|
320
|
+
Returns:
|
|
321
|
+
Topological charge (instanton number)
|
|
322
|
+
"""
|
|
323
|
+
F = self._compute_field_strength(frame)
|
|
324
|
+
|
|
325
|
+
# Topological charge density
|
|
326
|
+
Q = (1.0 / (32 * np.pi**2)) * np.trace(F @ F).real
|
|
327
|
+
|
|
328
|
+
return Q
|
|
329
|
+
|
|
330
|
+
|
|
331
|
+
# ============================================================
|
|
332
|
+
# Utility Functions
|
|
333
|
+
# ============================================================
|
|
334
|
+
|
|
335
|
+
def create_flat_spacetime_frame(position: Optional[np.ndarray] = None) -> U3Frame:
|
|
336
|
+
"""
|
|
337
|
+
Create a flat spacetime U(3) frame (Minkowski space)
|
|
338
|
+
|
|
339
|
+
Args:
|
|
340
|
+
position: Spacetime position (x, y, z, t) [currently ignored]
|
|
341
|
+
|
|
342
|
+
Returns:
|
|
343
|
+
U3Frame with flat metric
|
|
344
|
+
"""
|
|
345
|
+
real_part = np.eye(3) # Flat spatial metric
|
|
346
|
+
imag_part = np.zeros((3, 3)) # No gauge field
|
|
347
|
+
|
|
348
|
+
# Convert to U3Frame: extract column vectors
|
|
349
|
+
complex_matrix = real_part + 1j * imag_part
|
|
350
|
+
e1 = complex_matrix[:, 0]
|
|
351
|
+
e2 = complex_matrix[:, 1]
|
|
352
|
+
e3 = complex_matrix[:, 2]
|
|
353
|
+
|
|
354
|
+
return U3Frame(e1, e2, e3, ensure_unitary=True)
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
def create_curved_spacetime_frame(curvature: float = 0.1,
|
|
358
|
+
position: Optional[np.ndarray] = None) -> U3Frame:
|
|
359
|
+
"""
|
|
360
|
+
Create a curved spacetime U(3) frame
|
|
361
|
+
|
|
362
|
+
Args:
|
|
363
|
+
curvature: Curvature parameter
|
|
364
|
+
position: Spacetime position (x, y, z, t) [currently ignored]
|
|
365
|
+
|
|
366
|
+
Returns:
|
|
367
|
+
U3Frame with curved metric
|
|
368
|
+
"""
|
|
369
|
+
# Simple curved metric (spherical-like)
|
|
370
|
+
real_part = np.diag([1.0 + curvature, 1.0 + curvature, 1.0])
|
|
371
|
+
imag_part = np.zeros((3, 3))
|
|
372
|
+
|
|
373
|
+
# Convert to U3Frame: extract column vectors
|
|
374
|
+
complex_matrix = real_part + 1j * imag_part
|
|
375
|
+
e1 = complex_matrix[:, 0]
|
|
376
|
+
e2 = complex_matrix[:, 1]
|
|
377
|
+
e3 = complex_matrix[:, 2]
|
|
378
|
+
|
|
379
|
+
return U3Frame(e1, e2, e3, ensure_unitary=True)
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
def create_gauge_field_frame(field_strength: float = 0.1,
|
|
383
|
+
position: Optional[np.ndarray] = None) -> U3Frame:
|
|
384
|
+
"""
|
|
385
|
+
Create a U(3) frame with gauge field
|
|
386
|
+
|
|
387
|
+
Args:
|
|
388
|
+
field_strength: Gauge field strength
|
|
389
|
+
position: Spacetime position (x, y, z, t) [currently ignored]
|
|
390
|
+
|
|
391
|
+
Returns:
|
|
392
|
+
U3Frame with gauge field
|
|
393
|
+
"""
|
|
394
|
+
real_part = np.eye(3) # Flat spatial metric
|
|
395
|
+
imag_part = np.array([
|
|
396
|
+
[0, field_strength, 0],
|
|
397
|
+
[-field_strength, 0, 0],
|
|
398
|
+
[0, 0, 0]
|
|
399
|
+
]) # Non-trivial gauge field
|
|
400
|
+
|
|
401
|
+
# Convert to U3Frame: extract column vectors
|
|
402
|
+
complex_matrix = real_part + 1j * imag_part
|
|
403
|
+
e1 = complex_matrix[:, 0]
|
|
404
|
+
e2 = complex_matrix[:, 1]
|
|
405
|
+
e3 = complex_matrix[:, 2]
|
|
406
|
+
|
|
407
|
+
return U3Frame(e1, e2, e3, ensure_unitary=True)
|
|
408
|
+
|
|
409
|
+
|
|
410
|
+
# ============================================================
|
|
411
|
+
# Exports
|
|
412
|
+
# ============================================================
|
|
413
|
+
|
|
414
|
+
__all__ = [
|
|
415
|
+
'U3Frame',
|
|
416
|
+
'EnergyMomentumTensor',
|
|
417
|
+
'ChristmasEquation',
|
|
418
|
+
'create_flat_spacetime_frame',
|
|
419
|
+
'create_curved_spacetime_frame',
|
|
420
|
+
'create_gauge_field_frame',
|
|
421
|
+
'M_PLANCK',
|
|
422
|
+
'LAMBDA_TOPO',
|
|
423
|
+
'ALPHA_FS',
|
|
424
|
+
'LAMBDA_C',
|
|
425
|
+
'ALPHA_PROJECTION',
|
|
426
|
+
]
|
|
427
|
+
|
|
428
|
+
|
|
429
|
+
# ============================================================
|
|
430
|
+
# Demonstration
|
|
431
|
+
# ============================================================
|
|
432
|
+
|
|
433
|
+
def demonstrate():
|
|
434
|
+
"""Demonstrate Complex Geometric Physics and Christmas Equation"""
|
|
435
|
+
print("=" * 80)
|
|
436
|
+
print("Complex Geometric Physics - Christmas Equation Demonstration")
|
|
437
|
+
print("=" * 80)
|
|
438
|
+
|
|
439
|
+
# 1. Create complex frames
|
|
440
|
+
print("\n1. Creating Complex Frames")
|
|
441
|
+
print("-" * 40)
|
|
442
|
+
|
|
443
|
+
flat_frame = create_flat_spacetime_frame()
|
|
444
|
+
print(f" Flat spacetime frame created")
|
|
445
|
+
print(f" Metric determinant: {np.linalg.det(flat_frame.metric_tensor):.6f}")
|
|
446
|
+
|
|
447
|
+
curved_frame = create_curved_spacetime_frame(curvature=0.1)
|
|
448
|
+
print(f" Curved spacetime frame created")
|
|
449
|
+
print(f" Metric determinant: {np.linalg.det(curved_frame.metric_tensor):.6f}")
|
|
450
|
+
|
|
451
|
+
gauge_frame = create_gauge_field_frame(field_strength=0.1)
|
|
452
|
+
print(f" Gauge field frame created")
|
|
453
|
+
print(f" Gauge potential norm: {np.linalg.norm(gauge_frame.gauge_potential):.6f}")
|
|
454
|
+
|
|
455
|
+
# 2. Initialize Christmas Equation solver
|
|
456
|
+
print("\n2. Christmas Equation Solver")
|
|
457
|
+
print("-" * 40)
|
|
458
|
+
|
|
459
|
+
solver = ChristmasEquation()
|
|
460
|
+
print(f" Planck mass M_P: {solver.M_P:.3e} GeV")
|
|
461
|
+
print(f" Topological coupling λ: {solver.lambda_topo:.4f}")
|
|
462
|
+
|
|
463
|
+
# 3. Compute geometric quantities
|
|
464
|
+
print("\n3. Geometric Quantities")
|
|
465
|
+
print("-" * 40)
|
|
466
|
+
|
|
467
|
+
G_tensor = solver.einstein_tensor(curved_frame)
|
|
468
|
+
print(f" Einstein tensor computed")
|
|
469
|
+
print(f" Trace(G): {np.trace(G_tensor):.6e}")
|
|
470
|
+
|
|
471
|
+
K_current = solver.chern_simons_current(gauge_frame)
|
|
472
|
+
print(f" Chern-Simons current computed")
|
|
473
|
+
print(f" |K|: {np.linalg.norm(K_current):.6e}")
|
|
474
|
+
|
|
475
|
+
# 4. Compute energy-momentum tensors
|
|
476
|
+
print("\n4. Energy-Momentum Tensors")
|
|
477
|
+
print("-" * 40)
|
|
478
|
+
|
|
479
|
+
T_topo = solver.topological_energy_momentum(gauge_frame)
|
|
480
|
+
print(f" Topological energy density: {T_topo.energy_density():.6e}")
|
|
481
|
+
|
|
482
|
+
# Create matter tensor
|
|
483
|
+
matter_real = np.diag([1.0, 0.1, 0.1, 0.1])
|
|
484
|
+
matter_imag = np.zeros((4, 4))
|
|
485
|
+
T_matter = EnergyMomentumTensor(matter_real, matter_imag)
|
|
486
|
+
print(f" Matter energy density: {T_matter.energy_density():.6e}")
|
|
487
|
+
|
|
488
|
+
# 5. Solve Christmas Equation
|
|
489
|
+
print("\n5. Solving Christmas Equation")
|
|
490
|
+
print("-" * 40)
|
|
491
|
+
|
|
492
|
+
solution = solver.solve_christmas_equation(gauge_frame, T_matter)
|
|
493
|
+
print(f" Geometric term norm: {np.linalg.norm(solution['geometric_term']):.6e}")
|
|
494
|
+
print(f" Topological term norm: {np.linalg.norm(solution['topological_term']):.6e}")
|
|
495
|
+
print(f" Equation residual: {solution['residual']:.6e}")
|
|
496
|
+
print(f" Equation balanced: {solution['balanced']}")
|
|
497
|
+
|
|
498
|
+
# 6. Theory summary
|
|
499
|
+
print("\n" + "=" * 80)
|
|
500
|
+
print("Core Theory Summary:")
|
|
501
|
+
print(" • Christmas Equation: M_P²/2 Ĝ_μν + λ/(32π²) ∇̂_(μ K̄_ν) = T̂_μν^(top) + T̂_μν^(mat)")
|
|
502
|
+
print(" • U(x) = U^(R)(x) + iU^(I)(x) [Complex frame decomposition]")
|
|
503
|
+
print(" • Real part: Geometry (metric, curvature, spacetime)")
|
|
504
|
+
print(" • Imaginary part: Topology (phase, gauge field, winding)")
|
|
505
|
+
print(" • Unifies: Gravity + Gauge fields + Dark matter + Topology")
|
|
506
|
+
print("=" * 80)
|
|
507
|
+
|
|
508
|
+
|
|
509
|
+
if __name__ == "__main__":
|
|
510
|
+
demonstrate()
|
|
Binary file
|