content-core 1.10.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. content_core/__init__.py +216 -0
  2. content_core/cc_config.yaml +86 -0
  3. content_core/common/__init__.py +38 -0
  4. content_core/common/exceptions.py +70 -0
  5. content_core/common/retry.py +325 -0
  6. content_core/common/state.py +64 -0
  7. content_core/common/types.py +15 -0
  8. content_core/common/utils.py +31 -0
  9. content_core/config.py +575 -0
  10. content_core/content/__init__.py +6 -0
  11. content_core/content/cleanup/__init__.py +5 -0
  12. content_core/content/cleanup/core.py +15 -0
  13. content_core/content/extraction/__init__.py +13 -0
  14. content_core/content/extraction/graph.py +252 -0
  15. content_core/content/identification/__init__.py +9 -0
  16. content_core/content/identification/file_detector.py +505 -0
  17. content_core/content/summary/__init__.py +5 -0
  18. content_core/content/summary/core.py +15 -0
  19. content_core/logging.py +15 -0
  20. content_core/mcp/__init__.py +5 -0
  21. content_core/mcp/server.py +214 -0
  22. content_core/models.py +60 -0
  23. content_core/models_config.yaml +31 -0
  24. content_core/notebooks/run.ipynb +359 -0
  25. content_core/notebooks/urls.ipynb +154 -0
  26. content_core/processors/audio.py +272 -0
  27. content_core/processors/docling.py +79 -0
  28. content_core/processors/office.py +331 -0
  29. content_core/processors/pdf.py +292 -0
  30. content_core/processors/text.py +36 -0
  31. content_core/processors/url.py +324 -0
  32. content_core/processors/video.py +166 -0
  33. content_core/processors/youtube.py +262 -0
  34. content_core/py.typed +2 -0
  35. content_core/templated_message.py +70 -0
  36. content_core/tools/__init__.py +9 -0
  37. content_core/tools/cleanup.py +15 -0
  38. content_core/tools/extract.py +21 -0
  39. content_core/tools/summarize.py +17 -0
  40. content_core-1.10.0.dist-info/METADATA +742 -0
  41. content_core-1.10.0.dist-info/RECORD +44 -0
  42. content_core-1.10.0.dist-info/WHEEL +4 -0
  43. content_core-1.10.0.dist-info/entry_points.txt +5 -0
  44. content_core-1.10.0.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,359 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "data": {
10
+ "text/plain": [
11
+ "ProcessSourceOutput(title='', source_type='text', identified_type='', identified_provider='', metadata={}, content='My content')"
12
+ ]
13
+ },
14
+ "execution_count": 1,
15
+ "metadata": {},
16
+ "output_type": "execute_result"
17
+ }
18
+ ],
19
+ "source": [
20
+ "from content_core.content.extraction import extract_content\n",
21
+ "\n",
22
+ "\n",
23
+ "await extract_content(dict(content=\"My content\"))"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 2,
29
+ "metadata": {},
30
+ "outputs": [
31
+ {
32
+ "data": {
33
+ "text/plain": [
34
+ "ProcessSourceOutput(title='Supernova Labs | Elite AI Consulting to help you build the Future', source_type='url', identified_type='article', identified_provider='', metadata={}, content='URL Source: https://www.supernovalabs.com/\\n\\nMarkdown Content:\\nSupernova Labs\\n\\n[About](https://www.supernovalabs.com/#about)[Process](https://www.supernovalabs.com/#process)[Services](https://www.supernovalabs.com/#services)\\n\\nWe turn your data, tech and capabilities into impact with lean AI solutions. No fluff, just results.\\n\\nSupernova Labs is a lean squad of AI experts built for high-growth startups. We dive in, uncover game-changing opportunities, deliver AI that works, and train your team to own it—all at startup speed, no multi-year traps.\\n\\n### Merovingian\\n\\nOur open-source application server designed for rapid AI integration and deployment.\\n\\n### Esperanto\\n\\nA flexible multi-model platform powering fast, trustworthy AI solutions.\\n\\n\"Our open-source tools power fast, flexible solutions you can trust.\"\\n\\nOur process is lean, fast, and built to make your startup win.\\n\\n### Find Your AI Edge\\n\\nWe tear into your data, tech, and teams to spot AI use cases that\\'ll move the needle.\\n\\nYou get:\\n\\nAn AI Opportunity Map prioritizing high-impact wins.\\n\\n### Prove It Works\\n\\nWe whip up lean prototypes—like predictive models or smart agents—and test them with your users.\\n\\nYou get:\\n\\nA working prototype plus validation from real feedback.\\n\\n### Ship It Fast\\n\\nWe help you deploy the solutions, backed by MLOps to keep it humming.\\n\\nYou get:\\n\\nA production-ready system that delivers, pronto.\\n\\n### Own the Future\\n\\nWe train your crew to run AI and design AI-native UX that users love.\\n\\nYou get:\\n\\nA team and workflows ready to dominate the AI era.\\n\\n### Predictive Analytics\\n\\nCrank out forecasts and decisions with data-driven models.\\n\\n### Deep Learning\\n\\nCrush complex problems with custom models for vision, NLP, and more.\\n\\n### AI Agents & Chatbots\\n\\nAutomate support, dig through docs, or solve issues with smart agents.\\n\\n### Process Automation\\n\\nZap busywork with workflows that think for themselves.\\n\\n### Lean & Mean\\n\\nWe deliver in weeks, not years, keeping your momentum alive.\\n\\n### Open-Source Muscle\\n\\nWe use as much Open Source code as possible to give you power without lock-in.\\n\\n### Your Win, Our Exit\\n\\nWe train you to own AI, so you\\'re free to soar.\\n\\nTell us your goals, and we\\'ll jump into a no-BS discovery call to map your AI edge.')"
35
+ ]
36
+ },
37
+ "execution_count": 2,
38
+ "metadata": {},
39
+ "output_type": "execute_result"
40
+ }
41
+ ],
42
+ "source": [
43
+ "from content_core.content.extraction import extract_content\n",
44
+ "\n",
45
+ "\n",
46
+ "await extract_content(dict(url=\"https://www.supernovalabs.com\"))"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": 3,
52
+ "metadata": {},
53
+ "outputs": [
54
+ {
55
+ "name": "stdout",
56
+ "output_type": "stream",
57
+ "text": [
58
+ "title='How to Use Chat GPT For Finance in 2025 (Beginners Guide)' source_type='url' identified_type='youtube' identified_provider='' metadata={'video_id': 'lLprprtHfts', 'transcript': [{'text': 'This is going to be a completely free', 'start': 0.16, 'duration': 4.88}, {'text': 'course on how you can use JGPT if you', 'start': 2.399, 'duration': 4.48}, {'text': 'work in finance. Over the last few', 'start': 5.04, 'duration': 3.92}, {'text': \"years, I've taught thousands of finance\", 'start': 6.879, 'duration': 4.8}, {'text': 'professionals like you how to use AI to', 'start': 8.96, 'duration': 4.88}, {'text': 'save hours, but also to become', 'start': 11.679, 'duration': 4.801}, {'text': 'irrepressible in this time of changes,', 'start': 13.84, 'duration': 4.4}, {'text': 'especially with all of the pressure we', 'start': 16.48, 'duration': 3.84}, {'text': 'got in finance. Now, for the information', 'start': 18.24, 'duration': 4.08}, {'text': 'in this video, I normally charge', 'start': 20.32, 'duration': 4.32}, {'text': 'hundreds of dollars, but I decided to', 'start': 22.32, 'duration': 4.56}, {'text': 'give it away for free. So, close all of', 'start': 24.64, 'duration': 4.479}, {'text': 'your open tabs and pay full attention', 'start': 26.88, 'duration': 4.319}, {'text': 'because I guarantee that if you watch', 'start': 29.119, 'duration': 4.321}, {'text': 'this video until the end, you will have', 'start': 31.199, 'duration': 5.04}, {'text': 'all of the foundations you need to start', 'start': 33.44, 'duration': 5.6}, {'text': 'using CHPT in your work. In this course,', 'start': 36.239, 'duration': 4.961}, {'text': 'I will show you how you can sign up to', 'start': 39.04, 'duration': 5.359}, {'text': 'Chip and walk you through all of the', 'start': 41.2, 'duration': 4.879}, {'text': 'functionalities that are the most', 'start': 44.399, 'duration': 4.16}, {'text': 'important in Chip. And then we will', 'start': 46.079, 'duration': 5.601}, {'text': 'cover the risks and limitations of using', 'start': 48.559, 'duration': 5.601}, {'text': 'CHP in your work. And finally, you will', 'start': 51.68, 'duration': 5.039}, {'text': 'learn how to write AI prompts like a', 'start': 54.16, 'duration': 5.199}, {'text': 'pro, which is arguably the most valuable', 'start': 56.719, 'duration': 6.0}, {'text': 'skills you should have right', 'start': 59.359, 'duration': 3.36}, {'text': 'now. We are going to learn together how', 'start': 63.0, 'duration': 5.72}, {'text': 'you can sign up and also what are the', 'start': 66.159, 'duration': 5.121}, {'text': 'functionalities of CHP, but really', 'start': 68.72, 'duration': 4.88}, {'text': 'important we will cover what are the', 'start': 71.28, 'duration': 5.04}, {'text': 'risks and limitations and then we you', 'start': 73.6, 'duration': 5.12}, {'text': 'will learn how to prompt the most', 'start': 76.32, 'duration': 4.799}, {'text': 'important skill to learn in this course.', 'start': 78.72, 'duration': 4.399}, {'text': \"And finally, you'll get an exercise to\", 'start': 81.119, 'duration': 4.081}, {'text': 'test your capabilities. If you are new', 'start': 83.119, 'duration': 5.401}, {'text': 'to chatgptt, you can go to', 'start': 85.2, 'duration': 5.44}, {'text': 'chat.openai.com and you will arrive to', 'start': 88.52, 'duration': 4.36}, {'text': 'this page. On this page, you will click', 'start': 90.64, 'duration': 4.799}, {'text': 'sign up. They will ask you to create an', 'start': 92.88, 'duration': 4.64}, {'text': 'account. You can either use your Google', 'start': 95.439, 'duration': 4.161}, {'text': 'credential or Microsoft credential or', 'start': 97.52, 'duration': 4.08}, {'text': 'even Apple or just give your email', 'start': 99.6, 'duration': 4.32}, {'text': \"address. Let's imagine that I want to\", 'start': 101.6, 'duration': 4.32}, {'text': 'choose my email address. Then I just', 'start': 103.92, 'duration': 4.32}, {'text': 'need to put a password.', 'start': 105.92, 'duration': 4.08}, {'text': 'Now that I have entered my password, I', 'start': 108.24, 'duration': 4.32}, {'text': 'will just need to validate my email. You', 'start': 110.0, 'duration': 4.32}, {'text': 'should arrive to this email address', 'start': 112.56, 'duration': 3.28}, {'text': 'where you just click verify email', 'start': 114.32, 'duration': 4.399}, {'text': 'address. And now your email is verified.', 'start': 115.84, 'duration': 4.959}, {'text': 'You just need to login again. Here', 'start': 118.719, 'duration': 4.521}, {'text': 'OpenAI will ask you some', 'start': 120.799, 'duration': 5.481}, {'text': 'details. And you can enter also your', 'start': 123.24, 'duration': 5.799}, {'text': 'birthday. And now we are successfully', 'start': 126.28, 'duration': 5.16}, {'text': \"inside Chpt for the first time. Let's\", 'start': 129.039, 'duration': 6.001}, {'text': 'see now how you can use CH GPT. Here is', 'start': 131.44, 'duration': 5.28}, {'text': 'the chat box where you are going to', 'start': 135.04, 'duration': 4.16}, {'text': 'start entering your questions and', 'start': 136.72, 'duration': 4.96}, {'text': 'instructions. For example, I can ask', 'start': 139.2, 'duration': 5.6}, {'text': 'what are the top three skills for an', 'start': 141.68, 'duration': 6.4}, {'text': 'FPNA manager and how to learn them. Now', 'start': 144.8, 'duration': 6.0}, {'text': \"I'm going to click here or you can press\", 'start': 148.08, 'duration': 4.68}, {'text': 'alt', 'start': 150.8, 'duration': 5.12}, {'text': 'enter and you get from chaptt your', 'start': 152.76, 'duration': 5.479}, {'text': \"answer. Now, let's imagine that I don't\", 'start': 155.92, 'duration': 5.12}, {'text': 'want three skills, but five skills. And', 'start': 158.239, 'duration': 5.521}, {'text': 'I can click this little pen to correct', 'start': 161.04, 'duration': 4.839}, {'text': 'my', 'start': 163.76, 'duration': 4.4}, {'text': 'instruction. And I can ask top five', 'start': 165.879, 'duration': 4.44}, {'text': 'skills. And I can ask, \"Show me the', 'start': 168.16, 'duration': 5.12}, {'text': 'result in a', 'start': 170.319, 'duration': 2.961}, {'text': 'table.\" And now I get the result in a', 'start': 174.04, 'duration': 4.839}, {'text': 'table. What you can also do is press', 'start': 176.319, 'duration': 5.161}, {'text': 'this copy and paste', 'start': 178.879, 'duration': 4.961}, {'text': 'button. And when you do that, it copies', 'start': 181.48, 'duration': 4.52}, {'text': 'all of the text. Here for example, I', 'start': 183.84, 'duration': 4.8}, {'text': 'will just paste it and I have all of the', 'start': 186.0, 'duration': 5.12}, {'text': 'tests. But as you can note, the text is', 'start': 188.64, 'duration': 5.04}, {'text': 'not formatted. So what you can do is', 'start': 191.12, 'duration': 6.36}, {'text': 'select the table like this and copy and', 'start': 193.68, 'duration': 7.199}, {'text': 'paste the table. This is my favorite', 'start': 197.48, 'duration': 5.399}, {'text': 'function to copy and paste is just', 'start': 200.879, 'duration': 4.08}, {'text': 'selecting the text rather than using', 'start': 202.879, 'duration': 5.36}, {'text': 'this. There is another function which is', 'start': 204.959, 'duration': 5.521}, {'text': \"regenerate. Here if I'm not happy about\", 'start': 208.239, 'duration': 6.64}, {'text': 'the result, I can just click regenerate.', 'start': 210.48, 'duration': 8.0}, {'text': 'And JGPT will propose something which is', 'start': 214.879, 'duration': 5.92}, {'text': 'an alternative to my question. And I can', 'start': 218.48, 'duration': 5.759}, {'text': 'come back and again here change and I', 'start': 220.799, 'duration': 7.841}, {'text': 'can say what are the top technical', 'start': 224.239, 'duration': 4.401}, {'text': 'skills and save and submit and you can', 'start': 229.319, 'duration': 5.881}, {'text': 'see what is happening. I have now', 'start': 232.799, 'duration': 5.241}, {'text': 'technical skills but look at what is', 'start': 235.2, 'duration': 6.239}, {'text': 'here. Here is a way to come back to all', 'start': 238.04, 'duration': 5.96}, {'text': 'of my previous instructions. Like this,', 'start': 241.439, 'duration': 4.401}, {'text': 'I can come back to the history. If you', 'start': 244.0, 'duration': 3.68}, {'text': 'want to start a new chat, then you will', 'start': 245.84, 'duration': 5.039}, {'text': 'click here. And now I can ask, tell me', 'start': 247.68, 'duration': 9.479}, {'text': 'how is a typical day for FPNA manager.', 'start': 250.879, 'duration': 6.28}, {'text': \"It's really important to change\", 'start': 257.199, 'duration': 4.16}, {'text': 'discussions each time you are changing', 'start': 259.12, 'duration': 4.639}, {'text': \"subjects because if you don't do that\", 'start': 261.359, 'duration': 7.12}, {'text': 'then here if I ask what are the top', 'start': 263.759, 'duration': 4.72}, {'text': \"skills it will understand that I'm\", 'start': 269.32, 'duration': 5.0}, {'text': 'talking about FPNA manager and not FPNA', 'start': 271.52, 'duration': 4.64}, {'text': 'analyst because we started the', 'start': 274.32, 'duration': 4.56}, {'text': 'discussion by FPNA manager and if my', 'start': 276.16, 'duration': 5.039}, {'text': \"question is about FPNA analyst it's\", 'start': 278.88, 'duration': 4.96}, {'text': 'either better to change here and to say', 'start': 281.199, 'duration': 5.521}, {'text': 'for FPN analyst or directly to change a', 'start': 283.84, 'duration': 5.52}, {'text': 'new discussion and start from scratch if', 'start': 286.72, 'duration': 4.72}, {'text': 'you feel the two discussions are not', 'start': 289.36, 'duration': 4.72}, {'text': 'connected. The last important part is', 'start': 291.44, 'duration': 3.56}, {'text': 'this', 'start': 294.08, 'duration': 4.48}, {'text': 'sidebar. I will click to see the sidebar', 'start': 295.0, 'duration': 6.24}, {'text': 'and to come back to all of my previous', 'start': 298.56, 'duration': 7.0}, {'text': 'discussions. And there I can click', 'start': 301.24, 'duration': 7.56}, {'text': 'to manage my settings. For example, I', 'start': 305.56, 'duration': 5.88}, {'text': 'can ask to save or not the chat history', 'start': 308.8, 'duration': 4.88}, {'text': 'that we used to at the left. And also I', 'start': 311.44, 'duration': 4.56}, {'text': 'can activate or deactivate the training', 'start': 313.68, 'duration': 4.72}, {'text': 'on my data because for me I have', 'start': 316.0, 'duration': 7.039}, {'text': \"subscribed to CHP teams. It's by default\", 'start': 318.4, 'duration': 4.639}, {'text': \"deactivated. Finally let's look together\", 'start': 323.8, 'duration': 5.8}, {'text': 'at the most advanced functions of JPT.', 'start': 326.4, 'duration': 6.96}, {'text': 'You will see that with JGPT you can also', 'start': 329.6, 'duration': 6.56}, {'text': 'upload a file. So you have the button in', 'start': 333.36, 'duration': 5.6}, {'text': \"the bottom here attachments. I'm going\", 'start': 336.16, 'duration': 5.12}, {'text': 'to upload a file that looks like this.', 'start': 338.96, 'duration': 6.0}, {'text': 'So here is a file with my company sales', 'start': 341.28, 'duration': 7.359}, {'text': 'data and I am in a SAS industry. So I', 'start': 344.96, 'duration': 5.76}, {'text': 'will want for example to do a cohort', 'start': 348.639, 'duration': 5.28}, {'text': \"analysis. Let's see with JGPT if my\", 'start': 350.72, 'duration': 5.28}, {'text': \"company has a contract with JGPT and I'm\", 'start': 353.919, 'duration': 5.601}, {'text': 'allowed to upload data inside JGPT.', 'start': 356.0, 'duration': 6.0}, {'text': \"Let's see what I can do. Just as a\", 'start': 359.52, 'duration': 4.48}, {'text': \"warning if your company doesn't have a\", 'start': 362.0, 'duration': 4.479}, {'text': 'contract with OpenAI, then check if', 'start': 364.0, 'duration': 4.72}, {'text': \"you're allowed or not to upload data.\", 'start': 366.479, 'duration': 4.72}, {'text': \"It's better to be sure than to do a\", 'start': 368.72, 'duration': 5.039}, {'text': \"mistake. So we are back in JGPT and I'm\", 'start': 371.199, 'duration': 4.961}, {'text': 'going to upload my file and you can see', 'start': 373.759, 'duration': 4.241}, {'text': 'that I can connect to Google Drive,', 'start': 376.16, 'duration': 4.24}, {'text': 'connect to Microsoft One Drive or upload', 'start': 378.0, 'duration': 4.88}, {'text': 'from my computer. So here is the file', 'start': 380.4, 'duration': 4.72}, {'text': \"I'm uploading and I will ask can you\", 'start': 382.88, 'duration': 5.759}, {'text': 'create a cohort analysis for my', 'start': 385.12, 'duration': 7.56}, {'text': 'retention rate based on the month of the', 'start': 388.639, 'duration': 7.601}, {'text': 'subscriber starting doing business with', 'start': 392.68, 'duration': 6.12}, {'text': 'us. show on top a visualization because', 'start': 396.24, 'duration': 5.64}, {'text': 'I like to visualize this', 'start': 398.8, 'duration': 5.839}, {'text': 'information. So now first we can see', 'start': 401.88, 'duration': 5.159}, {'text': 'that we have here the table. So that', 'start': 404.639, 'duration': 5.12}, {'text': 'means JGPT understood the table with', 'start': 407.039, 'duration': 5.28}, {'text': 'exactly the right columns. It read those', 'start': 409.759, 'duration': 4.72}, {'text': \"columns using Python. And it's really\", 'start': 412.319, 'duration': 4.32}, {'text': 'important to know that JGPT is not good', 'start': 414.479, 'duration': 3.921}, {'text': \"at calculating because it's not made to\", 'start': 416.639, 'duration': 4.161}, {'text': 'calculate but is really good at creating', 'start': 418.4, 'duration': 5.44}, {'text': 'the code to send them to Python. And', 'start': 420.8, 'duration': 5.36}, {'text': 'Python is a good tool to calculate and', 'start': 423.84, 'duration': 4.32}, {'text': \"that's how you separate the work like\", 'start': 426.16, 'duration': 5.12}, {'text': 'you will do for yourself. If you have to', 'start': 428.16, 'duration': 4.96}, {'text': 'calculate you will use a computer or you', 'start': 431.28, 'duration': 4.0}, {'text': 'will use a calculator. Here is the same', 'start': 433.12, 'duration': 4.079}, {'text': 'you use the right tool to calculate', 'start': 435.28, 'duration': 5.44}, {'text': 'which is Python. Now TGPT is coding the', 'start': 437.199, 'duration': 6.56}, {'text': 'code to create our cohort analysis and', 'start': 440.72, 'duration': 5.12}, {'text': 'you can see that now I have the mostly', 'start': 443.759, 'duration': 4.801}, {'text': 'retention rates and here it decided to', 'start': 445.84, 'duration': 5.04}, {'text': 'use red for something positive. So what', 'start': 448.56, 'duration': 4.72}, {'text': 'I can do is even ask to change the', 'start': 450.88, 'duration': 7.319}, {'text': 'color. Can you make 100% blue and 0%', 'start': 453.28, 'duration': 7.359}, {'text': \"red? But you see that while it's\", 'start': 458.199, 'duration': 4.521}, {'text': 'calculating, I want to show you how', 'start': 460.639, 'duration': 4.321}, {'text': 'powerful the tool is because this is', 'start': 462.72, 'duration': 5.039}, {'text': 'impossible to do so fast in Excel and in', 'start': 464.96, 'duration': 5.2}, {'text': 'Excel also you will have to work with', 'start': 467.759, 'duration': 4.56}, {'text': 'conditional formatting. But here I will', 'start': 470.16, 'duration': 6.08}, {'text': 'have here my file with a proper cohort', 'start': 472.319, 'duration': 6.241}, {'text': 'analysis. And what I can even do is', 'start': 476.24, 'duration': 4.88}, {'text': 'download the chart as a picture because', 'start': 478.56, 'duration': 5.12}, {'text': 'Python does it as a picture. And I can', 'start': 481.12, 'duration': 5.28}, {'text': 'even here continue to analyze thanks to', 'start': 483.68, 'duration': 5.28}, {'text': 'these buttons. So now for example I ask', 'start': 486.4, 'duration': 5.04}, {'text': 'to analyze the customer turn rate and it', 'start': 488.96, 'duration': 4.639}, {'text': 'will do this analysis for me. And you', 'start': 491.44, 'duration': 4.0}, {'text': 'can see that now I have a graph and', 'start': 493.599, 'duration': 3.6}, {'text': \"that's what I really like here is to\", 'start': 495.44, 'duration': 3.36}, {'text': 'continue the discussion thanks to this', 'start': 497.199, 'duration': 3.68}, {'text': 'button. And if you want to audit what', 'start': 498.8, 'duration': 4.72}, {'text': 'happened, you can always look at the', 'start': 500.879, 'duration': 5.121}, {'text': \"code and you can always ask if you don't\", 'start': 503.52, 'duration': 4.0}, {'text': 'really understand the code, you can ask', 'start': 506.0, 'duration': 3.599}, {'text': 'JGP to explain you the code like this.', 'start': 507.52, 'duration': 5.84}, {'text': 'You can verify if the calculation is', 'start': 509.599, 'duration': 3.761}, {'text': 'correct. This is a function that allows', 'start': 513.719, 'duration': 6.2}, {'text': 'you to customize and make your own GPT.', 'start': 516.64, 'duration': 4.8}, {'text': 'Let me show you how you can do that. So', 'start': 519.919, 'duration': 4.641}, {'text': 'we are back in JPT and I will go on the', 'start': 521.44, 'duration': 5.44}, {'text': 'side open the sidebar and here you', 'start': 524.56, 'duration': 5.76}, {'text': 'should see a button called explore GPTs', 'start': 526.88, 'duration': 6.959}, {'text': 'and GPTs are GPT versions that are', 'start': 530.32, 'duration': 6.16}, {'text': 'customized by either yourself or other', 'start': 533.839, 'duration': 5.841}, {'text': 'people. This is the marketplace of GPS', 'start': 536.48, 'duration': 6.56}, {'text': 'or the app store of GPS. So for example', 'start': 539.68, 'duration': 6.64}, {'text': 'here you can type US GAP and it will', 'start': 543.04, 'duration': 5.84}, {'text': 'show you for example here a US gap', 'start': 546.32, 'duration': 4.88}, {'text': 'advisor where you can click on you can', 'start': 548.88, 'duration': 4.16}, {'text': 'check if there are good ratings or not', 'start': 551.2, 'duration': 3.84}, {'text': 'and if a lot of people have used it you', 'start': 553.04, 'duration': 4.4}, {'text': 'can see what it does and what we can do', 'start': 555.04, 'duration': 4.88}, {'text': 'is for example start a chat and I can', 'start': 557.44, 'duration': 5.68}, {'text': 'ask explain me revenue recognition and I', 'start': 559.92, 'duration': 5.12}, {'text': \"don't even have to explain that I want\", 'start': 563.12, 'duration': 4.8}, {'text': 'to get this explanation based on US gap', 'start': 565.04, 'duration': 4.799}, {'text': \"because I'm already in a US gap advisor.\", 'start': 567.92, 'duration': 4.32}, {'text': \"So that's the big advantage. This US gap\", 'start': 569.839, 'duration': 5.761}, {'text': 'advisor was configured to unswear for US', 'start': 572.24, 'duration': 5.68}, {'text': 'GAP and to answer in a specific way. And', 'start': 575.6, 'duration': 4.4}, {'text': 'you can see that here we got a really', 'start': 577.92, 'duration': 4.32}, {'text': 'good answer because it knows we are', 'start': 580.0, 'duration': 4.399}, {'text': 'finance people because who would want to', 'start': 582.24, 'duration': 4.64}, {'text': 'go to a US GAP advisor? Mostly finance', 'start': 584.399, 'duration': 4.641}, {'text': 'people. And we have already somebody', 'start': 586.88, 'duration': 4.8}, {'text': 'behind who did the work to customize the', 'start': 589.04, 'duration': 4.56}, {'text': 'elsewhere. So like this we save a lot of', 'start': 591.68, 'duration': 3.68}, {'text': 'time. So now do you know that you can', 'start': 593.6, 'duration': 4.96}, {'text': 'actually also create your own GPT? Let', 'start': 595.36, 'duration': 5.039}, {'text': 'me show you how. So you will go back to', 'start': 598.56, 'duration': 5.04}, {'text': 'explore GPT to the left and then upright', 'start': 600.399, 'duration': 5.601}, {'text': 'you can create your own GPT. So I will', 'start': 603.6, 'duration': 7.679}, {'text': 'click create and now I am in the GPT', 'start': 606.0, 'duration': 7.04}, {'text': 'configurator. And here you have two', 'start': 611.279, 'duration': 4.321}, {'text': 'solution. Either you can create through', 'start': 613.04, 'duration': 4.799}, {'text': 'a description or you can configure', 'start': 615.6, 'duration': 4.72}, {'text': 'yourself by giving a name describing', 'start': 617.839, 'duration': 4.641}, {'text': 'what your custom GPT does and then', 'start': 620.32, 'duration': 4.0}, {'text': 'giving some instruction. And what you', 'start': 622.48, 'duration': 4.24}, {'text': 'can even do after is upload files to', 'start': 624.32, 'duration': 5.12}, {'text': 'augment the knowledge of this GPT. Pay', 'start': 626.72, 'duration': 4.88}, {'text': 'attention that if you activate code', 'start': 629.44, 'duration': 3.839}, {'text': 'interpreter, those files are', 'start': 631.6, 'duration': 4.32}, {'text': 'downloadable by the other users. If your', 'start': 633.279, 'duration': 4.56}, {'text': 'GPT is public, you can also keep your', 'start': 635.92, 'duration': 3.919}, {'text': 'GPT for yourself. But just know that', 'start': 637.839, 'duration': 4.24}, {'text': 'that this is something to pay attention.', 'start': 639.839, 'duration': 5.041}, {'text': 'Also, you have the action function here', 'start': 642.079, 'duration': 5.281}, {'text': 'is more if you want to use code to get', 'start': 644.88, 'duration': 5.28}, {'text': 'data from outside through API and this', 'start': 647.36, 'duration': 5.039}, {'text': 'is too advanced to cover that in this', 'start': 650.16, 'duration': 3.76}, {'text': \"course. But if you don't know how to\", 'start': 652.399, 'duration': 3.921}, {'text': 'start, a fun way is to use the create', 'start': 653.92, 'duration': 4.72}, {'text': 'view because there you can just create', 'start': 656.32, 'duration': 4.32}, {'text': 'your GPT through a discussion. So now', 'start': 658.64, 'duration': 4.319}, {'text': 'let me show you how to create a GPT. So', 'start': 660.64, 'duration': 5.199}, {'text': 'you will go in the create view which is', 'start': 662.959, 'duration': 5.281}, {'text': 'the easiest one if you just started.', 'start': 665.839, 'duration': 4.721}, {'text': \"Let's imagine that we want a coach to be\", 'start': 668.24, 'duration': 6.48}, {'text': 'better at FPNA. I want to create a coach', 'start': 670.56, 'duration': 7.36}, {'text': 'to get better at FPNA. I will just say', 'start': 674.72, 'duration': 5.76}, {'text': \"that and let's see the discussion. Yeah,\", 'start': 677.92, 'duration': 6.24}, {'text': \"I'm happy about this name. So\", 'start': 680.48, 'duration': 3.68}, {'text': 'yes, and you can see that TGPT even', 'start': 687.16, 'duration': 6.44}, {'text': 'created a logo for our FPNA coach. So', 'start': 690.56, 'duration': 6.64}, {'text': \"I'm happy. Yes, I like\", 'start': 693.6, 'duration': 3.6}, {'text': 'it. So what should be emphasized? So', 'start': 697.959, 'duration': 6.521}, {'text': 'here I want that this coach shows me the', 'start': 700.64, 'duration': 8.0}, {'text': 'technical aspect of being a FPNA pro and', 'start': 704.48, 'duration': 7.28}, {'text': 'shows me both the theory and practical', 'start': 708.64, 'duration': 5.16}, {'text': 'examples and step by', 'start': 711.76, 'duration': 5.36}, {'text': \"step. So now that I've done that this is\", 'start': 713.8, 'duration': 6.039}, {'text': 'my instructions to improve this GPT and', 'start': 717.12, 'duration': 4.48}, {'text': \"like this I don't have to repeat after\", 'start': 719.839, 'duration': 5.041}, {'text': 'how this GPT will act. So I want more', 'start': 721.6, 'duration': 6.16}, {'text': 'something direct and maybe I need also', 'start': 724.88, 'duration': 5.88}, {'text': 'motivational', 'start': 727.76, 'duration': 3.0}, {'text': 'So now the GPT is actually finished and', 'start': 732.079, 'duration': 5.2}, {'text': 'we can try it. So for example I can try', 'start': 734.72, 'duration': 4.96}, {'text': 'how can I improve my budgeting process.', 'start': 737.279, 'duration': 4.8}, {'text': 'So you see we have the answer and either', 'start': 739.68, 'duration': 4.24}, {'text': 'you are happy and you can create it or', 'start': 742.079, 'duration': 4.241}, {'text': 'you can even do something is you go to', 'start': 743.92, 'duration': 6.0}, {'text': 'configure you see how was this GPT', 'start': 746.32, 'duration': 5.44}, {'text': 'configurated and you can change', 'start': 749.92, 'duration': 4.88}, {'text': 'something for example you say use cables', 'start': 751.76, 'duration': 6.0}, {'text': 'to present information when possible and', 'start': 754.8, 'duration': 4.719}, {'text': 'you can even change your conversation', 'start': 757.76, 'duration': 5.44}, {'text': 'starters so now I will create the GPT', 'start': 759.519, 'duration': 6.481}, {'text': \"and that's where you can either have it\", 'start': 763.2, 'duration': 5.28}, {'text': 'on invite only or anyone in your', 'start': 766.0, 'duration': 5.279}, {'text': 'organization because I have a paid JGPT', 'start': 768.48, 'duration': 5.52}, {'text': 'version which is teams or for companies', 'start': 771.279, 'duration': 4.721}, {'text': 'they have enterprise. So for me in my', 'start': 774.0, 'duration': 4.48}, {'text': 'organization I can decide who has access', 'start': 776.0, 'duration': 5.36}, {'text': 'or I can put it on the GPT store or if', 'start': 778.48, 'duration': 4.72}, {'text': 'you only want that specific people have', 'start': 781.36, 'duration': 3.68}, {'text': 'you can just share them the link like', 'start': 783.2, 'duration': 3.6}, {'text': \"this is not on the GPT store but it's\", 'start': 785.04, 'duration': 3.2}, {'text': 'still available for people with the', 'start': 786.8, 'duration': 3.36}, {'text': 'link. So for now I just wanted to keep', 'start': 788.24, 'duration': 4.08}, {'text': 'it for myself. So I will click update', 'start': 790.16, 'duration': 4.64}, {'text': 'and then I will view this GPT and this', 'start': 792.32, 'duration': 4.56}, {'text': 'GPT will also appear on the left with', 'start': 794.8, 'duration': 4.479}, {'text': 'all of my other GPT. And now I can ask', 'start': 796.88, 'duration': 5.519}, {'text': 'for example how to do a cohort analysis.', 'start': 799.279, 'duration': 5.761}, {'text': 'I will enter. And this will help me as a', 'start': 802.399, 'duration': 4.321}, {'text': 'coach. And you see that it follows the', 'start': 805.04, 'duration': 4.0}, {'text': 'step by step like I wanted. Again you', 'start': 806.72, 'duration': 4.0}, {'text': \"see how you save time because I don't\", 'start': 809.04, 'duration': 4.16}, {'text': 'have to repeat that I want to have', 'start': 810.72, 'duration': 4.88}, {'text': 'advices shown me in a step by step. It', 'start': 813.2, 'duration': 4.319}, {'text': 'will always do it like this. And on top', 'start': 815.6, 'duration': 4.72}, {'text': 'it combines theory with practical advice', 'start': 817.519, 'duration': 6.841}, {'text': 'and step-by-step instructions.', 'start': 820.32, 'duration': 4.04}, {'text': 'In this lesson, we will explore Canvas,', 'start': 824.959, 'duration': 5.601}, {'text': 'a powerful feature in TGPT that helps', 'start': 827.76, 'duration': 5.28}, {'text': 'finance professionals draft reports,', 'start': 830.56, 'duration': 5.279}, {'text': 'commentaries, and even modify code in', 'start': 833.04, 'duration': 5.52}, {'text': 'real time, all in a seamless workspace.', 'start': 835.839, 'duration': 4.56}, {'text': \"Let me show you how to use it. Let's\", 'start': 838.56, 'duration': 4.8}, {'text': 'take the P&L of Nvidia as an example,', 'start': 840.399, 'duration': 5.521}, {'text': \"and let's ask JGPT to draft commentaries\", 'start': 843.36, 'duration': 5.96}, {'text': \"on this P&L. I'm going to take a\", 'start': 845.92, 'duration': 6.88}, {'text': \"screenshot. I'll now back in GPT and I\", 'start': 849.32, 'duration': 5.959}, {'text': 'will paste the screenshot and I will say', 'start': 852.8, 'duration': 5.76}, {'text': 'draft the financial commentaries on the', 'start': 855.279, 'duration': 6.881}, {'text': 'P&L of this company. And here I can', 'start': 858.56, 'duration': 5.92}, {'text': 'activate canvas. Sometimes it activates', 'start': 862.16, 'duration': 4.239}, {'text': 'automatically but I really want to use', 'start': 864.48, 'duration': 3.44}, {'text': 'the canvas function and you will', 'start': 866.399, 'duration': 3.521}, {'text': \"understand why. So let's launch it and\", 'start': 867.92, 'duration': 3.08}, {'text': 'see what is', 'start': 869.92, 'duration': 3.44}, {'text': 'happening. Now we have a totally new', 'start': 871.0, 'duration': 4.12}, {'text': 'view that is coming because on the right', 'start': 873.36, 'duration': 4.479}, {'text': 'side my document is getting written by', 'start': 875.12, 'duration': 5.44}, {'text': 'JGPT and on the left side I have the', 'start': 877.839, 'duration': 4.481}, {'text': 'conversation that is still active where', 'start': 880.56, 'duration': 4.32}, {'text': 'you can see on the upper left the', 'start': 882.32, 'duration': 5.04}, {'text': 'screenshot and my prompt and here the', 'start': 884.88, 'duration': 5.68}, {'text': 'answer from JGPT. So what can we do on', 'start': 887.36, 'duration': 6.4}, {'text': 'the right side with this document? Well,', 'start': 890.56, 'duration': 4.719}, {'text': 'let me show you the different', 'start': 893.76, 'duration': 4.0}, {'text': 'functionalities on the bottom right. If', 'start': 895.279, 'duration': 5.441}, {'text': 'I go over the pen, I have different type', 'start': 897.76, 'duration': 5.36}, {'text': 'of edits. I can add emojis which we', 'start': 900.72, 'duration': 3.679}, {'text': \"don't really need for a factual\", 'start': 903.12, 'duration': 3.6}, {'text': 'commentary. I can polish it. I can', 'start': 904.399, 'duration': 5.361}, {'text': 'change the reading level and the length.', 'start': 906.72, 'duration': 5.76}, {'text': \"Let's see here if I ask to polish it.\", 'start': 909.76, 'duration': 5.519}, {'text': 'Push it means that it will review the', 'start': 912.48, 'duration': 4.799}, {'text': 'text and makes it even better. So you', 'start': 915.279, 'duration': 4.321}, {'text': \"can see that it's changing slowly all of\", 'start': 917.279, 'duration': 4.321}, {'text': 'the text. Now the position is done.', 'start': 919.6, 'duration': 4.0}, {'text': \"Let's see what are the other function.\", 'start': 921.6, 'duration': 4.88}, {'text': \"The reading level maybe let's make it\", 'start': 923.6, 'duration': 5.76}, {'text': \"more either easy or advanced. Let's put\", 'start': 926.48, 'duration': 5.359}, {'text': 'it graduate school to see if our wording', 'start': 929.36, 'duration': 4.24}, {'text': 'is changing. Okay, so you can see we are', 'start': 931.839, 'duration': 4.081}, {'text': 'using different types of wording and', 'start': 933.6, 'duration': 4.88}, {'text': 'adjectives and you can yourself see', 'start': 935.92, 'duration': 4.4}, {'text': 'which one you like the most for your', 'start': 938.48, 'duration': 3.76}, {'text': \"style. Okay, now let's try something\", 'start': 940.32, 'duration': 3.68}, {'text': \"else. Let's make it shorter because it's\", 'start': 942.24, 'duration': 4.159}, {'text': 'a bit too long. So now I will really', 'start': 944.0, 'duration': 4.92}, {'text': 'make it the shortest as', 'start': 946.399, 'duration': 5.041}, {'text': 'possible. And you can see that now the', 'start': 948.92, 'duration': 5.64}, {'text': 'document is much shorter. So this is', 'start': 951.44, 'duration': 5.519}, {'text': 'actually already good because we can', 'start': 954.56, 'duration': 4.079}, {'text': 'change really quickly. But look what I', 'start': 956.959, 'duration': 3.761}, {'text': 'can also do here. For example, I can', 'start': 958.639, 'duration': 5.44}, {'text': 'select the text and I can ask CH GPT to', 'start': 960.72, 'duration': 7.039}, {'text': 'change it to add that the growth comes', 'start': 964.079, 'duration': 6.961}, {'text': \"from AI. So let's add some flavor in the\", 'start': 967.759, 'duration': 6.121}, {'text': 'text from AI and', 'start': 971.04, 'duration': 5.599}, {'text': 'blockchain. And we can see here that is', 'start': 973.88, 'duration': 5.16}, {'text': 'rewriting it adding that the growth is', 'start': 976.639, 'duration': 4.32}, {'text': 'currently driven by advancement in AI', 'start': 979.04, 'duration': 3.52}, {'text': 'and blockchain technology. Of course,', 'start': 980.959, 'duration': 3.761}, {'text': 'this part is you who is driving the', 'start': 982.56, 'duration': 4.399}, {'text': \"seats. You can also say that oh I don't\", 'start': 984.72, 'duration': 4.32}, {'text': 'really like blockchain technology so', 'start': 986.959, 'duration': 5.281}, {'text': \"let's just remove it and now I just\", 'start': 989.04, 'duration': 5.919}, {'text': 'delete it and I can write especially in', 'start': 992.24, 'duration': 5.599}, {'text': \"the last month. So that's what is good\", 'start': 994.959, 'duration': 4.961}, {'text': 'is now you are also in control and you', 'start': 997.839, 'duration': 4.56}, {'text': 'can write over it. You can even', 'start': 999.92, 'duration': 5.599}, {'text': 'highlight here in bold. You can even', 'start': 1002.399, 'duration': 6.401}, {'text': 'here change the headings. All of this', 'start': 1005.519, 'duration': 6.56}, {'text': 'you are in control. The last important', 'start': 1008.8, 'duration': 5.92}, {'text': 'functionality of Canva is with coding.', 'start': 1012.079, 'duration': 6.081}, {'text': 'So here I ask JGPT to create a code to', 'start': 1014.72, 'duration': 6.239}, {'text': 'illustrate a scenario analysis and you', 'start': 1018.16, 'duration': 6.12}, {'text': 'will see that if I activate again the', 'start': 1020.959, 'duration': 6.801}, {'text': 'Canva we will get the code written in', 'start': 1024.28, 'duration': 6.84}, {'text': 'Canva and I can go on and also modify', 'start': 1027.76, 'duration': 6.0}, {'text': 'this code. But what is even better is', 'start': 1031.12, 'duration': 4.799}, {'text': 'there is the button run. So I can run', 'start': 1033.76, 'duration': 6.079}, {'text': 'the code and it will for me test if the', 'start': 1035.919, 'duration': 7.28}, {'text': 'code is working or it will also tell me', 'start': 1039.839, 'duration': 5.681}, {'text': 'if there is any bug. So for example here', 'start': 1043.199, 'duration': 4.0}, {'text': \"tells me that it doesn't have this type\", 'start': 1045.52, 'duration': 4.56}, {'text': 'of libraries. So I can ask to fix the', 'start': 1047.199, 'duration': 5.761}, {'text': 'bugs and you can see that now that is', 'start': 1050.08, 'duration': 4.8}, {'text': 'fixing the bug is going through all of', 'start': 1052.96, 'duration': 3.92}, {'text': 'the code to improve the code to make it', 'start': 1054.88, 'duration': 5.12}, {'text': 'work. So this is useful if you want', 'start': 1056.88, 'duration': 5.6}, {'text': 'either to change part of the code. So', 'start': 1060.0, 'duration': 4.48}, {'text': 'because you can select a part and just', 'start': 1062.48, 'duration': 4.559}, {'text': 'debug the part that is not working or if', 'start': 1064.48, 'duration': 5.439}, {'text': 'you also want to test the code inside', 'start': 1067.039, 'duration': 4.961}, {'text': 'GPT directly. So go and try it by', 'start': 1069.919, 'duration': 3.681}, {'text': 'yourself, especially for the writing', 'start': 1072.0, 'duration': 6.48}, {'text': \"part and I'm sure you will love this new\", 'start': 1073.6, 'duration': 4.88}, {'text': 'functionality. Let me show you the TGPT', 'start': 1079.08, 'duration': 5.4}, {'text': 'search functionality and how to use it', 'start': 1082.16, 'duration': 5.12}, {'text': \"in finance. I'm back in TGPT and you can\", 'start': 1084.48, 'duration': 4.559}, {'text': 'see that here there is the button', 'start': 1087.28, 'duration': 4.8}, {'text': 'search. So if you really want to get', 'start': 1089.039, 'duration': 5.76}, {'text': 'online and get sources then I will', 'start': 1092.08, 'duration': 5.839}, {'text': 'advise you to click to search the web.', 'start': 1094.799, 'duration': 6.24}, {'text': 'But sometimes also without clicking it.', 'start': 1097.919, 'duration': 5.76}, {'text': 'If you ask for example an information', 'start': 1101.039, 'duration': 5.441}, {'text': 'that is recent. If I say what is the', 'start': 1103.679, 'duration': 4.801}, {'text': 'price of the Nvidia stock from last', 'start': 1106.48, 'duration': 4.0}, {'text': \"Friday then let's see what is going to\", 'start': 1108.48, 'duration': 3.48}, {'text': 'happen. You can see that it', 'start': 1110.48, 'duration': 4.8}, {'text': 'automatically search the web from my', 'start': 1111.96, 'duration': 5.32}, {'text': \"question even if I didn't ask it. And\", 'start': 1115.28, 'duration': 5.519}, {'text': 'now I have also February 14, 2025. So', 'start': 1117.28, 'duration': 5.36}, {'text': \"that's the date when I recorded this\", 'start': 1120.799, 'duration': 4.24}, {'text': 'video. And we can see here the price', 'start': 1122.64, 'duration': 5.039}, {'text': 'stock of Nvidia. And what is also really', 'start': 1125.039, 'duration': 5.441}, {'text': 'good is you have the sources where you', 'start': 1127.679, 'duration': 5.281}, {'text': 'can find this information. So like this', 'start': 1130.48, 'duration': 5.52}, {'text': 'you have one realtime information two', 'start': 1132.96, 'duration': 5.76}, {'text': \"you have sources. Now let's look at a\", 'start': 1136.0, 'duration': 5.76}, {'text': 'real use case for us in finance. When', 'start': 1138.72, 'duration': 5.28}, {'text': \"clicking search I'm going to ask\", 'start': 1141.76, 'duration': 5.12}, {'text': 'specifically on which website I want to', 'start': 1144.0, 'duration': 4.799}, {'text': 'get my information and what I want to', 'start': 1146.88, 'duration': 3.84}, {'text': \"get. So if I click you'll see that it\", 'start': 1148.799, 'duration': 4.321}, {'text': 'will automatically search the web. What', 'start': 1150.72, 'duration': 5.04}, {'text': 'is really good is that now I have the', 'start': 1153.12, 'duration': 4.559}, {'text': 'different types of publication on the', 'start': 1155.76, 'duration': 4.799}, {'text': 'IFS 15. I can try this one for example', 'start': 1157.679, 'duration': 5.36}, {'text': 'and now I am already inside the', 'start': 1160.559, 'duration': 4.761}, {'text': \"documentation. So that's a great\", 'start': 1163.039, 'duration': 4.721}, {'text': 'timesaver and also what is really good', 'start': 1165.32, 'duration': 7.0}, {'text': 'is you have always the link of the', 'start': 1167.76, 'duration': 4.56}, {'text': 'publication. Let me now present you the', 'start': 1172.919, 'duration': 6.041}, {'text': \"project functionalities from JPT. I'm\", 'start': 1175.76, 'duration': 5.76}, {'text': 'back in Chip and here on the left side', 'start': 1178.96, 'duration': 5.2}, {'text': 'if you have a pro account or a teams or', 'start': 1181.52, 'duration': 4.159}, {'text': 'enterprise account you can see that', 'start': 1184.16, 'duration': 4.16}, {'text': 'there is the projects section here you', 'start': 1185.679, 'duration': 4.721}, {'text': 'will see the list of your projects and', 'start': 1188.32, 'duration': 4.08}, {'text': \"you can also create a new project that's\", 'start': 1190.4, 'duration': 4.32}, {'text': 'what we are going to do so I create a', 'start': 1192.4, 'duration': 4.24}, {'text': \"project let's imagine that I want to\", 'start': 1194.72, 'duration': 5.6}, {'text': \"work on the budget for 2025 let's create\", 'start': 1196.64, 'duration': 6.12}, {'text': 'the project so now I am inside my', 'start': 1200.32, 'duration': 5.599}, {'text': 'project I can close here the view and', 'start': 1202.76, 'duration': 5.72}, {'text': 'here for the project I can add file', 'start': 1205.919, 'duration': 4.561}, {'text': 'case. So, I have two files. Let me show', 'start': 1208.48, 'duration': 5.04}, {'text': 'you. I have here my P&L for 22, 23, 24,', 'start': 1210.48, 'duration': 5.439}, {'text': 'and the budget 24. And I have here also', 'start': 1213.52, 'duration': 4.72}, {'text': 'a file with my budget instructions and', 'start': 1215.919, 'duration': 4.321}, {'text': \"some deadlines for this year. I've made\", 'start': 1218.24, 'duration': 4.72}, {'text': 'a PDF of this document. And this PDF I', 'start': 1220.24, 'duration': 5.28}, {'text': 'will upload in my project. To upload, I', 'start': 1222.96, 'duration': 5.28}, {'text': 'just need to go and click add files and', 'start': 1225.52, 'duration': 5.76}, {'text': 'I will add my', 'start': 1228.24, 'duration': 3.04}, {'text': \"instructions. Here I've added my budget\", 'start': 1232.12, 'duration': 5.4}, {'text': \"instructions and now I'm adding the P&L.\", 'start': 1234.799, 'duration': 5.521}, {'text': 'Okay. So we are set. I can close and I', 'start': 1237.52, 'duration': 4.8}, {'text': 'can also add instructions here. For', 'start': 1240.32, 'duration': 5.44}, {'text': 'example, I can say this project is for', 'start': 1242.32, 'duration': 6.88}, {'text': 'the FPN team of a manufacturing company.', 'start': 1245.76, 'duration': 6.799}, {'text': 'We are in the US and we work with', 'start': 1249.2, 'duration': 5.12}, {'text': 'Netswuite. You can add any type of', 'start': 1252.559, 'duration': 3.921}, {'text': 'details. You can also add the way you', 'start': 1254.32, 'duration': 5.2}, {'text': 'want JPT transfer. Here I can say your', 'start': 1256.48, 'duration': 5.76}, {'text': 'responses should be direct and use', 'start': 1259.52, 'duration': 6.08}, {'text': 'bullet points and tables as much as', 'start': 1262.24, 'duration': 5.12}, {'text': \"possible. So that's the advantage here\", 'start': 1265.6, 'duration': 3.84}, {'text': 'is you will see that those instructions', 'start': 1267.36, 'duration': 5.439}, {'text': 'they will be for any chat I start within', 'start': 1269.44, 'duration': 5.599}, {'text': \"this project. So now let's imagine that\", 'start': 1272.799, 'duration': 4.721}, {'text': 'I want to draft an email to the sales', 'start': 1275.039, 'duration': 5.921}, {'text': 'team. Draft an email to the sales team', 'start': 1277.52, 'duration': 6.639}, {'text': 'to ask their input for the budget and I', 'start': 1280.96, 'duration': 5.16}, {'text': 'can say mention the', 'start': 1284.159, 'duration': 4.64}, {'text': 'deadlines. So here you can see that the', 'start': 1286.12, 'duration': 5.799}, {'text': \"deadline October 2025 I didn't have to\", 'start': 1288.799, 'duration': 5.12}, {'text': 'say which deadline it was because', 'start': 1291.919, 'duration': 4.481}, {'text': 'actually here in the instructions I', 'start': 1293.919, 'duration': 5.12}, {'text': 'already had my details and you can see', 'start': 1296.4, 'duration': 5.279}, {'text': 'here what we needed to have I can find', 'start': 1299.039, 'duration': 5.361}, {'text': 'it here back in the key areas of input.', 'start': 1301.679, 'duration': 4.961}, {'text': \"So that's really practical because here\", 'start': 1304.4, 'duration': 4.56}, {'text': 'in this project there is a knowledge', 'start': 1306.64, 'duration': 4.32}, {'text': 'that you can use based on the document', 'start': 1308.96, 'duration': 3.92}, {'text': 'you uploaded but also based on the', 'start': 1310.96, 'duration': 4.4}, {'text': 'instructions. Now I can go back to my', 'start': 1312.88, 'duration': 8.08}, {'text': 'budget 2025 and I can say draft PNL 2025', 'start': 1315.36, 'duration': 9.319}, {'text': 'format with the comparison with', 'start': 1320.96, 'duration': 7.04}, {'text': '2024 and again here it has the knowledge', 'start': 1324.679, 'duration': 6.12}, {'text': 'of the P&L of last year like this I can', 'start': 1328.0, 'duration': 4.88}, {'text': 'always reuse the information I opened it', 'start': 1330.799, 'duration': 4.321}, {'text': 'before. So you can see here the answer', 'start': 1332.88, 'duration': 5.2}, {'text': 'where it assumed an increase of 10%. We', 'start': 1335.12, 'duration': 4.88}, {'text': \"didn't ask that. But what is interesting\", 'start': 1338.08, 'duration': 4.079}, {'text': 'is that we have already the table for', 'start': 1340.0, 'duration': 5.52}, {'text': '2024 and budget 2024 without having to', 'start': 1342.159, 'duration': 5.681}, {'text': 'give the information because it was in', 'start': 1345.52, 'duration': 5.039}, {'text': 'the Excel I provided before. And now you', 'start': 1347.84, 'duration': 4.88}, {'text': 'can always go back when you are in the', 'start': 1350.559, 'duration': 5.521}, {'text': 'budget 2025 project. You can go back in', 'start': 1352.72, 'duration': 5.92}, {'text': 'all of the charts that are made under', 'start': 1356.08, 'duration': 5.04}, {'text': \"this project. And also let's imagine\", 'start': 1358.64, 'duration': 5.36}, {'text': 'that you had here another chart you can', 'start': 1361.12, 'duration': 5.679}, {'text': 'always add to the project 2025. So', 'start': 1364.0, 'duration': 4.96}, {'text': \"that's also really advantageous because\", 'start': 1366.799, 'duration': 4.961}, {'text': 'you can organize your chat based on some', 'start': 1368.96, 'duration': 5.04}, {'text': \"topics even if you don't add any files\", 'start': 1371.76, 'duration': 3.919}, {'text': \"or even if you don't add any\", 'start': 1374.0, 'duration': 3.44}, {'text': 'instructions. I have some friends who', 'start': 1375.679, 'duration': 4.561}, {'text': 'are using it like this to basically', 'start': 1377.44, 'duration': 4.64}, {'text': \"organize their chat but they don't give\", 'start': 1380.24, 'duration': 4.24}, {'text': 'any instructions or no projects files', 'start': 1382.08, 'duration': 4.32}, {'text': 'inside. And you might wonder what is the', 'start': 1384.48, 'duration': 4.72}, {'text': 'difference with custom GPT. First here', 'start': 1386.4, 'duration': 5.759}, {'text': 'you can choose the model. Here you can', 'start': 1389.2, 'duration': 6.8}, {'text': 'choose GPT4 or O1 or this for O mini or', 'start': 1392.159, 'duration': 7.121}, {'text': 'GPT for AC model and in GPS you cannot', 'start': 1396.0, 'duration': 4.72}, {'text': \"choose the model. That's number one.\", 'start': 1399.28, 'duration': 4.48}, {'text': 'Number two here you cannot really share', 'start': 1400.72, 'duration': 6.319}, {'text': 'this chat with somebody else but in GPS', 'start': 1403.76, 'duration': 5.36}, {'text': 'you can actually share the chat with', 'start': 1407.039, 'duration': 3.841}, {'text': 'your team and you can even also share', 'start': 1409.12, 'duration': 4.4}, {'text': 'your GPS with your team or with people', 'start': 1410.88, 'duration': 4.799}, {'text': 'outside of your organization if you', 'start': 1413.52, 'duration': 3.84}, {'text': 'decide to make it public to make project', 'start': 1415.679, 'duration': 4.161}, {'text': 'no project is only personal and here you', 'start': 1417.36, 'duration': 4.88}, {'text': 'see as well how easy it is to give your', 'start': 1419.84, 'duration': 4.8}, {'text': 'instructions and add the document for', 'start': 1422.24, 'duration': 5.28}, {'text': 'custom GPT you need to take a bit more', 'start': 1424.64, 'duration': 6.32}, {'text': 'time to customize your GPT So I will say', 'start': 1427.52, 'duration': 5.84}, {'text': 'really that project are different than', 'start': 1430.96, 'duration': 5.68}, {'text': 'GPS. GPS is more like an agent. They', 'start': 1433.36, 'duration': 5.04}, {'text': 'will have a specific behavior and', 'start': 1436.64, 'duration': 4.48}, {'text': 'project is more to chat in a closed', 'start': 1438.4, 'duration': 4.0}, {'text': 'environment where you have some', 'start': 1441.12, 'duration': 3.52}, {'text': 'information that are specific to the', 'start': 1442.4, 'duration': 4.72}, {'text': 'chat and you are going to create several', 'start': 1444.64, 'duration': 4.96}, {'text': 'chats about those information and those', 'start': 1447.12, 'duration': 4.64}, {'text': 'custom instructions. One cool way also', 'start': 1449.6, 'duration': 4.319}, {'text': 'to use projects is to upload a lot of', 'start': 1451.76, 'duration': 5.039}, {'text': 'information about you or about a book or', 'start': 1453.919, 'duration': 5.441}, {'text': 'about a topic and then chat with this', 'start': 1456.799, 'duration': 4.48}, {'text': 'information. Trade by yourself if you', 'start': 1459.36, 'duration': 4.0}, {'text': 'have a pro, a team or enterprise', 'start': 1461.279, 'duration': 4.321}, {'text': 'version. See how you can use it the best', 'start': 1463.36, 'duration': 5.52}, {'text': 'way for your own use', 'start': 1465.6, 'duration': 3.28}, {'text': \"cases. Let's look now at the new\", 'start': 1469.32, 'duration': 5.4}, {'text': 'functionality from Chpt which is the', 'start': 1472.32, 'duration': 5.28}, {'text': 'operator. Operator is like an agent that', 'start': 1474.72, 'duration': 6.4}, {'text': 'has access to your computer and can act', 'start': 1477.6, 'duration': 5.28}, {'text': 'on your behalf if you prompt it.', 'start': 1481.12, 'duration': 3.76}, {'text': 'Operator is not yet available in all of', 'start': 1482.88, 'duration': 4.0}, {'text': 'the countries. So let me show you a', 'start': 1484.88, 'duration': 4.72}, {'text': 'presentation of OpenAI showing how', 'start': 1486.88, 'duration': 4.72}, {'text': 'operator is working. Here is the', 'start': 1489.6, 'duration': 4.24}, {'text': 'presentation from OpenAI showing the', 'start': 1491.6, 'duration': 5.84}, {'text': 'operator. So now they show it mostly for', 'start': 1493.84, 'duration': 7.04}, {'text': 'individuals like shopping or doing a', 'start': 1497.44, 'duration': 5.92}, {'text': 'reservation for a table. Here you can', 'start': 1500.88, 'duration': 5.279}, {'text': 'see that OpenAI is showing an example of', 'start': 1503.36, 'duration': 6.24}, {'text': 'how to use operator to book for you a', 'start': 1506.159, 'duration': 5.601}, {'text': 'table. So here you see that once we', 'start': 1509.6, 'duration': 4.6}, {'text': 'prompted to book a dinner', 'start': 1511.76, 'duration': 6.159}, {'text': 'reservation operator is starting to act', 'start': 1514.2, 'duration': 5.719}, {'text': 'inside your browser. On the left side', 'start': 1517.919, 'duration': 4.321}, {'text': 'you have the discussion you have with', 'start': 1519.919, 'duration': 4.88}, {'text': \"your operator and on the right side it's\", 'start': 1522.24, 'duration': 4.96}, {'text': 'the operator doing it everything by its', 'start': 1524.799, 'duration': 3.921}, {'text': \"own. You can see that now it's selecting\", 'start': 1527.2, 'duration': 3.92}, {'text': \"the date. It's selecting what type of\", 'start': 1528.72, 'duration': 4.8}, {'text': \"food and it's doing all of this on its\", 'start': 1531.12, 'duration': 4.88}, {'text': \"own. So basically, you don't control it.\", 'start': 1533.52, 'duration': 5.2}, {'text': 'You just let it do on the side while', 'start': 1536.0, 'duration': 4.799}, {'text': \"looking at it to verify that it's doing\", 'start': 1538.72, 'duration': 3.6}, {'text': 'what you wanted. And on the left side,', 'start': 1540.799, 'duration': 3.12}, {'text': 'you can see all of the actions that were', 'start': 1542.32, 'duration': 3.12}, {'text': 'done. So here you can see that the', 'start': 1543.919, 'duration': 3.601}, {'text': 'operator is telling you that the closest', 'start': 1545.44, 'duration': 4.88}, {'text': 'reservation is as from 7:45. You say,', 'start': 1547.52, 'duration': 5.039}, {'text': '\"Okay, let\\'s go. Let\\'s do it.\" And then', 'start': 1550.32, 'duration': 4.32}, {'text': 'the operator is going to book it for', 'start': 1552.559, 'duration': 4.321}, {'text': 'you. You can see now you just need to', 'start': 1554.64, 'duration': 5.279}, {'text': 'give your details and then if you say', 'start': 1556.88, 'duration': 4.799}, {'text': 'yes the operator is going to click and', 'start': 1559.919, 'duration': 3.12}, {'text': 'then your reservation is done. What does', 'start': 1561.679, 'duration': 3.681}, {'text': 'it mean for us? Well, think about this', 'start': 1563.039, 'duration': 4.401}, {'text': 'report where you have to upload data', 'start': 1565.36, 'duration': 5.439}, {'text': 'manually. You know like key in the URL', 'start': 1567.44, 'duration': 6.16}, {'text': 'then doing a copy and paste in some of', 'start': 1570.799, 'duration': 4.88}, {'text': \"the fields. That's a good use case for\", 'start': 1573.6, 'duration': 5.199}, {'text': 'the operator. Think also of this website', 'start': 1575.679, 'duration': 5.441}, {'text': 'where you have to go and have some steps', 'start': 1578.799, 'duration': 4.48}, {'text': 'in those websites to download invoices.', 'start': 1581.12, 'duration': 4.4}, {'text': \"That's also a good task for the\", 'start': 1583.279, 'duration': 4.88}, {'text': 'operator. Why? Because once you do the', 'start': 1585.52, 'duration': 5.279}, {'text': 'task with the operator, it can memorize', 'start': 1588.159, 'duration': 4.88}, {'text': 'it and next time you just have to ask', 'start': 1590.799, 'duration': 4.48}, {'text': 'repeat this task and then the task will', 'start': 1593.039, 'duration': 4.24}, {'text': 'be done by itself. So of course there', 'start': 1595.279, 'duration': 4.081}, {'text': 'are some confidentiality data to think', 'start': 1597.279, 'duration': 4.241}, {'text': 'about which access do you want to give', 'start': 1599.36, 'duration': 4.16}, {'text': 'to this operator also do you want to', 'start': 1601.52, 'duration': 4.24}, {'text': \"give your credit card details. So that's\", 'start': 1603.52, 'duration': 4.0}, {'text': 'something to think about. But this is', 'start': 1605.76, 'duration': 4.56}, {'text': 'really the start where your AI tool is', 'start': 1607.52, 'duration': 4.56}, {'text': 'going to be an agent for you and is', 'start': 1610.32, 'duration': 4.32}, {'text': 'going to be triggered by you or by', 'start': 1612.08, 'duration': 4.8}, {'text': 'scheduled task. You could for example to', 'start': 1614.64, 'duration': 4.72}, {'text': 'ask every week to pull some data or', 'start': 1616.88, 'duration': 4.96}, {'text': 'every month to get some invoices or fill', 'start': 1619.36, 'duration': 4.319}, {'text': 'up some vendor forms where you have to', 'start': 1621.84, 'duration': 3.52}, {'text': 'give all of your details like banking', 'start': 1623.679, 'duration': 5.281}, {'text': 'details, name, tax ID, etc., etc. And if', 'start': 1625.36, 'duration': 5.679}, {'text': 'you want to learn more, I recommend this', 'start': 1628.96, 'duration': 4.56}, {'text': \"video from Ector Garcia where he's\", 'start': 1631.039, 'duration': 5.76}, {'text': 'showing us how operator can help on some', 'start': 1633.52, 'duration': 5.84}, {'text': 'QuickBooks task that you might do now', 'start': 1636.799, 'duration': 5.12}, {'text': 'manually. But now with operator you can', 'start': 1639.36, 'duration': 5.04}, {'text': 'delegate this task to this agent. Go and', 'start': 1641.919, 'duration': 4.64}, {'text': 'check', 'start': 1644.4, 'duration': 2.159}, {'text': 'it. Let me now show you how you can', 'start': 1646.84, 'duration': 5.319}, {'text': 'customize Chip. So on the right side you', 'start': 1649.12, 'duration': 4.96}, {'text': 'have this diamond icon. You will click', 'start': 1652.159, 'duration': 3.601}, {'text': 'on it and you just have to click', 'start': 1654.08, 'duration': 4.719}, {'text': 'customize GPT. And this is here where', 'start': 1655.76, 'duration': 5.12}, {'text': 'you can put your name, what do you do,', 'start': 1658.799, 'duration': 5.201}, {'text': 'what traits should chip have. So if you', 'start': 1660.88, 'duration': 5.36}, {'text': 'like a formal tone or something a bit', 'start': 1664.0, 'duration': 4.0}, {'text': \"more casual and that's where here you\", 'start': 1666.24, 'duration': 4.48}, {'text': 'can tell chip to write like you if you', 'start': 1668.0, 'duration': 4.48}, {'text': 'have a specific tone. And you see here', 'start': 1670.72, 'duration': 3.76}, {'text': 'you have already some suggestion. Here', 'start': 1672.48, 'duration': 4.72}, {'text': 'is where you can explain chip more about', 'start': 1674.48, 'duration': 5.0}, {'text': 'you like where you work, maybe your', 'start': 1677.2, 'duration': 5.199}, {'text': 'industry, maybe your environment. So if', 'start': 1679.48, 'duration': 4.6}, {'text': \"you are in the US or Europe, that's\", 'start': 1682.399, 'duration': 3.28}, {'text': 'important to explain. And if I click to', 'start': 1684.08, 'duration': 4.24}, {'text': 'advanced, then I can also select the', 'start': 1685.679, 'duration': 4.88}, {'text': 'JGPT capabilities. For example, if you', 'start': 1688.32, 'duration': 4.32}, {'text': \"don't really like that it always goes to\", 'start': 1690.559, 'duration': 3.761}, {'text': 'the web search, you can just deactivate', 'start': 1692.64, 'duration': 5.039}, {'text': 'it that now another way to get TGPT to', 'start': 1694.32, 'duration': 5.839}, {'text': 'get customized is to activate the', 'start': 1697.679, 'duration': 5.041}, {'text': 'memory. So when I click to settings and', 'start': 1700.159, 'duration': 5.681}, {'text': 'I go to personalization, I can ask to', 'start': 1702.72, 'duration': 4.959}, {'text': 'activate the memory. And you can see', 'start': 1705.84, 'duration': 4.16}, {'text': 'what the memory can do is basically', 'start': 1707.679, 'duration': 5.12}, {'text': 'along your messages. If you explain', 'start': 1710.0, 'duration': 5.279}, {'text': 'where you work, if you explain a bit', 'start': 1712.799, 'duration': 4.961}, {'text': 'about you, then it will start populate', 'start': 1715.279, 'duration': 4.721}, {'text': 'here the memories. Here is a great way', 'start': 1717.76, 'duration': 4.48}, {'text': 'to let the AI personalize the experience', 'start': 1720.0, 'duration': 3.919}, {'text': 'for you. And what is good is you can', 'start': 1722.24, 'duration': 3.84}, {'text': 'manage it yourself if you want or you', 'start': 1723.919, 'duration': 4.081}, {'text': 'can deactivate it if you prefer to have', 'start': 1726.08, 'duration': 4.64}, {'text': \"a neutral AI that doesn't know about you\", 'start': 1728.0, 'duration': 5.52}, {'text': 'or maybe just you decide when you want', 'start': 1730.72, 'duration': 4.4}, {'text': 'that it knows about you. So you can do', 'start': 1733.52, 'duration': 3.759}, {'text': 'that in a custom GPT or in a project and', 'start': 1735.12, 'duration': 4.48}, {'text': 'you can decide in which chat where you', 'start': 1737.279, 'duration': 4.4}, {'text': 'want no information about you because', 'start': 1739.6, 'duration': 3.679}, {'text': \"you don't want to influence the output.\", 'start': 1741.679, 'duration': 5.12}, {'text': 'So go ahead and check that for', 'start': 1743.279, 'duration': 3.52}, {'text': \"yourself. Let's start in the meat of\", 'start': 1747.32, 'duration': 7.479}, {'text': \"this course how to prompt with CHP. I'm\", 'start': 1750.799, 'duration': 7.281}, {'text': 'going to teach you my framework that', 'start': 1754.799, 'duration': 4.441}, {'text': 'works', 'start': 1758.08, 'duration': 3.76}, {'text': \"everywhere. But first let's understand\", 'start': 1759.24, 'duration': 4.919}, {'text': 'why do we need a framework. The first', 'start': 1761.84, 'duration': 5.199}, {'text': 'mistake we all do when we start using', 'start': 1764.159, 'duration': 6.081}, {'text': 'tool like JGPT is to use the Google', 'start': 1767.039, 'duration': 6.081}, {'text': 'method. The Google method is simply what', 'start': 1770.24, 'duration': 5.76}, {'text': 'we have been doing the last 15 years is', 'start': 1773.12, 'duration': 5.919}, {'text': 'to research something based on keywords.', 'start': 1776.0, 'duration': 6.159}, {'text': \"As we are humans, we are lazy. It's\", 'start': 1779.039, 'duration': 5.12}, {'text': 'often our favorite method because we', 'start': 1782.159, 'duration': 4.64}, {'text': 'have to write the list word to get the', 'start': 1784.159, 'duration': 5.201}, {'text': \"maximum output. Let's see together what\", 'start': 1786.799, 'duration': 5.721}, {'text': 'happens if we are using JG GPT like', 'start': 1789.36, 'duration': 7.08}, {'text': 'Google. Imagine that I want to issue', 'start': 1792.52, 'duration': 6.759}, {'text': \"reminder to one of my client who didn't\", 'start': 1796.44, 'duration': 6.64}, {'text': 'pick. I will write inside', 'start': 1799.279, 'duration': 6.76}, {'text': \"JPT the name letter. Let's see what\", 'start': 1803.08, 'duration': 7.479}, {'text': 'happens. So we get something quite fast', 'start': 1806.039, 'duration': 7.0}, {'text': 'but we only get a description of what is', 'start': 1810.559, 'duration': 4.48}, {'text': 'the name letter.', 'start': 1813.039, 'duration': 4.161}, {'text': \"The problem is that it doesn't really\", 'start': 1815.039, 'duration': 4.88}, {'text': 'help us because what we wanted is to', 'start': 1817.2, 'duration': 4.8}, {'text': 'send the letter. We wanted to have the', 'start': 1819.919, 'duration': 4.721}, {'text': 'letter drafted. So this is not working', 'start': 1822.0, 'duration': 5.36}, {'text': \"well because it doesn't really help us\", 'start': 1824.64, 'duration': 6.96}, {'text': \"with our work. And that's where 90% of\", 'start': 1827.36, 'duration': 7.6}, {'text': 'the people will usually stop because', 'start': 1831.6, 'duration': 6.16}, {'text': 'they think tragic is smart but not', 'start': 1834.96, 'duration': 5.599}, {'text': 'helpful. And imagine if you are working', 'start': 1837.76, 'duration': 5.76}, {'text': 'with somebody, imagine that you want', 'start': 1840.559, 'duration': 4.72}, {'text': 'them to write the dunning letter for', 'start': 1843.52, 'duration': 4.399}, {'text': 'you. Are you really going just to send', 'start': 1845.279, 'duration': 6.961}, {'text': 'them in teams in a chat dunning letter?', 'start': 1847.919, 'duration': 6.721}, {'text': 'No, you are going to explain what is the', 'start': 1852.24, 'duration': 4.48}, {'text': 'problem and what you want from them.', 'start': 1854.64, 'duration': 4.96}, {'text': 'Well, chat GPT is exactly the same way.', 'start': 1856.72, 'duration': 6.16}, {'text': 'is like an assistant to whom you need to', 'start': 1859.6, 'duration': 5.92}, {'text': 'explain the context and be specific', 'start': 1862.88, 'duration': 6.08}, {'text': 'about what you want and also give a', 'start': 1865.52, 'duration': 5.68}, {'text': 'clear instruction to have clear', 'start': 1868.96, 'duration': 5.319}, {'text': 'expectation and have a clear output from', 'start': 1871.2, 'duration': 7.839}, {'text': \"chip. This is why I'm bringing a team to\", 'start': 1874.279, 'duration': 8.52}, {'text': 'solve a crime which is called CSI. With', 'start': 1879.039, 'duration': 6.64}, {'text': 'my framework called the CSI framework,', 'start': 1882.799, 'duration': 6.801}, {'text': 'you are going to prompt using the CSI', 'start': 1885.679, 'duration': 7.441}, {'text': 'letters meaning C for context. The', 'start': 1889.6, 'duration': 5.92}, {'text': 'context is basically explaining who you', 'start': 1893.12, 'duration': 4.559}, {'text': 'are and the context of your company. E', 'start': 1895.52, 'duration': 4.879}, {'text': 'is being specific. What is your problem?', 'start': 1897.679, 'duration': 5.36}, {'text': 'I is to give a clear instruction because', 'start': 1900.399, 'duration': 6.4}, {'text': 'if you just stop at context and specific', 'start': 1903.039, 'duration': 6.161}, {'text': 'then you still let too much freedom to', 'start': 1906.799, 'duration': 4.801}, {'text': 'charge GPT to generate the output for', 'start': 1909.2, 'duration': 5.359}, {'text': \"you. Now let's use our example of\", 'start': 1911.6, 'duration': 6.959}, {'text': \"dueling letter and let's see how we can\", 'start': 1914.559, 'duration': 8.561}, {'text': 'use CSI with I am an accountant being', 'start': 1918.559, 'duration': 7.681}, {'text': 'the context my client as an overview', 'start': 1923.12, 'duration': 6.0}, {'text': 'being the specificity and the problem', 'start': 1926.24, 'duration': 6.6}, {'text': 'and being specific about the', 'start': 1929.12, 'duration': 6.72}, {'text': \"instruction. Now let's see if we use the\", 'start': 1932.84, 'duration': 6.12}, {'text': 'CSI framework if we have a better output', 'start': 1935.84, 'duration': 6.64}, {'text': 'from chip. Already it starts to write', 'start': 1938.96, 'duration': 8.36}, {'text': 'the letter and we can see that we have', 'start': 1942.48, 'duration': 8.16}, {'text': 'exactly a letter on overdue on the', 'start': 1947.32, 'duration': 8.44}, {'text': 'outing balance and we ask nicely about', 'start': 1950.64, 'duration': 9.039}, {'text': 'the reminder and we also ask what is the', 'start': 1955.76, 'duration': 6.96}, {'text': 'status. So we are quite gentle. Now the', 'start': 1959.679, 'duration': 5.521}, {'text': \"problem is that this client didn't pay\", 'start': 1962.72, 'duration': 4.959}, {'text': \"since a long time and it's not the first\", 'start': 1965.2, 'duration': 4.24}, {'text': 'time that we have this problem. So, do', 'start': 1967.679, 'duration': 4.961}, {'text': 'you think this letter will be enough to', 'start': 1969.44, 'duration': 5.76}, {'text': \"get our money back? No, it's not enough\", 'start': 1972.64, 'duration': 4.56}, {'text': 'because we are too gentle. So, how are', 'start': 1975.2, 'duration': 4.56}, {'text': 'we going to solve this? If we want to', 'start': 1977.2, 'duration': 4.719}, {'text': 'solve this problem, we are going to', 'start': 1979.76, 'duration': 5.68}, {'text': 'bring a second team to make sure we get', 'start': 1981.919, 'duration': 5.36}, {'text': 'our money back and we are going to bring', 'start': 1985.44, 'duration': 8.239}, {'text': 'the FBI. FBI stands for F the format, B', 'start': 1987.279, 'duration': 10.64}, {'text': 'the blueprint, and I identity. If we get', 'start': 1993.679, 'duration': 6.48}, {'text': 'back our example where at the beginning', 'start': 1997.919, 'duration': 5.281}, {'text': 'we had this prompt. I am an accountant.', 'start': 2000.159, 'duration': 4.88}, {'text': 'My client has never due for two months.', 'start': 2003.2, 'duration': 3.92}, {'text': 'Can you draft a communication to them?', 'start': 2005.039, 'duration': 6.0}, {'text': 'We are going to add F the format. So we', 'start': 2007.12, 'duration': 7.279}, {'text': 'are going to have a formal letter. B my', 'start': 2011.039, 'duration': 5.76}, {'text': 'favorite part the blueprint. We have', 'start': 2014.399, 'duration': 4.0}, {'text': \"something in mind but we don't really\", 'start': 2016.799, 'duration': 4.161}, {'text': 'know how to say that. So we will let', 'start': 2018.399, 'duration': 6.4}, {'text': 'CHGPT formulate for us and just using', 'start': 2020.96, 'duration': 8.04}, {'text': 'words like tone to be hard or legal', 'start': 2024.799, 'duration': 7.681}, {'text': \"actions we know it's going to have much\", 'start': 2029.0, 'duration': 6.6}, {'text': 'more impact than our previous letter and', 'start': 2032.48, 'duration': 8.24}, {'text': 'finally I for identity where we will ask', 'start': 2035.6, 'duration': 8.559}, {'text': 'to act as the best lawyer and here', 'start': 2040.72, 'duration': 6.559}, {'text': \"identity you don't always need it but it\", 'start': 2044.159, 'duration': 5.601}, {'text': 'could be really useful in this type of', 'start': 2047.279, 'duration': 5.201}, {'text': \"situation. Let's go into ch to see how\", 'start': 2049.76, 'duration': 4.48}, {'text': 'we are going to use this framework.', 'start': 2052.48, 'duration': 5.24}, {'text': \"Let's see now the output once we use the\", 'start': 2054.24, 'duration': 6.96}, {'text': 'FBI formula on top of CSI. You can see', 'start': 2057.72, 'duration': 6.119}, {'text': 'it started with a letter head and we', 'start': 2061.2, 'duration': 6.8}, {'text': 'have already in our title legal actions.', 'start': 2063.839, 'duration': 6.52}, {'text': 'You will also notice that our tone has', 'start': 2068.0, 'duration': 6.0}, {'text': 'changed and we are using words to', 'start': 2070.359, 'duration': 6.28}, {'text': 'escalate the situation as we wanted. We', 'start': 2074.0, 'duration': 6.359}, {'text': 'have words like lawsuit, seeking a court', 'start': 2076.639, 'duration': 6.841}, {'text': 'judgment, or engaging debt collection', 'start': 2080.359, 'duration': 6.921}, {'text': 'agencies. So, what do you think of this', 'start': 2083.48, 'duration': 6.119}, {'text': 'letter? Do you think this will have more', 'start': 2087.28, 'duration': 4.639}, {'text': 'impact than the previous one? And here', 'start': 2089.599, 'duration': 6.08}, {'text': 'is an additional tip. You can also ask,', 'start': 2091.919, 'duration': 7.401}, {'text': 'can you list the legal', 'start': 2095.679, 'duration': 8.721}, {'text': 'action in a bullet point list and', 'start': 2099.32, 'duration': 8.6}, {'text': 'reddraft this letter? I like to do it', 'start': 2104.4, 'duration': 6.88}, {'text': 'that way because you see here for a', 'start': 2107.92, 'duration': 6.4}, {'text': 'human is actually much easier to read in', 'start': 2111.28, 'duration': 5.92}, {'text': 'bullet points and we know that if', 'start': 2114.32, 'duration': 5.68}, {'text': 'somebody came across this letter, they', 'start': 2117.2, 'duration': 5.84}, {'text': 'will first read that. And I assure you', 'start': 2120.0, 'duration': 6.4}, {'text': \"if you read that I'm sure your client or\", 'start': 2123.04, 'duration': 6.24}, {'text': 'yourself you are going to react on this.', 'start': 2126.4, 'duration': 5.04}, {'text': 'This is how you can use the framework', 'start': 2129.28, 'duration': 6.72}, {'text': 'CSI plus FBI. And I recommend you to', 'start': 2131.44, 'duration': 8.44}, {'text': 'first try all of your prompts in CHP', 'start': 2136.0, 'duration': 7.2}, {'text': 'with at least CSI and when you want', 'start': 2139.88, 'duration': 6.92}, {'text': 'something more complex use FBI. And the', 'start': 2143.2, 'duration': 5.36}, {'text': 'more you will get used to this', 'start': 2146.8, 'duration': 3.68}, {'text': 'framework, the more you will see what', 'start': 2148.56, 'duration': 4.96}, {'text': 'works and the more you can take freedom', 'start': 2150.48, 'duration': 5.44}, {'text': 'from this framework and build your own', 'start': 2153.52, 'duration': 5.52}, {'text': 'frameworks based on your', 'start': 2155.92, 'duration': 3.12}, {'text': \"experience. Let's start with an exercise\", 'start': 2159.72, 'duration': 6.28}, {'text': 'to practice the CSI and FBI formula.', 'start': 2162.56, 'duration': 6.72}, {'text': 'Imagine that you are the FPNA analyst of', 'start': 2166.0, 'duration': 6.72}, {'text': 'a brewery and you have to create a', 'start': 2169.28, 'duration': 5.76}, {'text': 'weekly financial report. You are going', 'start': 2172.72, 'duration': 5.84}, {'text': 'to use JG GPT using the CSI formula to', 'start': 2175.04, 'duration': 5.36}, {'text': \"generate this report. That's the first\", 'start': 2178.56, 'duration': 3.76}, {'text': 'part. When you are done, you are going', 'start': 2180.4, 'duration': 6.84}, {'text': 'to use CSI and FBI to improve your', 'start': 2182.32, 'duration': 7.84}, {'text': 'prompt and also with that to improve', 'start': 2187.24, 'duration': 5.08}, {'text': 'your output. Take five minutes to do', 'start': 2190.16, 'duration': 5.32}, {'text': 'this exercise and I see you in the', 'start': 2192.32, 'duration': 5.16}, {'text': 'solution.', 'start': 2195.48, 'duration': 5.879}, {'text': 'Remember the exercise was to create a', 'start': 2197.48, 'duration': 6.599}, {'text': 'weekly financial report for your FPNA', 'start': 2201.359, 'duration': 5.041}, {'text': \"manager. Let's see first what happens\", 'start': 2204.079, 'duration': 5.601}, {'text': 'when you use the CSI formula. So here I', 'start': 2206.4, 'duration': 7.28}, {'text': 'wrote the context. I am FPN analyst for', 'start': 2209.68, 'duration': 7.08}, {'text': 'a brewery. Then I', 'start': 2213.68, 'duration': 6.159}, {'text': 'explain what is my specific problem. I', 'start': 2216.76, 'duration': 4.599}, {'text': 'need to deliver the weekly financial', 'start': 2219.839, 'duration': 3.601}, {'text': 'report to my manager and I ask', 'start': 2221.359, 'duration': 4.401}, {'text': 'specifically to draft the report', 'start': 2223.44, 'duration': 4.2}, {'text': \"outline. Let's see what\", 'start': 2225.76, 'duration': 6.0}, {'text': 'happens. So as you can see we have the', 'start': 2227.64, 'duration': 7.16}, {'text': 'weekly financial report with adapted', 'start': 2231.76, 'duration': 6.16}, {'text': 'with the beer types. Also we have', 'start': 2234.8, 'duration': 5.2}, {'text': \"production cost which you don't have for\", 'start': 2237.92, 'duration': 5.36}, {'text': 'a SAS and also inventory topics. So it', 'start': 2240.0, 'duration': 6.68}, {'text': 'understood that we are a beer or brewery', 'start': 2243.28, 'duration': 6.079}, {'text': \"company with production cost. So that's\", 'start': 2246.68, 'duration': 4.84}, {'text': 'really good because if you now say that', 'start': 2249.359, 'duration': 4.401}, {'text': \"you are a SAS company, you'll have a\", 'start': 2251.52, 'duration': 4.72}, {'text': 'different type of report. Now imagine', 'start': 2253.76, 'duration': 5.12}, {'text': 'that what you wanted is actually slides', 'start': 2256.24, 'duration': 5.119}, {'text': 'and this is not enough for slides', 'start': 2258.88, 'duration': 4.32}, {'text': \"because you'll have to readapt it. So\", 'start': 2261.359, 'duration': 4.48}, {'text': 'either you can continue the discussion', 'start': 2263.2, 'duration': 7.8}, {'text': 'and say adapt it to', 'start': 2265.839, 'duration': 7.481}, {'text': 'create the', 'start': 2271.0, 'duration': 6.52}, {'text': 'slide structure from this.', 'start': 2273.32, 'duration': 7.48}, {'text': 'And now we have the slide name for each', 'start': 2277.52, 'duration': 6.319}, {'text': \"of them. Or I'll be more specific and I\", 'start': 2280.8, 'duration': 8.64}, {'text': 'can correct and say in each slide I want', 'start': 2283.839, 'duration': 8.041}, {'text': 'a', 'start': 2289.44, 'duration': 7.6}, {'text': 'catchy slide title, a', 'start': 2291.88, 'duration': 5.16}, {'text': 'subtitle,', 'start': 2297.64, 'duration': 6.92}, {'text': 'three bullet points and a nade on', 'start': 2299.16, 'duration': 7.72}, {'text': 'visuals.', 'start': 2304.56, 'duration': 5.64}, {'text': 'And when you do that, you get much', 'start': 2306.88, 'duration': 7.12}, {'text': 'deeper help because on top of of having', 'start': 2310.2, 'duration': 7.56}, {'text': 'the text, you also get help on Hulk, you', 'start': 2314.0, 'duration': 6.88}, {'text': 'could visualize the information that has', 'start': 2317.76, 'duration': 5.96}, {'text': 'to go on the slide. And you see by just', 'start': 2320.88, 'duration': 7.28}, {'text': 'adding this, we got much more value from', 'start': 2323.72, 'duration': 9.0}, {'text': \"the output of CH GPD. Now let's try with\", 'start': 2328.16, 'duration': 7.52}, {'text': 'the CSI and FBI formula.', 'start': 2332.72, 'duration': 8.56}, {'text': 'So I wrote the same CSI print but I', 'start': 2335.68, 'duration': 7.0}, {'text': 'added to', 'start': 2341.28, 'duration': 5.839}, {'text': 'it the F meaning the format the B the', 'start': 2342.68, 'duration': 6.439}, {'text': 'blueprint. So the content needs to be', 'start': 2347.119, 'duration': 4.561}, {'text': 'concise and each section needs to have a', 'start': 2349.119, 'duration': 5.201}, {'text': 'key takeaway section and on top I asked', 'start': 2351.68, 'duration': 4.96}, {'text': 'to draft the outline like a financial', 'start': 2354.32, 'duration': 6.08}, {'text': \"expert. Let's see the output of this\", 'start': 2356.64, 'duration': 7.439}, {'text': 'prompt. Now you can see that I have', 'start': 2360.4, 'duration': 6.56}, {'text': 'those slides. I have the key takeaway.', 'start': 2364.079, 'duration': 6.601}, {'text': 'And if I wanted to have exactly the same', 'start': 2366.96, 'duration': 6.8}, {'text': 'output than what we tried in the', 'start': 2370.68, 'duration': 4.919}, {'text': 'beginning of the exercise, I could just', 'start': 2373.76, 'duration': 4.24}, {'text': 'change here the blueprint and say the', 'start': 2375.599, 'duration': 7.041}, {'text': 'content is concise. The title of each', 'start': 2378.0, 'duration': 10.32}, {'text': 'slide needs to be catchy. add a subtitle', 'start': 2382.64, 'duration': 11.479}, {'text': 'in each slide and add a visual aid for', 'start': 2388.32, 'duration': 9.44}, {'text': \"each slide. Now let's see if we have a\", 'start': 2394.119, 'duration': 4.96}, {'text': 'better', 'start': 2397.76, 'duration': 4.16}, {'text': 'output. So here is really good to show', 'start': 2399.079, 'duration': 4.76}, {'text': 'you that because I made a mistake. I', 'start': 2401.92, 'duration': 4.4}, {'text': 'forgot to mention the three bullet', 'start': 2403.839, 'duration': 6.641}, {'text': 'points. So now I will just change and', 'start': 2406.32, 'duration': 8.56}, {'text': 'say add three bullet points on each', 'start': 2410.48, 'duration': 6.96}, {'text': 'slide because you could see here I only', 'start': 2414.88, 'duration': 4.8}, {'text': 'have the title, the subtitle and the', 'start': 2417.44, 'duration': 7.08}, {'text': \"visual aid. So let's try\", 'start': 2419.68, 'duration': 8.64}, {'text': 'again. And now I have my slide, my', 'start': 2424.52, 'duration': 6.68}, {'text': 'title, my subtitle, and the breakdown in', 'start': 2428.32, 'duration': 4.799}, {'text': \"three bullet points. What I don't have\", 'start': 2431.2, 'duration': 4.8}, {'text': 'though is a catchy title. So here I', 'start': 2433.119, 'duration': 3.641}, {'text': 'could', 'start': 2436.0, 'duration': 5.359}, {'text': 'ask reddraft it and change all the', 'start': 2436.76, 'duration': 6.64}, {'text': 'titles to', 'start': 2441.359, 'duration': 5.041}, {'text': 'catchy', 'start': 2443.4, 'duration': 3.0}, {'text': 'titles. And now each slide has a catchy', 'start': 2446.44, 'duration': 5.8}, {'text': 'title. This is how you improve your', 'start': 2449.68, 'duration': 5.28}, {'text': 'content also by iteration. Now that you', 'start': 2452.24, 'duration': 5.52}, {'text': 'have seen how to prompt and understood', 'start': 2454.96, 'duration': 5.76}, {'text': \"the CSI and FBI formula, let's go deeper\", 'start': 2457.76, 'duration': 7.079}, {'text': 'to get more from TDP.', 'start': 2460.72, 'duration': 4.119}, {'text': \"Let's address an important topic. The\", 'start': 2465.52, 'duration': 5.599}, {'text': 'risks and limitations of using CH GPT or', 'start': 2467.68, 'duration': 6.32}, {'text': 'any other LLMs that are open. The first', 'start': 2471.119, 'duration': 5.2}, {'text': 'one, as you may have heard, if you are', 'start': 2474.0, 'duration': 5.28}, {'text': 'using something like CHPT, you are using', 'start': 2476.319, 'duration': 5.441}, {'text': 'an external tool that is not part of', 'start': 2479.28, 'duration': 5.2}, {'text': 'your company and with whom probably your', 'start': 2481.76, 'duration': 5.04}, {'text': \"company didn't sign a contract. So if\", 'start': 2484.48, 'duration': 4.24}, {'text': \"your company doesn't have THP\", 'start': 2486.8, 'duration': 3.76}, {'text': 'enterprise, it means you are using it', 'start': 2488.72, 'duration': 3.359}, {'text': 'privately. And if you are using it', 'start': 2490.56, 'duration': 4.24}, {'text': 'privately, then this is like using your', 'start': 2492.079, 'duration': 6.081}, {'text': 'own Gmail inbox to send to yourself', 'start': 2494.8, 'duration': 5.84}, {'text': 'private document of your company. This', 'start': 2498.16, 'duration': 4.08}, {'text': \"is something you're you are not allowed\", 'start': 2500.64, 'duration': 4.0}, {'text': 'and this is something your contract', 'start': 2502.24, 'duration': 4.8}, {'text': 'should prevent with a confidentiality', 'start': 2504.64, 'duration': 4.64}, {'text': 'close. So confidentiality is really', 'start': 2507.04, 'duration': 4.48}, {'text': 'something you need to pay attention. But', 'start': 2509.28, 'duration': 3.839}, {'text': \"everything I'm going to show in this\", 'start': 2511.52, 'duration': 4.4}, {'text': 'course is without this confidentiality', 'start': 2513.119, 'duration': 4.801}, {'text': 'problem because we will never say', 'start': 2515.92, 'duration': 3.6}, {'text': 'anything about the company. We will', 'start': 2517.92, 'duration': 5.12}, {'text': 'never divate any numbers. We will just', 'start': 2519.52, 'duration': 6.96}, {'text': 'use CHPT like a friend or an ex-colague', 'start': 2523.04, 'duration': 6.079}, {'text': 'with whom we exchange on best practice.', 'start': 2526.48, 'duration': 4.96}, {'text': 'But we never tell anything about', 'start': 2529.119, 'duration': 4.081}, {'text': 'confidential information from the', 'start': 2531.44, 'duration': 2.96}, {'text': 'company. And when you have these', 'start': 2533.2, 'duration': 4.0}, {'text': 'discussions, if you are meeting your', 'start': 2534.4, 'duration': 4.88}, {'text': 'best friend at a barbecue and your best', 'start': 2537.2, 'duration': 4.639}, {'text': 'friend is also working in FPNA and you', 'start': 2539.28, 'duration': 4.799}, {'text': 'both talk about how to do a cohort', 'start': 2541.839, 'duration': 4.48}, {'text': 'analysis in Excel, you can still learn a', 'start': 2544.079, 'duration': 5.361}, {'text': 'lot. you can still help each other a lot', 'start': 2546.319, 'duration': 5.201}, {'text': 'and this is how we are going to use JG', 'start': 2549.44, 'duration': 4.48}, {'text': 'GPT like a good friend that you meet at', 'start': 2551.52, 'duration': 5.2}, {'text': 'a barbecue who is really really smart', 'start': 2553.92, 'duration': 6.72}, {'text': 'but who is also somebody you should not', 'start': 2556.72, 'duration': 6.08}, {'text': 'give any confidential information of', 'start': 2560.64, 'duration': 5.4}, {'text': 'your company the second part is about', 'start': 2562.8, 'duration': 6.96}, {'text': 'security GPT Gemini and Copilot and', 'start': 2566.04, 'duration': 7.0}, {'text': 'other LLMs are also external tool and', 'start': 2569.76, 'duration': 5.76}, {'text': 'anything you put inside is not part of', 'start': 2573.04, 'duration': 5.039}, {'text': 'your security protocol from your', 'start': 2575.52, 'duration': 5.36}, {'text': \"company. So it's in the internet and\", 'start': 2578.079, 'duration': 5.201}, {'text': 'because of this you should check with', 'start': 2580.88, 'duration': 4.64}, {'text': 'your IT what you are allowed to do. But', 'start': 2583.28, 'duration': 4.96}, {'text': \"again to avoid any risk don't put any\", 'start': 2585.52, 'duration': 5.12}, {'text': 'confidential information. Another part', 'start': 2588.24, 'duration': 5.359}, {'text': 'is for yourself on your private data but', 'start': 2590.64, 'duration': 5.84}, {'text': 'also data about your colleagues or about', 'start': 2593.599, 'duration': 5.041}, {'text': 'your family or about friends. Make sure', 'start': 2596.48, 'duration': 5.2}, {'text': 'you understand what OpenAI and others', 'start': 2598.64, 'duration': 5.76}, {'text': 'like Copilot Gemini what they are doing', 'start': 2601.68, 'duration': 4.88}, {'text': 'with your data. And for this you can', 'start': 2604.4, 'duration': 5.28}, {'text': 'read the privacy policy of all of the', 'start': 2606.56, 'duration': 5.519}, {'text': 'LLMs to see what happens with your data', 'start': 2609.68, 'duration': 4.96}, {'text': 'and how you can protect yourself. One of', 'start': 2612.079, 'duration': 5.921}, {'text': 'the other risk from THP is how good is', 'start': 2614.64, 'duration': 6.32}, {'text': 'the output. You should think that THP is', 'start': 2618.0, 'duration': 5.92}, {'text': \"like a traininee. If you don't coach a\", 'start': 2620.96, 'duration': 5.359}, {'text': 'traininee properly then the output of', 'start': 2623.92, 'duration': 4.48}, {'text': 'the trainy might not be as good as what', 'start': 2626.319, 'duration': 4.081}, {'text': 'you expect. Your input in the', 'start': 2628.4, 'duration': 3.84}, {'text': 'instructions is really important. But', 'start': 2630.4, 'duration': 3.6}, {'text': 'also it might be that your training', 'start': 2632.24, 'duration': 3.359}, {'text': \"doesn't know how to do the work. And\", 'start': 2634.0, 'duration': 3.52}, {'text': 'because of this you should not expect', 'start': 2635.599, 'duration': 5.361}, {'text': 'that the quality of CH GPD is always at', 'start': 2637.52, 'duration': 6.079}, {'text': 'the best. So you need to review and own', 'start': 2640.96, 'duration': 5.359}, {'text': 'the output and also improve it to make', 'start': 2643.599, 'duration': 4.321}, {'text': 'sure that you can use it for your work.', 'start': 2646.319, 'duration': 4.721}, {'text': 'The last part is on hallucinations. JPT,', 'start': 2647.92, 'duration': 6.399}, {'text': 'Copilot, Gemini and other LLMs are', 'start': 2651.04, 'duration': 6.079}, {'text': 'mostly generative AI meaning they', 'start': 2654.319, 'duration': 5.201}, {'text': 'generate output.', 'start': 2657.119, 'duration': 4.081}, {'text': \"And it's really good because you can\", 'start': 2659.52, 'duration': 3.92}, {'text': 'create stories, you can create', 'start': 2661.2, 'duration': 4.0}, {'text': 'presentations with it and content for', 'start': 2663.44, 'duration': 4.8}, {'text': 'your slides. But the risk maybe it will', 'start': 2665.2, 'duration': 5.6}, {'text': \"create an accounting policy that doesn't\", 'start': 2668.24, 'duration': 5.68}, {'text': 'exist like a US GAP policy that is not', 'start': 2670.8, 'duration': 5.76}, {'text': 'in the books or an inventory method that', 'start': 2673.92, 'duration': 4.48}, {'text': \"doesn't make sense. Because of this, you\", 'start': 2676.56, 'duration': 4.0}, {'text': 'need to use your professional skepticism', 'start': 2678.4, 'duration': 4.959}, {'text': 'to review the work. And each time you', 'start': 2680.56, 'duration': 5.6}, {'text': 'want to base a decision on the output of', 'start': 2683.359, 'duration': 5.76}, {'text': 'CHPT, you need to review and make sure', 'start': 2686.16, 'duration': 5.28}, {'text': 'that if there are facts to review', 'start': 2689.119, 'duration': 5.041}, {'text': 'another source to see if the facts like', 'start': 2691.44, 'duration': 4.72}, {'text': 'for example accounting policies or US', 'start': 2694.16, 'duration': 4.8}, {'text': 'GAAP or if tax regulations, make sure', 'start': 2696.16, 'duration': 5.84}, {'text': 'that those are the latest regulations,', 'start': 2698.96, 'duration': 5.68}, {'text': 'the most updated one and also the right', 'start': 2702.0, 'duration': 5.44}, {'text': 'ones. Again, everything that you will', 'start': 2704.64, 'duration': 6.0}, {'text': 'use from those LLMs become yours. And', 'start': 2707.44, 'duration': 5.639}, {'text': \"because it becomes yours, it's your own\", 'start': 2710.64, 'duration': 5.199}, {'text': 'responsibility to review it and to own', 'start': 2713.079, 'duration': 4.841}, {'text': \"it and to improve it. To finish, let's\", 'start': 2715.839, 'duration': 4.641}, {'text': 'look at limitations. First, you need to', 'start': 2717.92, 'duration': 6.399}, {'text': 'understand that JGPT is not consistently', 'start': 2720.48, 'duration': 6.8}, {'text': 'updated. It has some cut of date on', 'start': 2724.319, 'duration': 5.601}, {'text': 'which the model is trained. And if you', 'start': 2727.28, 'duration': 5.52}, {'text': 'want something more actual, you need to', 'start': 2729.92, 'duration': 5.679}, {'text': 'specifically ask to search the internet', 'start': 2732.8, 'duration': 5.36}, {'text': 'because it will not have the latest', 'start': 2735.599, 'duration': 5.041}, {'text': 'information that are after the cutff', 'start': 2738.16, 'duration': 4.24}, {'text': 'date. And you can look at the link', 'start': 2740.64, 'duration': 4.32}, {'text': 'yourself to research when was the last', 'start': 2742.4, 'duration': 4.719}, {'text': \"cut of date as it's changing all the\", 'start': 2744.96, 'duration': 4.04}, {'text': 'time. Second, this model is', 'start': 2747.119, 'duration': 4.401}, {'text': \"probabilistic. We don't have a model\", 'start': 2749.0, 'duration': 5.079}, {'text': 'that calculates. We have a model that', 'start': 2751.52, 'duration': 5.599}, {'text': 'estimates what is the most probable', 'start': 2754.079, 'duration': 4.961}, {'text': 'answer. And we know in finance we need', 'start': 2757.119, 'duration': 3.921}, {'text': 'something accurate. So always have that', 'start': 2759.04, 'duration': 5.92}, {'text': 'in mind because TGPT will always show', 'start': 2761.04, 'duration': 6.24}, {'text': 'you different answers and you know that', 'start': 2764.96, 'duration': 5.04}, {'text': 'with figures is not really ideal. So for', 'start': 2767.28, 'duration': 6.24}, {'text': 'this what I recommend is always ask JGPT', 'start': 2770.0, 'duration': 7.04}, {'text': 'to show its calculation and also as much', 'start': 2773.52, 'duration': 6.799}, {'text': 'as possible to let JGPT use Python to', 'start': 2777.04, 'duration': 5.68}, {'text': 'calculate because Python is a calculator', 'start': 2780.319, 'duration': 4.8}, {'text': 'and a calculation from Python. You can', 'start': 2782.72, 'duration': 4.399}, {'text': 'audit it because you can look at the', 'start': 2785.119, 'duration': 4.081}, {'text': 'code and audit if it was the right code', 'start': 2787.119, 'duration': 4.161}, {'text': 'and if the code was done on the right', 'start': 2789.2, 'duration': 4.56}, {'text': 'data and like this you can verify if the', 'start': 2791.28, 'duration': 4.64}, {'text': 'information given is correct. Other', 'start': 2793.76, 'duration': 4.8}, {'text': 'limitations are the incorrect or', 'start': 2795.92, 'duration': 5.12}, {'text': 'nonsensical answers. So because it', 'start': 2798.56, 'duration': 4.24}, {'text': \"doesn't have all of the truth, it might\", 'start': 2801.04, 'duration': 4.319}, {'text': 'be that you will get something that', 'start': 2802.8, 'duration': 4.16}, {'text': \"doesn't make sense and doesn't exist.\", 'start': 2805.359, 'duration': 4.161}, {'text': 'Other limitations is that based on what', 'start': 2806.96, 'duration': 6.08}, {'text': 'you ask slightly change might change the', 'start': 2809.52, 'duration': 5.28}, {'text': 'answer. Something you will notice as', 'start': 2813.04, 'duration': 5.039}, {'text': 'well is that chpt always sounds the same', 'start': 2814.8, 'duration': 5.84}, {'text': 'and this is because the model has been', 'start': 2818.079, 'duration': 5.441}, {'text': 'optimized to answer in a certain way. So', 'start': 2820.64, 'duration': 5.199}, {'text': 'this is a limitation because it will not', 'start': 2823.52, 'duration': 6.24}, {'text': 'always adapt its own way of phrasing', 'start': 2825.839, 'duration': 6.081}, {'text': 'concepts based to you. You will need to', 'start': 2829.76, 'duration': 4.48}, {'text': 'be really specific on what type of', 'start': 2831.92, 'duration': 4.399}, {'text': 'wording you want. And the tip for that', 'start': 2834.24, 'duration': 4.879}, {'text': 'is to ask to write more directly and', 'start': 2836.319, 'duration': 4.961}, {'text': 'also to avoid some of the words that you', 'start': 2839.119, 'duration': 3.841}, {'text': 'see that are always coming back. Like', 'start': 2841.28, 'duration': 4.64}, {'text': 'for example, we are going to delve into', 'start': 2842.96, 'duration': 5.44}, {'text': 'a topic. Delve is really something Chipt', 'start': 2845.92, 'duration': 4.32}, {'text': 'loves to repeat all the time. Also', 'start': 2848.4, 'duration': 4.0}, {'text': 'something you need to understand, Chpt', 'start': 2850.24, 'duration': 4.72}, {'text': 'is made to make you happy as a user. And', 'start': 2852.4, 'duration': 5.04}, {'text': 'instead of making the experience really', 'start': 2854.96, 'duration': 4.72}, {'text': \"hard by asking you what do you want? I'm\", 'start': 2857.44, 'duration': 4.08}, {'text': 'not sure. Can you repeat again? Can you', 'start': 2859.68, 'duration': 3.76}, {'text': 'formulate again? Can you give me more', 'start': 2861.52, 'duration': 3.599}, {'text': 'information? It will take a lot of', 'start': 2863.44, 'duration': 4.08}, {'text': 'assumptions if you are not specific', 'start': 2865.119, 'duration': 4.561}, {'text': 'enough. So make sure that you understand', 'start': 2867.52, 'duration': 4.319}, {'text': 'that some of the response are based on', 'start': 2869.68, 'duration': 4.32}, {'text': 'assumptions and because of this you', 'start': 2871.839, 'duration': 4.721}, {'text': 'might have the quality that is not what', 'start': 2874.0, 'duration': 5.52}, {'text': 'you expect. Finally the last limitation', 'start': 2876.56, 'duration': 5.68}, {'text': 'there are some policies inside the model', 'start': 2879.52, 'duration': 5.76}, {'text': 'that will stop you from asking and', 'start': 2882.24, 'duration': 4.879}, {'text': 'getting output especially if you ask', 'start': 2885.28, 'duration': 4.799}, {'text': 'something dangerous or if you ask', 'start': 2887.119, 'duration': 5.681}, {'text': 'something about somebody famous there is', 'start': 2890.079, 'duration': 4.641}, {'text': 'some limitations. And there you have it,', 'start': 2892.8, 'duration': 5.12}, {'text': 'a full tutorial on how to use CHGPT as a', 'start': 2894.72, 'duration': 4.72}, {'text': 'finance professional. Now, even though', 'start': 2897.92, 'duration': 4.88}, {'text': 'this was one of my most in-depth video I', 'start': 2899.44, 'duration': 5.2}, {'text': 'ever did on this channel and also I', 'start': 2902.8, 'duration': 4.16}, {'text': 'covered all of the fundamentals you need', 'start': 2904.64, 'duration': 4.56}, {'text': 'to get started, this was actually just', 'start': 2906.96, 'duration': 5.359}, {'text': 'one of eight modules I have made in my', 'start': 2909.2, 'duration': 5.919}, {'text': 'JGPT for finance course. So if you want', 'start': 2912.319, 'duration': 4.641}, {'text': 'to take this course, this course takes', 'start': 2915.119, 'duration': 4.161}, {'text': 'you from complete beginner to a real pro', 'start': 2916.96, 'duration': 4.639}, {'text': 'to use AI better than all of your', 'start': 2919.28, 'duration': 4.16}, {'text': 'colleagues and be the most valuable', 'start': 2921.599, 'duration': 3.921}, {'text': 'person in your company. So if you are', 'start': 2923.44, 'duration': 4.56}, {'text': 'serious about implementing AI into your', 'start': 2925.52, 'duration': 4.559}, {'text': 'work, then click in the first link in', 'start': 2928.0, 'duration': 4.0}, {'text': 'the description to check out my full', 'start': 2930.079, 'duration': 4.401}, {'text': 'course. It has everything I know about', 'start': 2932.0, 'duration': 5.52}, {'text': 'how to best leverage JGPT as a finance', 'start': 2934.48, 'duration': 4.879}, {'text': 'pro. And if this free course was', 'start': 2937.52, 'duration': 3.68}, {'text': 'valuable to you, then subscribe to the', 'start': 2939.359, 'duration': 3.041}, {'text': 'channel because I will make more and', 'start': 2941.2, 'duration': 2.639}, {'text': 'more of this video. And I hope to see', 'start': 2942.4, 'duration': 4.0}, {'text': 'you in the next', 'start': 2943.839, 'duration': 2.561}]} content='This is going to be a completely free\\ncourse on how you can use JGPT if you\\nwork in finance. Over the last few\\nyears, I\\'ve taught thousands of finance\\nprofessionals like you how to use AI to\\nsave hours, but also to become\\nirrepressible in this time of changes,\\nespecially with all of the pressure we\\ngot in finance. Now, for the information\\nin this video, I normally charge\\nhundreds of dollars, but I decided to\\ngive it away for free. So, close all of\\nyour open tabs and pay full attention\\nbecause I guarantee that if you watch\\nthis video until the end, you will have\\nall of the foundations you need to start\\nusing CHPT in your work. In this course,\\nI will show you how you can sign up to\\nChip and walk you through all of the\\nfunctionalities that are the most\\nimportant in Chip. And then we will\\ncover the risks and limitations of using\\nCHP in your work. And finally, you will\\nlearn how to write AI prompts like a\\npro, which is arguably the most valuable\\nskills you should have right\\nnow. We are going to learn together how\\nyou can sign up and also what are the\\nfunctionalities of CHP, but really\\nimportant we will cover what are the\\nrisks and limitations and then we you\\nwill learn how to prompt the most\\nimportant skill to learn in this course.\\nAnd finally, you\\'ll get an exercise to\\ntest your capabilities. If you are new\\nto chatgptt, you can go to\\nchat.openai.com and you will arrive to\\nthis page. On this page, you will click\\nsign up. They will ask you to create an\\naccount. You can either use your Google\\ncredential or Microsoft credential or\\neven Apple or just give your email\\naddress. Let\\'s imagine that I want to\\nchoose my email address. Then I just\\nneed to put a password.\\nNow that I have entered my password, I\\nwill just need to validate my email. You\\nshould arrive to this email address\\nwhere you just click verify email\\naddress. And now your email is verified.\\nYou just need to login again. Here\\nOpenAI will ask you some\\ndetails. And you can enter also your\\nbirthday. And now we are successfully\\ninside Chpt for the first time. Let\\'s\\nsee now how you can use CH GPT. Here is\\nthe chat box where you are going to\\nstart entering your questions and\\ninstructions. For example, I can ask\\nwhat are the top three skills for an\\nFPNA manager and how to learn them. Now\\nI\\'m going to click here or you can press\\nalt\\nenter and you get from chaptt your\\nanswer. Now, let\\'s imagine that I don\\'t\\nwant three skills, but five skills. And\\nI can click this little pen to correct\\nmy\\ninstruction. And I can ask top five\\nskills. And I can ask, \"Show me the\\nresult in a\\ntable.\" And now I get the result in a\\ntable. What you can also do is press\\nthis copy and paste\\nbutton. And when you do that, it copies\\nall of the text. Here for example, I\\nwill just paste it and I have all of the\\ntests. But as you can note, the text is\\nnot formatted. So what you can do is\\nselect the table like this and copy and\\npaste the table. This is my favorite\\nfunction to copy and paste is just\\nselecting the text rather than using\\nthis. There is another function which is\\nregenerate. Here if I\\'m not happy about\\nthe result, I can just click regenerate.\\nAnd JGPT will propose something which is\\nan alternative to my question. And I can\\ncome back and again here change and I\\ncan say what are the top technical\\nskills and save and submit and you can\\nsee what is happening. I have now\\ntechnical skills but look at what is\\nhere. Here is a way to come back to all\\nof my previous instructions. Like this,\\nI can come back to the history. If you\\nwant to start a new chat, then you will\\nclick here. And now I can ask, tell me\\nhow is a typical day for FPNA manager.\\nIt\\'s really important to change\\ndiscussions each time you are changing\\nsubjects because if you don\\'t do that\\nthen here if I ask what are the top\\nskills it will understand that I\\'m\\ntalking about FPNA manager and not FPNA\\nanalyst because we started the\\ndiscussion by FPNA manager and if my\\nquestion is about FPNA analyst it\\'s\\neither better to change here and to say\\nfor FPN analyst or directly to change a\\nnew discussion and start from scratch if\\nyou feel the two discussions are not\\nconnected. The last important part is\\nthis\\nsidebar. I will click to see the sidebar\\nand to come back to all of my previous\\ndiscussions. And there I can click\\nto manage my settings. For example, I\\ncan ask to save or not the chat history\\nthat we used to at the left. And also I\\ncan activate or deactivate the training\\non my data because for me I have\\nsubscribed to CHP teams. It\\'s by default\\ndeactivated. Finally let\\'s look together\\nat the most advanced functions of JPT.\\nYou will see that with JGPT you can also\\nupload a file. So you have the button in\\nthe bottom here attachments. I\\'m going\\nto upload a file that looks like this.\\nSo here is a file with my company sales\\ndata and I am in a SAS industry. So I\\nwill want for example to do a cohort\\nanalysis. Let\\'s see with JGPT if my\\ncompany has a contract with JGPT and I\\'m\\nallowed to upload data inside JGPT.\\nLet\\'s see what I can do. Just as a\\nwarning if your company doesn\\'t have a\\ncontract with OpenAI, then check if\\nyou\\'re allowed or not to upload data.\\nIt\\'s better to be sure than to do a\\nmistake. So we are back in JGPT and I\\'m\\ngoing to upload my file and you can see\\nthat I can connect to Google Drive,\\nconnect to Microsoft One Drive or upload\\nfrom my computer. So here is the file\\nI\\'m uploading and I will ask can you\\ncreate a cohort analysis for my\\nretention rate based on the month of the\\nsubscriber starting doing business with\\nus. show on top a visualization because\\nI like to visualize this\\ninformation. So now first we can see\\nthat we have here the table. So that\\nmeans JGPT understood the table with\\nexactly the right columns. It read those\\ncolumns using Python. And it\\'s really\\nimportant to know that JGPT is not good\\nat calculating because it\\'s not made to\\ncalculate but is really good at creating\\nthe code to send them to Python. And\\nPython is a good tool to calculate and\\nthat\\'s how you separate the work like\\nyou will do for yourself. If you have to\\ncalculate you will use a computer or you\\nwill use a calculator. Here is the same\\nyou use the right tool to calculate\\nwhich is Python. Now TGPT is coding the\\ncode to create our cohort analysis and\\nyou can see that now I have the mostly\\nretention rates and here it decided to\\nuse red for something positive. So what\\nI can do is even ask to change the\\ncolor. Can you make 100% blue and 0%\\nred? But you see that while it\\'s\\ncalculating, I want to show you how\\npowerful the tool is because this is\\nimpossible to do so fast in Excel and in\\nExcel also you will have to work with\\nconditional formatting. But here I will\\nhave here my file with a proper cohort\\nanalysis. And what I can even do is\\ndownload the chart as a picture because\\nPython does it as a picture. And I can\\neven here continue to analyze thanks to\\nthese buttons. So now for example I ask\\nto analyze the customer turn rate and it\\nwill do this analysis for me. And you\\ncan see that now I have a graph and\\nthat\\'s what I really like here is to\\ncontinue the discussion thanks to this\\nbutton. And if you want to audit what\\nhappened, you can always look at the\\ncode and you can always ask if you don\\'t\\nreally understand the code, you can ask\\nJGP to explain you the code like this.\\nYou can verify if the calculation is\\ncorrect. This is a function that allows\\nyou to customize and make your own GPT.\\nLet me show you how you can do that. So\\nwe are back in JPT and I will go on the\\nside open the sidebar and here you\\nshould see a button called explore GPTs\\nand GPTs are GPT versions that are\\ncustomized by either yourself or other\\npeople. This is the marketplace of GPS\\nor the app store of GPS. So for example\\nhere you can type US GAP and it will\\nshow you for example here a US gap\\nadvisor where you can click on you can\\ncheck if there are good ratings or not\\nand if a lot of people have used it you\\ncan see what it does and what we can do\\nis for example start a chat and I can\\nask explain me revenue recognition and I\\ndon\\'t even have to explain that I want\\nto get this explanation based on US gap\\nbecause I\\'m already in a US gap advisor.\\nSo that\\'s the big advantage. This US gap\\nadvisor was configured to unswear for US\\nGAP and to answer in a specific way. And\\nyou can see that here we got a really\\ngood answer because it knows we are\\nfinance people because who would want to\\ngo to a US GAP advisor? Mostly finance\\npeople. And we have already somebody\\nbehind who did the work to customize the\\nelsewhere. So like this we save a lot of\\ntime. So now do you know that you can\\nactually also create your own GPT? Let\\nme show you how. So you will go back to\\nexplore GPT to the left and then upright\\nyou can create your own GPT. So I will\\nclick create and now I am in the GPT\\nconfigurator. And here you have two\\nsolution. Either you can create through\\na description or you can configure\\nyourself by giving a name describing\\nwhat your custom GPT does and then\\ngiving some instruction. And what you\\ncan even do after is upload files to\\naugment the knowledge of this GPT. Pay\\nattention that if you activate code\\ninterpreter, those files are\\ndownloadable by the other users. If your\\nGPT is public, you can also keep your\\nGPT for yourself. But just know that\\nthat this is something to pay attention.\\nAlso, you have the action function here\\nis more if you want to use code to get\\ndata from outside through API and this\\nis too advanced to cover that in this\\ncourse. But if you don\\'t know how to\\nstart, a fun way is to use the create\\nview because there you can just create\\nyour GPT through a discussion. So now\\nlet me show you how to create a GPT. So\\nyou will go in the create view which is\\nthe easiest one if you just started.\\nLet\\'s imagine that we want a coach to be\\nbetter at FPNA. I want to create a coach\\nto get better at FPNA. I will just say\\nthat and let\\'s see the discussion. Yeah,\\nI\\'m happy about this name. So\\nyes, and you can see that TGPT even\\ncreated a logo for our FPNA coach. So\\nI\\'m happy. Yes, I like\\nit. So what should be emphasized? So\\nhere I want that this coach shows me the\\ntechnical aspect of being a FPNA pro and\\nshows me both the theory and practical\\nexamples and step by\\nstep. So now that I\\'ve done that this is\\nmy instructions to improve this GPT and\\nlike this I don\\'t have to repeat after\\nhow this GPT will act. So I want more\\nsomething direct and maybe I need also\\nmotivational\\nSo now the GPT is actually finished and\\nwe can try it. So for example I can try\\nhow can I improve my budgeting process.\\nSo you see we have the answer and either\\nyou are happy and you can create it or\\nyou can even do something is you go to\\nconfigure you see how was this GPT\\nconfigurated and you can change\\nsomething for example you say use cables\\nto present information when possible and\\nyou can even change your conversation\\nstarters so now I will create the GPT\\nand that\\'s where you can either have it\\non invite only or anyone in your\\norganization because I have a paid JGPT\\nversion which is teams or for companies\\nthey have enterprise. So for me in my\\norganization I can decide who has access\\nor I can put it on the GPT store or if\\nyou only want that specific people have\\nyou can just share them the link like\\nthis is not on the GPT store but it\\'s\\nstill available for people with the\\nlink. So for now I just wanted to keep\\nit for myself. So I will click update\\nand then I will view this GPT and this\\nGPT will also appear on the left with\\nall of my other GPT. And now I can ask\\nfor example how to do a cohort analysis.\\nI will enter. And this will help me as a\\ncoach. And you see that it follows the\\nstep by step like I wanted. Again you\\nsee how you save time because I don\\'t\\nhave to repeat that I want to have\\nadvices shown me in a step by step. It\\nwill always do it like this. And on top\\nit combines theory with practical advice\\nand step-by-step instructions.\\nIn this lesson, we will explore Canvas,\\na powerful feature in TGPT that helps\\nfinance professionals draft reports,\\ncommentaries, and even modify code in\\nreal time, all in a seamless workspace.\\nLet me show you how to use it. Let\\'s\\ntake the P&L of Nvidia as an example,\\nand let\\'s ask JGPT to draft commentaries\\non this P&L. I\\'m going to take a\\nscreenshot. I\\'ll now back in GPT and I\\nwill paste the screenshot and I will say\\ndraft the financial commentaries on the\\nP&L of this company. And here I can\\nactivate canvas. Sometimes it activates\\nautomatically but I really want to use\\nthe canvas function and you will\\nunderstand why. So let\\'s launch it and\\nsee what is\\nhappening. Now we have a totally new\\nview that is coming because on the right\\nside my document is getting written by\\nJGPT and on the left side I have the\\nconversation that is still active where\\nyou can see on the upper left the\\nscreenshot and my prompt and here the\\nanswer from JGPT. So what can we do on\\nthe right side with this document? Well,\\nlet me show you the different\\nfunctionalities on the bottom right. If\\nI go over the pen, I have different type\\nof edits. I can add emojis which we\\ndon\\'t really need for a factual\\ncommentary. I can polish it. I can\\nchange the reading level and the length.\\nLet\\'s see here if I ask to polish it.\\nPush it means that it will review the\\ntext and makes it even better. So you\\ncan see that it\\'s changing slowly all of\\nthe text. Now the position is done.\\nLet\\'s see what are the other function.\\nThe reading level maybe let\\'s make it\\nmore either easy or advanced. Let\\'s put\\nit graduate school to see if our wording\\nis changing. Okay, so you can see we are\\nusing different types of wording and\\nadjectives and you can yourself see\\nwhich one you like the most for your\\nstyle. Okay, now let\\'s try something\\nelse. Let\\'s make it shorter because it\\'s\\na bit too long. So now I will really\\nmake it the shortest as\\npossible. And you can see that now the\\ndocument is much shorter. So this is\\nactually already good because we can\\nchange really quickly. But look what I\\ncan also do here. For example, I can\\nselect the text and I can ask CH GPT to\\nchange it to add that the growth comes\\nfrom AI. So let\\'s add some flavor in the\\ntext from AI and\\nblockchain. And we can see here that is\\nrewriting it adding that the growth is\\ncurrently driven by advancement in AI\\nand blockchain technology. Of course,\\nthis part is you who is driving the\\nseats. You can also say that oh I don\\'t\\nreally like blockchain technology so\\nlet\\'s just remove it and now I just\\ndelete it and I can write especially in\\nthe last month. So that\\'s what is good\\nis now you are also in control and you\\ncan write over it. You can even\\nhighlight here in bold. You can even\\nhere change the headings. All of this\\nyou are in control. The last important\\nfunctionality of Canva is with coding.\\nSo here I ask JGPT to create a code to\\nillustrate a scenario analysis and you\\nwill see that if I activate again the\\nCanva we will get the code written in\\nCanva and I can go on and also modify\\nthis code. But what is even better is\\nthere is the button run. So I can run\\nthe code and it will for me test if the\\ncode is working or it will also tell me\\nif there is any bug. So for example here\\ntells me that it doesn\\'t have this type\\nof libraries. So I can ask to fix the\\nbugs and you can see that now that is\\nfixing the bug is going through all of\\nthe code to improve the code to make it\\nwork. So this is useful if you want\\neither to change part of the code. So\\nbecause you can select a part and just\\ndebug the part that is not working or if\\nyou also want to test the code inside\\nGPT directly. So go and try it by\\nyourself, especially for the writing\\npart and I\\'m sure you will love this new\\nfunctionality. Let me show you the TGPT\\nsearch functionality and how to use it\\nin finance. I\\'m back in TGPT and you can\\nsee that here there is the button\\nsearch. So if you really want to get\\nonline and get sources then I will\\nadvise you to click to search the web.\\nBut sometimes also without clicking it.\\nIf you ask for example an information\\nthat is recent. If I say what is the\\nprice of the Nvidia stock from last\\nFriday then let\\'s see what is going to\\nhappen. You can see that it\\nautomatically search the web from my\\nquestion even if I didn\\'t ask it. And\\nnow I have also February 14, 2025. So\\nthat\\'s the date when I recorded this\\nvideo. And we can see here the price\\nstock of Nvidia. And what is also really\\ngood is you have the sources where you\\ncan find this information. So like this\\nyou have one realtime information two\\nyou have sources. Now let\\'s look at a\\nreal use case for us in finance. When\\nclicking search I\\'m going to ask\\nspecifically on which website I want to\\nget my information and what I want to\\nget. So if I click you\\'ll see that it\\nwill automatically search the web. What\\nis really good is that now I have the\\ndifferent types of publication on the\\nIFS 15. I can try this one for example\\nand now I am already inside the\\ndocumentation. So that\\'s a great\\ntimesaver and also what is really good\\nis you have always the link of the\\npublication. Let me now present you the\\nproject functionalities from JPT. I\\'m\\nback in Chip and here on the left side\\nif you have a pro account or a teams or\\nenterprise account you can see that\\nthere is the projects section here you\\nwill see the list of your projects and\\nyou can also create a new project that\\'s\\nwhat we are going to do so I create a\\nproject let\\'s imagine that I want to\\nwork on the budget for 2025 let\\'s create\\nthe project so now I am inside my\\nproject I can close here the view and\\nhere for the project I can add file\\ncase. So, I have two files. Let me show\\nyou. I have here my P&L for 22, 23, 24,\\nand the budget 24. And I have here also\\na file with my budget instructions and\\nsome deadlines for this year. I\\'ve made\\na PDF of this document. And this PDF I\\nwill upload in my project. To upload, I\\njust need to go and click add files and\\nI will add my\\ninstructions. Here I\\'ve added my budget\\ninstructions and now I\\'m adding the P&L.\\nOkay. So we are set. I can close and I\\ncan also add instructions here. For\\nexample, I can say this project is for\\nthe FPN team of a manufacturing company.\\nWe are in the US and we work with\\nNetswuite. You can add any type of\\ndetails. You can also add the way you\\nwant JPT transfer. Here I can say your\\nresponses should be direct and use\\nbullet points and tables as much as\\npossible. So that\\'s the advantage here\\nis you will see that those instructions\\nthey will be for any chat I start within\\nthis project. So now let\\'s imagine that\\nI want to draft an email to the sales\\nteam. Draft an email to the sales team\\nto ask their input for the budget and I\\ncan say mention the\\ndeadlines. So here you can see that the\\ndeadline October 2025 I didn\\'t have to\\nsay which deadline it was because\\nactually here in the instructions I\\nalready had my details and you can see\\nhere what we needed to have I can find\\nit here back in the key areas of input.\\nSo that\\'s really practical because here\\nin this project there is a knowledge\\nthat you can use based on the document\\nyou uploaded but also based on the\\ninstructions. Now I can go back to my\\nbudget 2025 and I can say draft PNL 2025\\nformat with the comparison with\\n2024 and again here it has the knowledge\\nof the P&L of last year like this I can\\nalways reuse the information I opened it\\nbefore. So you can see here the answer\\nwhere it assumed an increase of 10%. We\\ndidn\\'t ask that. But what is interesting\\nis that we have already the table for\\n2024 and budget 2024 without having to\\ngive the information because it was in\\nthe Excel I provided before. And now you\\ncan always go back when you are in the\\nbudget 2025 project. You can go back in\\nall of the charts that are made under\\nthis project. And also let\\'s imagine\\nthat you had here another chart you can\\nalways add to the project 2025. So\\nthat\\'s also really advantageous because\\nyou can organize your chat based on some\\ntopics even if you don\\'t add any files\\nor even if you don\\'t add any\\ninstructions. I have some friends who\\nare using it like this to basically\\norganize their chat but they don\\'t give\\nany instructions or no projects files\\ninside. And you might wonder what is the\\ndifference with custom GPT. First here\\nyou can choose the model. Here you can\\nchoose GPT4 or O1 or this for O mini or\\nGPT for AC model and in GPS you cannot\\nchoose the model. That\\'s number one.\\nNumber two here you cannot really share\\nthis chat with somebody else but in GPS\\nyou can actually share the chat with\\nyour team and you can even also share\\nyour GPS with your team or with people\\noutside of your organization if you\\ndecide to make it public to make project\\nno project is only personal and here you\\nsee as well how easy it is to give your\\ninstructions and add the document for\\ncustom GPT you need to take a bit more\\ntime to customize your GPT So I will say\\nreally that project are different than\\nGPS. GPS is more like an agent. They\\nwill have a specific behavior and\\nproject is more to chat in a closed\\nenvironment where you have some\\ninformation that are specific to the\\nchat and you are going to create several\\nchats about those information and those\\ncustom instructions. One cool way also\\nto use projects is to upload a lot of\\ninformation about you or about a book or\\nabout a topic and then chat with this\\ninformation. Trade by yourself if you\\nhave a pro, a team or enterprise\\nversion. See how you can use it the best\\nway for your own use\\ncases. Let\\'s look now at the new\\nfunctionality from Chpt which is the\\noperator. Operator is like an agent that\\nhas access to your computer and can act\\non your behalf if you prompt it.\\nOperator is not yet available in all of\\nthe countries. So let me show you a\\npresentation of OpenAI showing how\\noperator is working. Here is the\\npresentation from OpenAI showing the\\noperator. So now they show it mostly for\\nindividuals like shopping or doing a\\nreservation for a table. Here you can\\nsee that OpenAI is showing an example of\\nhow to use operator to book for you a\\ntable. So here you see that once we\\nprompted to book a dinner\\nreservation operator is starting to act\\ninside your browser. On the left side\\nyou have the discussion you have with\\nyour operator and on the right side it\\'s\\nthe operator doing it everything by its\\nown. You can see that now it\\'s selecting\\nthe date. It\\'s selecting what type of\\nfood and it\\'s doing all of this on its\\nown. So basically, you don\\'t control it.\\nYou just let it do on the side while\\nlooking at it to verify that it\\'s doing\\nwhat you wanted. And on the left side,\\nyou can see all of the actions that were\\ndone. So here you can see that the\\noperator is telling you that the closest\\nreservation is as from 7:45. You say,\\n\"Okay, let\\'s go. Let\\'s do it.\" And then\\nthe operator is going to book it for\\nyou. You can see now you just need to\\ngive your details and then if you say\\nyes the operator is going to click and\\nthen your reservation is done. What does\\nit mean for us? Well, think about this\\nreport where you have to upload data\\nmanually. You know like key in the URL\\nthen doing a copy and paste in some of\\nthe fields. That\\'s a good use case for\\nthe operator. Think also of this website\\nwhere you have to go and have some steps\\nin those websites to download invoices.\\nThat\\'s also a good task for the\\noperator. Why? Because once you do the\\ntask with the operator, it can memorize\\nit and next time you just have to ask\\nrepeat this task and then the task will\\nbe done by itself. So of course there\\nare some confidentiality data to think\\nabout which access do you want to give\\nto this operator also do you want to\\ngive your credit card details. So that\\'s\\nsomething to think about. But this is\\nreally the start where your AI tool is\\ngoing to be an agent for you and is\\ngoing to be triggered by you or by\\nscheduled task. You could for example to\\nask every week to pull some data or\\nevery month to get some invoices or fill\\nup some vendor forms where you have to\\ngive all of your details like banking\\ndetails, name, tax ID, etc., etc. And if\\nyou want to learn more, I recommend this\\nvideo from Ector Garcia where he\\'s\\nshowing us how operator can help on some\\nQuickBooks task that you might do now\\nmanually. But now with operator you can\\ndelegate this task to this agent. Go and\\ncheck\\nit. Let me now show you how you can\\ncustomize Chip. So on the right side you\\nhave this diamond icon. You will click\\non it and you just have to click\\ncustomize GPT. And this is here where\\nyou can put your name, what do you do,\\nwhat traits should chip have. So if you\\nlike a formal tone or something a bit\\nmore casual and that\\'s where here you\\ncan tell chip to write like you if you\\nhave a specific tone. And you see here\\nyou have already some suggestion. Here\\nis where you can explain chip more about\\nyou like where you work, maybe your\\nindustry, maybe your environment. So if\\nyou are in the US or Europe, that\\'s\\nimportant to explain. And if I click to\\nadvanced, then I can also select the\\nJGPT capabilities. For example, if you\\ndon\\'t really like that it always goes to\\nthe web search, you can just deactivate\\nit that now another way to get TGPT to\\nget customized is to activate the\\nmemory. So when I click to settings and\\nI go to personalization, I can ask to\\nactivate the memory. And you can see\\nwhat the memory can do is basically\\nalong your messages. If you explain\\nwhere you work, if you explain a bit\\nabout you, then it will start populate\\nhere the memories. Here is a great way\\nto let the AI personalize the experience\\nfor you. And what is good is you can\\nmanage it yourself if you want or you\\ncan deactivate it if you prefer to have\\na neutral AI that doesn\\'t know about you\\nor maybe just you decide when you want\\nthat it knows about you. So you can do\\nthat in a custom GPT or in a project and\\nyou can decide in which chat where you\\nwant no information about you because\\nyou don\\'t want to influence the output.\\nSo go ahead and check that for\\nyourself. Let\\'s start in the meat of\\nthis course how to prompt with CHP. I\\'m\\ngoing to teach you my framework that\\nworks\\neverywhere. But first let\\'s understand\\nwhy do we need a framework. The first\\nmistake we all do when we start using\\ntool like JGPT is to use the Google\\nmethod. The Google method is simply what\\nwe have been doing the last 15 years is\\nto research something based on keywords.\\nAs we are humans, we are lazy. It\\'s\\noften our favorite method because we\\nhave to write the list word to get the\\nmaximum output. Let\\'s see together what\\nhappens if we are using JG GPT like\\nGoogle. Imagine that I want to issue\\nreminder to one of my client who didn\\'t\\npick. I will write inside\\nJPT the name letter. Let\\'s see what\\nhappens. So we get something quite fast\\nbut we only get a description of what is\\nthe name letter.\\nThe problem is that it doesn\\'t really\\nhelp us because what we wanted is to\\nsend the letter. We wanted to have the\\nletter drafted. So this is not working\\nwell because it doesn\\'t really help us\\nwith our work. And that\\'s where 90% of\\nthe people will usually stop because\\nthey think tragic is smart but not\\nhelpful. And imagine if you are working\\nwith somebody, imagine that you want\\nthem to write the dunning letter for\\nyou. Are you really going just to send\\nthem in teams in a chat dunning letter?\\nNo, you are going to explain what is the\\nproblem and what you want from them.\\nWell, chat GPT is exactly the same way.\\nis like an assistant to whom you need to\\nexplain the context and be specific\\nabout what you want and also give a\\nclear instruction to have clear\\nexpectation and have a clear output from\\nchip. This is why I\\'m bringing a team to\\nsolve a crime which is called CSI. With\\nmy framework called the CSI framework,\\nyou are going to prompt using the CSI\\nletters meaning C for context. The\\ncontext is basically explaining who you\\nare and the context of your company. E\\nis being specific. What is your problem?\\nI is to give a clear instruction because\\nif you just stop at context and specific\\nthen you still let too much freedom to\\ncharge GPT to generate the output for\\nyou. Now let\\'s use our example of\\ndueling letter and let\\'s see how we can\\nuse CSI with I am an accountant being\\nthe context my client as an overview\\nbeing the specificity and the problem\\nand being specific about the\\ninstruction. Now let\\'s see if we use the\\nCSI framework if we have a better output\\nfrom chip. Already it starts to write\\nthe letter and we can see that we have\\nexactly a letter on overdue on the\\nouting balance and we ask nicely about\\nthe reminder and we also ask what is the\\nstatus. So we are quite gentle. Now the\\nproblem is that this client didn\\'t pay\\nsince a long time and it\\'s not the first\\ntime that we have this problem. So, do\\nyou think this letter will be enough to\\nget our money back? No, it\\'s not enough\\nbecause we are too gentle. So, how are\\nwe going to solve this? If we want to\\nsolve this problem, we are going to\\nbring a second team to make sure we get\\nour money back and we are going to bring\\nthe FBI. FBI stands for F the format, B\\nthe blueprint, and I identity. If we get\\nback our example where at the beginning\\nwe had this prompt. I am an accountant.\\nMy client has never due for two months.\\nCan you draft a communication to them?\\nWe are going to add F the format. So we\\nare going to have a formal letter. B my\\nfavorite part the blueprint. We have\\nsomething in mind but we don\\'t really\\nknow how to say that. So we will let\\nCHGPT formulate for us and just using\\nwords like tone to be hard or legal\\nactions we know it\\'s going to have much\\nmore impact than our previous letter and\\nfinally I for identity where we will ask\\nto act as the best lawyer and here\\nidentity you don\\'t always need it but it\\ncould be really useful in this type of\\nsituation. Let\\'s go into ch to see how\\nwe are going to use this framework.\\nLet\\'s see now the output once we use the\\nFBI formula on top of CSI. You can see\\nit started with a letter head and we\\nhave already in our title legal actions.\\nYou will also notice that our tone has\\nchanged and we are using words to\\nescalate the situation as we wanted. We\\nhave words like lawsuit, seeking a court\\njudgment, or engaging debt collection\\nagencies. So, what do you think of this\\nletter? Do you think this will have more\\nimpact than the previous one? And here\\nis an additional tip. You can also ask,\\ncan you list the legal\\naction in a bullet point list and\\nreddraft this letter? I like to do it\\nthat way because you see here for a\\nhuman is actually much easier to read in\\nbullet points and we know that if\\nsomebody came across this letter, they\\nwill first read that. And I assure you\\nif you read that I\\'m sure your client or\\nyourself you are going to react on this.\\nThis is how you can use the framework\\nCSI plus FBI. And I recommend you to\\nfirst try all of your prompts in CHP\\nwith at least CSI and when you want\\nsomething more complex use FBI. And the\\nmore you will get used to this\\nframework, the more you will see what\\nworks and the more you can take freedom\\nfrom this framework and build your own\\nframeworks based on your\\nexperience. Let\\'s start with an exercise\\nto practice the CSI and FBI formula.\\nImagine that you are the FPNA analyst of\\na brewery and you have to create a\\nweekly financial report. You are going\\nto use JG GPT using the CSI formula to\\ngenerate this report. That\\'s the first\\npart. When you are done, you are going\\nto use CSI and FBI to improve your\\nprompt and also with that to improve\\nyour output. Take five minutes to do\\nthis exercise and I see you in the\\nsolution.\\nRemember the exercise was to create a\\nweekly financial report for your FPNA\\nmanager. Let\\'s see first what happens\\nwhen you use the CSI formula. So here I\\nwrote the context. I am FPN analyst for\\na brewery. Then I\\nexplain what is my specific problem. I\\nneed to deliver the weekly financial\\nreport to my manager and I ask\\nspecifically to draft the report\\noutline. Let\\'s see what\\nhappens. So as you can see we have the\\nweekly financial report with adapted\\nwith the beer types. Also we have\\nproduction cost which you don\\'t have for\\na SAS and also inventory topics. So it\\nunderstood that we are a beer or brewery\\ncompany with production cost. So that\\'s\\nreally good because if you now say that\\nyou are a SAS company, you\\'ll have a\\ndifferent type of report. Now imagine\\nthat what you wanted is actually slides\\nand this is not enough for slides\\nbecause you\\'ll have to readapt it. So\\neither you can continue the discussion\\nand say adapt it to\\ncreate the\\nslide structure from this.\\nAnd now we have the slide name for each\\nof them. Or I\\'ll be more specific and I\\ncan correct and say in each slide I want\\na\\ncatchy slide title, a\\nsubtitle,\\nthree bullet points and a nade on\\nvisuals.\\nAnd when you do that, you get much\\ndeeper help because on top of of having\\nthe text, you also get help on Hulk, you\\ncould visualize the information that has\\nto go on the slide. And you see by just\\nadding this, we got much more value from\\nthe output of CH GPD. Now let\\'s try with\\nthe CSI and FBI formula.\\nSo I wrote the same CSI print but I\\nadded to\\nit the F meaning the format the B the\\nblueprint. So the content needs to be\\nconcise and each section needs to have a\\nkey takeaway section and on top I asked\\nto draft the outline like a financial\\nexpert. Let\\'s see the output of this\\nprompt. Now you can see that I have\\nthose slides. I have the key takeaway.\\nAnd if I wanted to have exactly the same\\noutput than what we tried in the\\nbeginning of the exercise, I could just\\nchange here the blueprint and say the\\ncontent is concise. The title of each\\nslide needs to be catchy. add a subtitle\\nin each slide and add a visual aid for\\neach slide. Now let\\'s see if we have a\\nbetter\\noutput. So here is really good to show\\nyou that because I made a mistake. I\\nforgot to mention the three bullet\\npoints. So now I will just change and\\nsay add three bullet points on each\\nslide because you could see here I only\\nhave the title, the subtitle and the\\nvisual aid. So let\\'s try\\nagain. And now I have my slide, my\\ntitle, my subtitle, and the breakdown in\\nthree bullet points. What I don\\'t have\\nthough is a catchy title. So here I\\ncould\\nask reddraft it and change all the\\ntitles to\\ncatchy\\ntitles. And now each slide has a catchy\\ntitle. This is how you improve your\\ncontent also by iteration. Now that you\\nhave seen how to prompt and understood\\nthe CSI and FBI formula, let\\'s go deeper\\nto get more from TDP.\\nLet\\'s address an important topic. The\\nrisks and limitations of using CH GPT or\\nany other LLMs that are open. The first\\none, as you may have heard, if you are\\nusing something like CHPT, you are using\\nan external tool that is not part of\\nyour company and with whom probably your\\ncompany didn\\'t sign a contract. So if\\nyour company doesn\\'t have THP\\nenterprise, it means you are using it\\nprivately. And if you are using it\\nprivately, then this is like using your\\nown Gmail inbox to send to yourself\\nprivate document of your company. This\\nis something you\\'re you are not allowed\\nand this is something your contract\\nshould prevent with a confidentiality\\nclose. So confidentiality is really\\nsomething you need to pay attention. But\\neverything I\\'m going to show in this\\ncourse is without this confidentiality\\nproblem because we will never say\\nanything about the company. We will\\nnever divate any numbers. We will just\\nuse CHPT like a friend or an ex-colague\\nwith whom we exchange on best practice.\\nBut we never tell anything about\\nconfidential information from the\\ncompany. And when you have these\\ndiscussions, if you are meeting your\\nbest friend at a barbecue and your best\\nfriend is also working in FPNA and you\\nboth talk about how to do a cohort\\nanalysis in Excel, you can still learn a\\nlot. you can still help each other a lot\\nand this is how we are going to use JG\\nGPT like a good friend that you meet at\\na barbecue who is really really smart\\nbut who is also somebody you should not\\ngive any confidential information of\\nyour company the second part is about\\nsecurity GPT Gemini and Copilot and\\nother LLMs are also external tool and\\nanything you put inside is not part of\\nyour security protocol from your\\ncompany. So it\\'s in the internet and\\nbecause of this you should check with\\nyour IT what you are allowed to do. But\\nagain to avoid any risk don\\'t put any\\nconfidential information. Another part\\nis for yourself on your private data but\\nalso data about your colleagues or about\\nyour family or about friends. Make sure\\nyou understand what OpenAI and others\\nlike Copilot Gemini what they are doing\\nwith your data. And for this you can\\nread the privacy policy of all of the\\nLLMs to see what happens with your data\\nand how you can protect yourself. One of\\nthe other risk from THP is how good is\\nthe output. You should think that THP is\\nlike a traininee. If you don\\'t coach a\\ntraininee properly then the output of\\nthe trainy might not be as good as what\\nyou expect. Your input in the\\ninstructions is really important. But\\nalso it might be that your training\\ndoesn\\'t know how to do the work. And\\nbecause of this you should not expect\\nthat the quality of CH GPD is always at\\nthe best. So you need to review and own\\nthe output and also improve it to make\\nsure that you can use it for your work.\\nThe last part is on hallucinations. JPT,\\nCopilot, Gemini and other LLMs are\\nmostly generative AI meaning they\\ngenerate output.\\nAnd it\\'s really good because you can\\ncreate stories, you can create\\npresentations with it and content for\\nyour slides. But the risk maybe it will\\ncreate an accounting policy that doesn\\'t\\nexist like a US GAP policy that is not\\nin the books or an inventory method that\\ndoesn\\'t make sense. Because of this, you\\nneed to use your professional skepticism\\nto review the work. And each time you\\nwant to base a decision on the output of\\nCHPT, you need to review and make sure\\nthat if there are facts to review\\nanother source to see if the facts like\\nfor example accounting policies or US\\nGAAP or if tax regulations, make sure\\nthat those are the latest regulations,\\nthe most updated one and also the right\\nones. Again, everything that you will\\nuse from those LLMs become yours. And\\nbecause it becomes yours, it\\'s your own\\nresponsibility to review it and to own\\nit and to improve it. To finish, let\\'s\\nlook at limitations. First, you need to\\nunderstand that JGPT is not consistently\\nupdated. It has some cut of date on\\nwhich the model is trained. And if you\\nwant something more actual, you need to\\nspecifically ask to search the internet\\nbecause it will not have the latest\\ninformation that are after the cutff\\ndate. And you can look at the link\\nyourself to research when was the last\\ncut of date as it\\'s changing all the\\ntime. Second, this model is\\nprobabilistic. We don\\'t have a model\\nthat calculates. We have a model that\\nestimates what is the most probable\\nanswer. And we know in finance we need\\nsomething accurate. So always have that\\nin mind because TGPT will always show\\nyou different answers and you know that\\nwith figures is not really ideal. So for\\nthis what I recommend is always ask JGPT\\nto show its calculation and also as much\\nas possible to let JGPT use Python to\\ncalculate because Python is a calculator\\nand a calculation from Python. You can\\naudit it because you can look at the\\ncode and audit if it was the right code\\nand if the code was done on the right\\ndata and like this you can verify if the\\ninformation given is correct. Other\\nlimitations are the incorrect or\\nnonsensical answers. So because it\\ndoesn\\'t have all of the truth, it might\\nbe that you will get something that\\ndoesn\\'t make sense and doesn\\'t exist.\\nOther limitations is that based on what\\nyou ask slightly change might change the\\nanswer. Something you will notice as\\nwell is that chpt always sounds the same\\nand this is because the model has been\\noptimized to answer in a certain way. So\\nthis is a limitation because it will not\\nalways adapt its own way of phrasing\\nconcepts based to you. You will need to\\nbe really specific on what type of\\nwording you want. And the tip for that\\nis to ask to write more directly and\\nalso to avoid some of the words that you\\nsee that are always coming back. Like\\nfor example, we are going to delve into\\na topic. Delve is really something Chipt\\nloves to repeat all the time. Also\\nsomething you need to understand, Chpt\\nis made to make you happy as a user. And\\ninstead of making the experience really\\nhard by asking you what do you want? I\\'m\\nnot sure. Can you repeat again? Can you\\nformulate again? Can you give me more\\ninformation? It will take a lot of\\nassumptions if you are not specific\\nenough. So make sure that you understand\\nthat some of the response are based on\\nassumptions and because of this you\\nmight have the quality that is not what\\nyou expect. Finally the last limitation\\nthere are some policies inside the model\\nthat will stop you from asking and\\ngetting output especially if you ask\\nsomething dangerous or if you ask\\nsomething about somebody famous there is\\nsome limitations. And there you have it,\\na full tutorial on how to use CHGPT as a\\nfinance professional. Now, even though\\nthis was one of my most in-depth video I\\never did on this channel and also I\\ncovered all of the fundamentals you need\\nto get started, this was actually just\\none of eight modules I have made in my\\nJGPT for finance course. So if you want\\nto take this course, this course takes\\nyou from complete beginner to a real pro\\nto use AI better than all of your\\ncolleagues and be the most valuable\\nperson in your company. So if you are\\nserious about implementing AI into your\\nwork, then click in the first link in\\nthe description to check out my full\\ncourse. It has everything I know about\\nhow to best leverage JGPT as a finance\\npro. And if this free course was\\nvaluable to you, then subscribe to the\\nchannel because I will make more and\\nmore of this video. And I hope to see\\nyou in the next'\n",
59
+ "-----\n"
60
+ ]
61
+ }
62
+ ],
63
+ "source": [
64
+ "from content_core.content.extraction import extract_content\n",
65
+ "\n",
66
+ "\n",
67
+ "\n",
68
+ "yt = await extract_content(dict(url=\"https://www.youtube.com/watch?v=lLprprtHfts\"))\n",
69
+ "print(yt)\n",
70
+ "print(\"-----\")\n",
71
+ "# print(await cleanup_content(yt.content))\n",
72
+ "# print(\"-----\")\n",
73
+ "# print(await summarize(yt.content, None))"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": 4,
79
+ "metadata": {},
80
+ "outputs": [
81
+ {
82
+ "data": {
83
+ "text/plain": [
84
+ "ProcessSourceOutput(title='file.pdf', source_type='file', identified_type='application/pdf', identified_provider='', metadata={}, content='3-Day Itinerary for Buenos Aires\\n\\nDay 1: Exploring the Heart of the City\\nMorning:\\n- Breakfast at Café Tortoni (8:00 AM - 9:30 AM)\\nStart your day at this iconic café with medialunas and coffee.\\n- Plaza de Mayo (10:00 AM - 11:00 AM)\\nVisit the historic square, see Casa Rosada, and snap photos.\\n- Catedral Metropolitana** (11:15 AM - 12:00 PM)\\nExplore the cathedral and its stunning architecture.')"
85
+ ]
86
+ },
87
+ "execution_count": 4,
88
+ "metadata": {},
89
+ "output_type": "execute_result"
90
+ }
91
+ ],
92
+ "source": [
93
+ "await extract_content(dict(file_path=\"../../../tests/input_content/file.pdf\"))"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": 5,
99
+ "metadata": {},
100
+ "outputs": [
101
+ {
102
+ "data": {
103
+ "text/plain": [
104
+ "ProcessSourceOutput(title='file.mp3', source_type='file', identified_type='audio/mpeg', identified_provider='', metadata={'audio_files': ['../../../tests/input_content/file.mp3']}, content=\"Welcome to Supernova Podcasts, the future of intelligence. Today we're diving into something truly groundbreaking, OpenNotebook. It's like, imagine having a super smart research buddy, but one that actually respects your privacy. Ooh, privacy and asterisk AI. That's a combo you don't see every day. So what exactly asterisk is OpenNotebook? Break it down for us. Right. It's this amazing open source platform for note taking and research, completely powered by AI. Think of it as your own personal, customizable knowledge hub. They even have a podcast generator. You can turn your notes into, well, a podcast, just like this one. Meta. Okay, so it's for notes, research. Who's the target audience here? Like me? Should I be using this? If you're a learning enthusiast, absolutely. It's designed for anyone who's serious about learning, whether you're a student, researcher, or just someone who loves to dive deep into new topics, especially if you're, you know, drowning in a sea of links and PDFs and just need a way to organize it all. Oh, I feel safe. My browser history is basically a digital graveyard of unread articles, so it helps manage that kind of information overload? Exactly. It integrates with all sorts of content, like PDFs, YouTube videos, even PowerPoints. And the AI can help summarize information, generate insights. It's like having a research assistant built right in. Okay, I'm intrigued. But the privacy thing, how does that work with AI? Isn't AI all about, like, data harvesting? That's the beauty of OpenNotebook. You have complete control over what information the AI can access. It's all about empowering you, asterisk the user. No creepy data mining here. Got it. Got it. So what's the long-term vision for this project? World domination through personalized learning? Not quite world domination, but pretty close. They envision it becoming a true cognitive partner for everyone. Like a customized AI assistant to help you develop your skills and knowledge in a way that actually makes sense, asterisk, for you. That's ambitious. So how can people get involved? Besides, you know, downloading it and using it. Well, they're looking for beta testers, developers, even experts in fields like learning and cognition to give feedback and contribute to the project. It's a real community effort. I might just have to check this out. It sounds like it could be a game changer for my learning chaos. Definitely do. And tell them Supernova Podcast sent you. It's OpenNotebook, the future of notebooks. Thanks for listening, everyone. And we'll catch you on the next episode of Supernova Podcast. Goodbye. Bye bye.\")"
105
+ ]
106
+ },
107
+ "execution_count": 5,
108
+ "metadata": {},
109
+ "output_type": "execute_result"
110
+ }
111
+ ],
112
+ "source": [
113
+ "await extract_content(dict(file_path=\"../../../tests/input_content/file.mp3\"))"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": 6,
119
+ "metadata": {},
120
+ "outputs": [
121
+ {
122
+ "data": {
123
+ "text/plain": [
124
+ "ProcessSourceOutput(title='file.mp4', source_type='file', identified_type='audio/mp3', identified_provider='', metadata={'audio_files': ['../../../tests/input_content/file_audio.mp3']}, content=\"Welcome to Supernova Podcasts, the future of intelligence. Today we're diving into something truly groundbreaking, OpenNotebook. It's like, imagine having a super smart research buddy, but one that actually respects your privacy. Ooh, privacy and asterisk AI. That's a combo you don't see every day. So what exactly asterisk is OpenNotebook? Break it down for us. Right. It's this amazing open source platform for note taking and research, completely powered by AI. Think of it as your own personal, customizable knowledge hub. They even have a podcast generator. You can turn your notes into, well, a podcast, just like this one. Meta. Okay, so it's for notes, research. Who's the target audience here? Like me? Should I be using this? If you're a learning enthusiast, absolutely. It's designed for anyone who's serious about learning, whether you're a student, researcher, or just someone who loves to dive deep into new topics, especially if you're, you know, drowning in a sea of links and PDFs and just need a way to organize it all. Oh, I feel safe. My browser history is basically a digital graveyard of unread articles, so it helps manage that kind of information overload? Exactly. It integrates with all sorts of content, like PDFs, YouTube videos, even PowerPoints. And the AI can help summarize information, generate insights. It's like having a research assistant built right in. Okay, I'm intrigued. But the privacy thing, how does that work with AI? Isn't AI all about, like, data harvesting? That's the beauty of OpenNotebook. You have complete control over what information the AI can access. It's all about empowering you, asterisk the user. No creepy data mining here. Got it. Got it. So what's the long-term vision for this project? World domination through personalized learning? Not quite world domination, but pretty close. They envision it becoming a true cognitive partner for everyone. Like a customized AI assistant to help you develop your skills and knowledge in a way that actually makes sense, asterisk, for you. That's ambitious. So how can people get involved? Besides, you know, downloading it and using it. Well, they're looking for beta testers, developers, even experts in fields like learning and cognition to give feedback and contribute to the project. It's a real community effort. I might just have to check this out. It sounds like it could be a game changer for my learning chaos. Definitely do. And tell them Supernova Podcast sent you. It's OpenNotebook, the future of notebooks. Thanks for listening, everyone. And we'll catch you on the next episode of Supernova Podcast. Goodbye. Bye bye.\")"
125
+ ]
126
+ },
127
+ "execution_count": 6,
128
+ "metadata": {},
129
+ "output_type": "execute_result"
130
+ }
131
+ ],
132
+ "source": [
133
+ "from content_core.content.extraction import extract_content\n",
134
+ "await extract_content(dict(file_path=\"../../../tests/input_content/file.mp4\"))\n"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": 7,
140
+ "metadata": {},
141
+ "outputs": [
142
+ {
143
+ "data": {
144
+ "text/plain": [
145
+ "ProcessSourceOutput(title='file.md', source_type='file', identified_type='text/plain', identified_provider='', metadata={}, content='# 3-Day Itinerary for Buenos Aires\\n\\n## Day 1: Exploring the Heart of the City\\n**Morning:**\\n- **Breakfast at Café Tortoni** (8:00 AM - 9:30 AM) \\n Start your day at this iconic café with medialunas and coffee.\\n- **Plaza de Mayo** (10:00 AM - 11:00 AM) \\n Visit the historic square, see Casa Rosada, and snap photos.\\n- **Catedral Metropolitana** (11:15 AM - 12:00 PM) \\n Explore the cathedral and its stunning architecture.\\n\\n**Afternoon:**\\n- **Lunch at La Brigada** (12:30 PM - 2:00 PM) \\n Enjoy a classic Argentine steak with chimichurri.\\n- **San Telmo Market** (2:30 PM - 4:30 PM) \\n Wander through this vibrant market for antiques and local crafts.\\n\\n**Evening:**\\n- **Dinner at Don Julio** (7:00 PM - 9:00 PM) \\n Savor a parrilla experience with top-quality beef.\\n- **Tango Show at La Ventana** (9:30 PM - 11:30 PM) \\n End the day with a passionate tango performance.\\n\\n---\\n\\n## Day 2: Art, Culture, and Green Spaces\\n**Morning:**\\n- **Breakfast at Pani** (8:00 AM - 9:30 AM) \\n Try their avocado toast and fresh juices.\\n- **Recoleta Cemetery** (10:00 AM - 11:30 AM) \\n Explore the ornate mausoleums, including Evita’s.\\n- **Museo Nacional de Bellas Artes** (12:00 PM - 1:30 PM) \\n Admire Argentine and international art collections.\\n\\n**Afternoon:**\\n- **Lunch at El Preferido** (2:00 PM - 3:30 PM) \\n Enjoy traditional dishes like milanesa.\\n- **Jardín Botánico** (4:00 PM - 5:30 PM) \\n Stroll through this peaceful botanical garden.\\n\\n**Evening:**\\n- **Dinner at Tegui** (7:30 PM - 9:30 PM) \\n Indulge in a modern Argentine tasting menu.\\n- **Evening Walk in Palermo Soho** (10:00 PM - 11:00 PM) \\n Explore trendy bars and boutique shops.\\n\\n---\\n\\n## Day 3: La Boca and Modern Buenos Aires\\n**Morning:**\\n- **Breakfast at Las Violetas** (8:00 AM - 9:30 AM) \\n Enjoy pastries in this historic café.\\n- **La Boca & Caminito** (10:00 AM - 12:00 PM) \\n Wander the colorful streets and visit local art stalls.\\n\\n**Afternoon:**\\n- **Lunch at El Obrero** (12:30 PM - 2:00 PM) \\n Try hearty Argentine classics in a traditional bodegón.\\n- **Museo de Arte Latinoamericano (MALBA)** (2:30 PM - 4:30 PM) \\n Discover Latin American art, including works by Frida Kahlo.\\n\\n**Evening:**\\n- **Dinner at i Latina** (7:00 PM - 9:00 PM) \\n Experience a fusion of Latin American flavors.\\n- **Puerto Madero Stroll** (9:30 PM - 10:30 PM) \\n Walk along the waterfront to end your trip with city lights.\\n\\n---\\n\\n**Notes:** \\n- Book tango shows and upscale restaurants in advance. \\n- Wear comfortable shoes for walking. \\n- Check museum hours, as they may vary.')"
146
+ ]
147
+ },
148
+ "execution_count": 7,
149
+ "metadata": {},
150
+ "output_type": "execute_result"
151
+ }
152
+ ],
153
+ "source": [
154
+ "from content_core.content.extraction import extract_content\n",
155
+ "await extract_content(dict(file_path=\"../../../tests/input_content/file.md\"))\n"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": 8,
161
+ "metadata": {},
162
+ "outputs": [
163
+ {
164
+ "data": {
165
+ "text/plain": [
166
+ "ProcessSourceOutput(title='file.pptx', source_type='file', identified_type='application/vnd.openxmlformats-officedocument.presentationml.presentation', identified_provider='', metadata={'metadata': {'slide_count': 22, 'title': ''}, 'statistics': {'slide_count': 22, 'shape_count': 206, 'text_frame_count': 112}}, content='\\n# Slide 1\\n\\n\\n## HOW TO HOST YOUR MASTERNODE\\n\\n\\n(LightNode version)\\nHostNodes\\n\\n\\n# Slide 2\\n\\n\\n🚨All FLUX Transaction / Payment must be made from Zelcore🚨\\n\\nIf you use an exchange wallet :\\n⛔ Will cause a delay in the deployment of your node ⛔\\n⛔ Can lead to the loss of FLUX ⛔\\n\\n\\n# Slide 3\\n\\n\\n\\n# Slide 4\\n\\n\\nSTEP 1 – Your reward address\\x0b\\nSTEP 2 – Sending the collateral\\x0b\\nSTEP 3 – Retrieving some information\\x0b\\nSTEP 4 – Node reservation\\x0b\\nSTEP 5 – Node configuration\\x0b\\nSTEP 6 – Add IP address\\x0b\\nSTEP 7 – Start your rocket !\\n\\nTIPS 1 – Subscription extension\\x0b\\nTIPS 2 – Change alias of node\\x0b\\nTIPS 3 – Change KDA address\\n\\nTIPS 4 – Activate the “Watchdog” function\\n\\nCreate your MasterNode\\n\\nManage your MasterNode\\n\\n\\n# Slide 5\\n\\n\\n## STEP 1 – Your reward address\\n\\n\\nOn your wallet, go to Portfolio and select the wallet you want to use to receive your rewards.\\n\\nOnce on the portfolio, click on Manage Assets\\n\\nClick on Add Assets \\n\\nThen select the FLUX and KDA tokens\\n\\n2\\n\\n3\\n\\n1\\n\\n4\\n\\n\\n# Slide 6\\n\\n\\n## STEP 2 – Sending the collateral\\n\\n\\nIt is very important to only send the necessary collateral \\x0bNo more / No less\\x0b\\nExample: you want an Nimbus MasterNode (12500 FLUX). It is therefore necessary to send ONLY 12500 FLUX\\x0b\\nOtherwise, your transaction will not be recognized as the necessary collateral for your MasterNode and you will therefore have to redo the manipulation\\n\\n\\n# Slide 7\\n\\n\\nReminder on Flux collateral\\nCumulus = 1000 Flux / Nimbus = 12500 Flux / Stratus = 40000 Flux\\n\\nGo to your main wallet then send the necessary collateral for your MasterNode\\n\\nTo send the collateral, click on the Flux token of your main wallet then click on “Send” \\n\\nFill in the exact amount of the collateral\\n\\nClick on “Choose a contact”\\n\\nSelect the wallet where you want to send the collateral\\n\\nThen click “Send”\\n\\n1\\n\\n2\\n\\n3\\n\\n4\\n\\n\\n# Slide 8\\n\\n\\nYou can check the status of the transaction directly on the wallet, in the Transactions section\\n\\nYou will be able to see the ✅ as well as the number of confirmations.\\n\\nExpect a waiting time of around 2 to 3.5 hours.\\x0bThe transaction must have 100 confirmations before being validated like a Node Collateral.\\n\\n\\n# Slide 9\\n\\n\\n## STEP 3 – Retrieving some information\\n\\n\\nGo to “Dapps” then click on “FluxNodes”\\x0b\\x0bThe type of node will be automatically recognized\\n\\nNode not recognized\\nIf nothing is displayed, two possibilities:\\n\\nEither the transaction is not yet confirmed, and therefore you have to wait\\nEither you did not make the transaction correctly, in this case, you will have to repeat STEP 2\\n\\n\\n# Slide 10\\n\\n\\nClick on the arrow to see the detail of the node then click on “Modify”\\n\\nOn this new window, record the following information:\\nIdentity Key\\nCollateral TX ID\\nOutput Index\\nZelcore ID (in Dapps – Zel ID)\\x0bClick at QR code and copy that\\nKDA address (for Nimbus/Stratus nodes)\\x0b(Example: k:59e9cc6ede8…)\\n\\n1\\n\\n2\\n\\n\\n# Slide 11\\n\\n\\n## STEP 4 – Node reservation\\n\\n\\nGo to https://hostnodes.online/\\nClick on “DEPLOY“\\n\\nSelect “Plan” you want\\x0bClick on “Next”\\n\\nSend amount required to subscribe\\x0bat Flux address which is given to you\\nDo NOT send from an exchange address, only from Zelcore\\n\\nOnly when it’s done, click on “Submit”\\x0b\\nA page is displayed, do not leave it and do not use it.\\x0bYou will be redirected to the Node configuration page once the transaction has been confirmed.\\n\\nPlease create your HostNode account and verify it via the email received before any manipulation\\n\\n1\\n\\n2\\n\\n3\\n\\n\\n# Slide 12\\n\\n\\n## STEP 5 – Node configuration\\n\\n\\nOn your HostNodes dashboard click on “Start” icon\\x0b\\nEnter information of Step 3\\n\\nClick on “Start Node”\\x0b(Your node goes into \"Benchmarks Checking“)\\n\\n\\nClick on tiers name of your node and copy IP\\n\\n1\\n\\n2\\n\\n3\\n\\nExpect a wait time of around 2-5 minutes.\\n\\nIf it takes longer click on \"Cancel\" redo this step\\n\\n\\n# Slide 13\\n\\n\\n## STEP 6 – Add IP address\\n\\n\\nReturn to Zelcore and “FluxNode” as in Step 3\\n\\n Paste the IP address and give a name to your Node\\n\\nClick on “Save”\\n\\n5\\n\\n4\\n\\n\\n# Slide 14\\n\\n\\n## STEP 7 – Start your rocket !\\n\\n\\nTo launch your MasterNode, nothing could be simpler.\\n\\nGo back to the details of your FluxNodes\\x0b(in Dapps – FluxNodes) \\n\\nGo to the details of your node then click on “Start”\\n\\nWrite your HostNodes username in #hosters-role on our Discord\\nThe @HOSTERS role gives :\\nAccess to the Nodes alert\\nAccess to the Rewards alert\\nParticipate in the events and competitions offered\\n\\nMust have 100 confirmations before\\n\\n\\n# Slide 15\\n\\n\\n\\n# Slide 16\\n\\n\\n## TIPS 1 - Subscription extension\\n\\n\\nClick on number days left of your node\\n\\nChoose your “Extension Plan”\\nThe payment system is the same as for the purchase of a node\\n\\n\\n\\nIf u click on number days left and nothing happen:\\nZoom out to get this website layout\\n\\n2\\n\\n1\\n\\n\\n# Slide 17\\n\\n\\n## TIPS 2 – Change alias of node\\n\\n\\n2\\n\\n1\\n\\nClick in «\\xa0Edit\\xa0» icon (pop up will appear)\\n\\nEdit Alias and click on “Save”\\n\\nTo modify the “Alias\" again:\\x0bClick on the name of your node\\n\\n\\n# Slide 18\\n\\n\\n## TIPS 3 – Change KDA address\\n\\n\\nClick the \"Apps\" section (left side of the Zelcore wallet)\\n\\nClick on \"FluxNodes“\\n\\nClick the down arrow next to your Nimbus/Stratus node name\\n\\nScroll down and click \"FluxOS\" button\\n\\nClick on \"Please log in using ZelID\" (pop up will appear to open Zelcore)\\n\\nClick on \"Open Zelcore\"\\n\\nEnter your d2FA pin and click the \"sign and Send\" button\\n\\n\\n# Slide 19\\n\\n\\nGo back to your FluxOS screen and do the following:\\n\\nClick \"Flux Admin“\\n\\nClick \"Manage Flux“\\n\\nKDA address (check/add/change)\\n\\nChain ID number (check/change)\\n\\nClick on \"Update Kadana Account\"\\n\\n\\n# Slide 20\\n\\n\\n## TIPS 4 – Activate the “Watchdog” function\\n\\n\\nClick on the parameter wheel\\n\\nGo to “Advanced” section and enable “Developer Mode”\\n\\nGo to “My Account” section\\n\\nClick on “…” between your Discord name\\n\\nClick on “Copy ID” (it’s a 18 digits code)\\n\\nRetrieve your Discord ID (Desktop version)\\n\\n1\\n\\n2\\n\\n3\\n\\n\\n# Slide 21\\n\\n\\nClick on your profile picture\\n\\nClick on “…” on top right of your screen\\n\\n\\nClick on “Copy ID” (it’s a 18 digits code) on bottom of your screen\\n\\nRetrieve your Discord ID (Android/IOS app version)\\n\\n1\\n\\nGo back to your HostNodes dashboard and do the following:\\n\\nClick on\\t in the line of your node (a pop-up appears)*\\n\\nEnter your Discord ID\\n\\nClick on “Save”\\n\\nYour “Watchdog” function is enable for your node, you can redo this for all your nodes\\n\\n2\\n\\n* If pop-up don’t appears, zoom out like for “TIPS 1 - Subscription extension”\\n\\n3\\n\\nNeed to have “Hosters” role on HostNodes Discord\\n\\n\\n# Slide 22\\n')"
167
+ ]
168
+ },
169
+ "execution_count": 8,
170
+ "metadata": {},
171
+ "output_type": "execute_result"
172
+ }
173
+ ],
174
+ "source": [
175
+ "from content_core.content.extraction import extract_content\n",
176
+ "await extract_content(dict(file_path=\"../../../tests/input_content/file.pptx\"))\n"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": 9,
182
+ "metadata": {},
183
+ "outputs": [
184
+ {
185
+ "data": {
186
+ "text/plain": [
187
+ "ProcessSourceOutput(title='file.docx', source_type='file', identified_type='application/vnd.openxmlformats-officedocument.wordprocessingml.document', identified_provider='', metadata={'metadata': {'author': '', 'created': None, 'modified': datetime.datetime(2025, 4, 28, 15, 9, tzinfo=datetime.timezone.utc), 'title': 'Word Document', 'subject': '', 'keywords': '', 'category': '', 'comments': ''}, 'statistics': {'paragraph_count': 11, 'word_count': 69, 'character_count': 396}}, content='3-Day Itinerary for Buenos Aires\\n\\n\\n## Day 1: Exploring the Heart of the City\\n\\n\\nMorning:\\n\\n- Breakfast at Café Tortoni (8:00 AM - 9:30 AM) \\n\\n Start your day at this iconic café with medialunas and coffee.\\n\\n- Plaza de Mayo (10:00 AM - 11:00 AM) \\n\\n Visit the historic square, see Casa Rosada, and snap photos.\\n\\n- Catedral Metropolitana** (11:15 AM - 12:00 PM) \\n\\n Explore the cathedral and its stunning architecture.')"
188
+ ]
189
+ },
190
+ "execution_count": 9,
191
+ "metadata": {},
192
+ "output_type": "execute_result"
193
+ }
194
+ ],
195
+ "source": [
196
+ "from content_core.content.extraction import extract_content\n",
197
+ "await extract_content(dict(file_path=\"../../../tests/input_content/file.docx\"))\n"
198
+ ]
199
+ },
200
+ {
201
+ "cell_type": "code",
202
+ "execution_count": 10,
203
+ "metadata": {},
204
+ "outputs": [
205
+ {
206
+ "data": {
207
+ "text/plain": [
208
+ "ProcessSourceOutput(title='file.xlsx', source_type='file', identified_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', identified_provider='', metadata={'metadata': {'sheet_count': 1, 'sheets': ['Sheet1'], 'title': None, 'creator': 'openpyxl', 'created': datetime.datetime(2025, 4, 28, 15, 9, 0, 302603), 'modified': datetime.datetime(2025, 4, 28, 15, 9, 0, 302603)}, 'statistics': {'sheet_count': 1, 'total_rows': 1, 'total_columns': 3}}, content='\\n# Sheet: Sheet1\\n\\n| test | spreadsheet | welcome |\\n| --- | --- | --- |')"
209
+ ]
210
+ },
211
+ "execution_count": 10,
212
+ "metadata": {},
213
+ "output_type": "execute_result"
214
+ }
215
+ ],
216
+ "source": [
217
+ "from content_core.content.extraction import extract_content\n",
218
+ "await extract_content(dict(file_path=\"../../../tests/input_content/file.xlsx\"))\n"
219
+ ]
220
+ },
221
+ {
222
+ "cell_type": "code",
223
+ "execution_count": 11,
224
+ "metadata": {},
225
+ "outputs": [
226
+ {
227
+ "data": {
228
+ "text/plain": [
229
+ "ProcessSourceOutput(title='file.epub', source_type='file', identified_type='application/epub+zip', identified_provider='', metadata={}, content='Alice\\'s Adventures In Wonderland\\nby Lewis Carroll\\nChapter I\\nDown the Rabbit-Hole\\nAlice was beginning to get\\nvery tired of sitting by her sister on the bank, and of having nothing to do:\\nonce or twice she had peeped into the book her sister was reading, but it had\\nno pictures or conversations in it, “and what is the use of a book,” thought\\nAlice “without pictures or conversation?”\\nSo she was considering in her own mind (as well as she could, for the hot\\nday made her feel very sleepy and stupid), whether the pleasure of making a\\ndaisy-chain would be worth the trouble of getting up and picking the daisies,\\nwhen suddenly a White Rabbit with pink eyes ran close by her.\\nThere was nothing so very remarkable in that; nor did Alice think it so\\nvery much out of the way to hear the Rabbit say to itself, “Oh dear! Oh dear! I\\nshall be late!” (when she thought it over afterwards, it occurred to her that she\\nought to have wondered at this, but at the time it all seemed quite natural); but\\nwhen the Rabbit actually took a watch out of its waistcoat-pocket, and\\nlooked at it, and then hurried on, Alice started to her feet, for it flashed across\\nher mind that she had never before seen a rabbit with either a waistcoatpocket, or a watch to take out of it, and burning with curiosity, she ran across\\nthe field after it, and fortunately was just in time to see it pop down a large\\nrabbit-hole under the hedge.\\nIn another moment down went Alice after it, never once considering how\\nin the world she was to get out again.\\nThe rabbit-hole went straight on like a tunnel for some way, and then\\ndipped suddenly down, so suddenly that Alice had not a moment to think\\nabout stopping herself before she found herself falling down a very deep well.\\nEither the well was very deep, or she fell very slowly, for she had plenty of\\ntime as she went down to look about her and to wonder what was going to\\nhappen next. First, she tried to look down and make out what she was coming\\nto, but it was too dark to see anything; then she looked at the sides of the well,\\nand noticed that they were filled with cupboards and bookshelves; here and\\nthere she saw maps and pictures hung upon pegs. She took down a jar from\\none of the shelves as she passed; it was labelled “Orange Marmalade”, but to her\\ngreat disappointment it was empty: she did not like to drop the jar for fear of\\nkilling somebody, so managed to put it into one of the cupboards as she fell\\npast it.\\n“Well!” thought Alice to herself, “after such a fall as this, I shall think\\nnothing of tumbling down stairs! How brave they\\'ll all think me at home! Why,\\nI wouldn\\'t say anything about it, even if I fell off the top of the house!” (Which\\nwas very likely true.)\\nDown, down, down. Would the fall never come to an end! “I wonder how\\nmany miles I\\'ve fallen by this time?” she said aloud. “I must be getting\\nsomewhere near the centre of the earth. Let me see: that would be four\\nthousand miles down, I think-” (for, you see, Alice had learnt several things\\nof this sort in her lessons in the schoolroom, and though this was not a very\\ngood opportunity for showing off her knowledge, as there was no one to listen\\nto her, still it was good practice to say it over) “-yes, that\\'s about the right\\ndistance-but then I wonder what Latitude or Longitude I\\'ve got to?” (Alice\\nhad no idea what Latitude was, or Longitude either, but thought they were nice\\ngrand words to say.)\\nPresently she began again. “I wonder if I shall fall right through the\\nearth! How funny it\\'ll seem to come out among the people that walk with their\\nheads downward! The Antipathies, I think-” (she was rather glad there Was\\nno one listening, this time, as it didn\\'t sound at all the right word) “-but I\\nshall have to ask them what the name of the country is, you know. Please,\\nMa\\'am, is this New Zealand or Australia?” (and she tried to curtsey as she\\nspoke-fancy curtseying as you\\'re falling through the air! Do you think you\\ncould manage it?) “And what an ignorant little girl she\\'ll think me for asking!\\nNo, it\\'ll never do to ask: perhaps I shall see it written up somewhere.”\\nDown, down, down. There was nothing else to do, so Alice soon began\\ntalking again. “Dinah\\'ll miss me very much to-night, I should think!” (Dinah\\nwas the cat.) “I hope they\\'ll remember her saucer of milk at tea-time. Dinah\\nmy dear! I wish you were down here with me! There are no mice in the air, I\\'m\\nafraid, but you might catch a bat, and that\\'s very like a mouse, you know. But\\ndo cats eat bats, I wonder?” And here Alice began to get rather sleepy, and\\nwent on saying to herself, in a dreamy sort of way, “Do cats eat bats? Do cats\\neat bats?” and sometimes, “Do bats eat cats?” for, you see, as she couldn\\'t\\nanswer either question, it didn\\'t much matter which way she put it. She felt\\nthat she was dozing off, and had just begun to dream that she was walking\\nhand in hand with Dinah, and saying to her very earnestly, “Now, Dinah, tell\\nme the truth: did you ever eat a bat?” when suddenly, thump! thump! down\\nshe came upon a heap of sticks and dry leaves, and the fall was over.\\nAlice was not a bit hurt, and she jumped up on to her feet in a moment:\\nshe looked up, but it was all dark overhead; before her was another long\\npassage, and the White Rabbit was still in sight, hurrying down it. There was\\nnot a moment to be lost: away went Alice like the wind, and was just in time to\\nhear it say, as it turned a corner, “Oh my ears and whiskers, how late it\\'s\\ngetting!” She was close behind it when she turned the corner, but the Rabbit\\nwas no longer to be seen: she found herself in a long, low hall, which was lit up\\nby a row of lamps hanging from the roof.\\nThere were doors all round the hall, but they were all locked; and when\\nAlice had been all the way down one side and up the other, trying every door,\\nshe walked sadly down the middle, wondering how she was ever to get out\\nagain.\\nSuddenly she came upon a little three-legged table, all made of solid glass;\\nthere was nothing on it except a tiny golden key, and Alice\\'s first thought was\\nthat it might belong to one of the doors of the hall; but, alas! either the locks\\nwere too large, or the key was too small, but at any rate it would not open any\\nof them. However, on the second time round, she came upon a low curtain she\\nhad not noticed before, and behind it was a little door about fifteen inches\\nhigh: she tried the little golden key in the lock, and to her great delight it fitted!\\nAlice opened the door and found that it led into a small passage, not\\nmuch larger than a rat-hole: she knelt down and looked along the passage into\\nthe loveliest garden you ever saw. How she longed to get out of that dark hall,\\nand wander about among those beds of bright flowers and those cool\\nfountains, but she could not even get her head though the doorway; “and even\\nif my head would go through,” thought poor Alice, “it would be of very little\\nuse without my shoulders. Oh, how I wish I could shut up like a telescope! I\\nthink I could, if I only know how to begin.” For, you see, so many out-of-theway things had happened lately, that Alice had begun to think that very few\\nthings indeed were really impossible.\\nThere seemed to be no use in waiting by the little door, so she went back\\nto the table, half hoping she might find another key on it, or at any rate a book\\nof rules for shutting people up like telescopes: this time she found a little bottle\\non it, (“which certainly was not here before,” said Alice,) and round the neck of\\nthe bottle was a paper label, with the words “DRINK ME” beautifully printed\\non it in large letters.\\nIt was all very well to\\nsay “Drink me,” but the wise little Alice was not going to do that in a hurry.\\n“No, I\\'ll look first,” she said, “and see whether it\\'s marked ‘poison’ or not”; for\\nshe had read several nice little histories about children who had got burnt, and\\neaten up by wild beasts and other unpleasant things, all because they would\\nnot remember the simple rules their friends had taught them: such as, that a\\nred-hot poker will burn you if you hold it too long; and that if you cut your\\nfinger very deeply with a knife, it usually bleeds; and she had never forgotten\\nthat, if you drink much from a bottle marked “poison,” it is almost certain to\\ndisagree with you, sooner or later.\\nHowever, this bottle was not marked “poison”, so Alice ventured to taste\\nit, and finding it very nice, (it had, in fact, a sort of mixed flavour of cherrytart, custard, pine-apple, roast turkey, toffee, and hot buttered toast,) she very\\nsoon finished it off.\\n* * * * * * *\\n* * * * * *\\n* * * * * * *\\n“What a curious feeling!” said Alice; “I must be shutting up like a\\ntelescope.”\\nAnd so it was indeed: she was now only ten inches high, and her face\\nbrightened up at the thought that she was now the right size for going through\\nthe little door into that lovely garden. First, however, she waited for a few\\nminutes to see if she was going to shrink any further: she felt a little nervous\\nabout this; “for it might end, you know,” said Alice to herself, “in my going out\\naltogether, like a candle. I wonder what I should be like then?” And she tried\\nto fancy what the flame of a candle is like after the candle is blown out, for she\\ncould not remember ever having seen such a thing.\\nAfter a while, finding that nothing more happened, she decided on going\\ninto the garden at once; but, alas for poor Alice! when she got to the door, she\\nfound she had forgotten the little golden key, and when she went back to the\\ntable for it, she found she could not possibly reach it: she could see it quite\\nplainly through the glass, and she tried her best to climb up one of the legs of\\nthe table, but it was too slippery; and when she had tired herself out with\\ntrying, the poor little thing sat down and cried.\\n“Come, there\\'s no use in crying like that!” said Alice to herself, rather\\nsharply; “I advise you to leave off this minute!” She generally gave herself very\\ngood advice, (though she very seldom followed it), and sometimes she scolded\\nherself so severely as to bring tears into her eyes; and once she remembered\\ntrying to box her own ears for having cheated herself in a game of croquet she\\nwas playing against herself, for this curious child was very fond of pretending\\nto be two people. “But it\\'s no use now,” thought poor Alice, “to pretend to be\\ntwo people! Why, there\\'s hardly enough of me left to make one respectable\\nperson!”\\nSoon her eye fell on a little glass box that was lying under the table: she\\nopened it, and found in it a very small cake, on which the words “EAT ME”\\nwere beautifully marked in currants. “Well, I\\'ll eat it,” said Alice, “and if it\\nmakes me grow larger, I can reach the key; and if it makes me grow smaller, I\\ncan creep under the door; so either way I\\'ll get into the garden, and I don\\'t care\\nwhich happens!”\\nShe ate a little bit, and said anxiously to herself, “Which way? Which\\nway?”, holding her hand on the top of her head to feel which way it was\\ngrowing, and she was quite surprised to find that she remained the same size:\\nto be sure, this generally happens when one eats cake, but Alice had got so\\nmuch into the way of expecting nothing but out-of-the-way things to happen,\\nthat it seemed quite dull and stupid for life to go on in the common way.\\nSo she set to work, and very soon finished off the cake.\\n* * * * * * *\\n* * * * * *\\n* * * * * * *\\nChapter II\\nThe Pool of Tears\\n“Curiouser and curiouser!” cried Alice (she was\\nso much surprised, that for the moment she quite forgot how to speak good\\nEnglish); “now I\\'m opening out like the largest telescope that ever was! Goodbye, feet!” (for when she looked down at her feet, they seemed to be almost out\\nof sight, they were getting so far off). “Oh, my poor little feet, I wonder who\\nwill put on your shoes and stockings for you now, dears? I\\'m sure I shan\\'t be\\nable! I shall be a great deal too far off to trouble myself about you: you must\\nmanage the best way you can; -but I must be kind to them,” thought Alice, “or\\nperhaps they won\\'t walk the way I want to go! Let me see: I\\'ll give them a new\\npair of boots every Christmas.”\\nAnd she went on planning to herself how she would manage it. “They\\nmust go by the carrier,” she thought; “and how funny it\\'ll seem, sending\\npresents to one\\'s own feet! And how odd the directions will look!\\nAlice\\'s Right Foot, Esq.\\nHearthrug,\\nNear The Fender,\\n(With Alice\\'s Love).\\nOh dear, what nonsense I\\'m talking!”\\nJust then her head struck against the roof of the hall: in fact she was now\\nmore than nine feet high, and she at once took up the little golden key and\\nhurried off to the garden door.\\nPoor Alice! It was as much as she could do, lying down on one side, to\\nlook through into the garden with one eye; but to get through was more\\nhopeless than ever: she sat down and began to cry again.\\n“You ought to be ashamed of yourself,” said Alice, “a great girl like you,”\\n(she might well say this), “to go on crying in this way! Stop this moment, I tell\\nyou!” But she went on all the same, shedding gallons of tears, until there was a\\nlarge pool all round her, about four inches deep and reaching half down the\\nhall.\\nAfter a time she heard a little\\npattering of feet in the distance, and she hastily dried her eyes to see what was\\ncoming. It was the White Rabbit returning, splendidly dressed, with a pair of\\nwhite kid gloves in one hand and a large fan in the other: he came trotting\\nalong in a great hurry, muttering to himself as he came, “Oh! the Duchess, the\\nDuchess! Oh! won\\'t she be savage if I\\'ve kept her waiting!” Alice felt so\\ndesperate that she was ready to ask help of any one; so, when the Rabbit came\\nnear her, she began, in a low, timid voice, “If you please, sir-” The Rabbit\\nstarted violently, dropped the white kid gloves and the fan, and skurried away\\ninto the darkness as hard as he could go.\\nAlice took up the fan and gloves, and, as the hall was very hot, she kept\\nfanning herself all the time she went on talking: “Dear, dear! How queer\\neverything is to-day! And yesterday things went on just as usual. I wonder if\\nI\\'ve been changed in the night? Let me think: was I the same when I got up this\\nmorning? I almost think I can remember feeling a little different. But if I\\'m not\\nthe same, the next question is, Who in the world am I? Ah, That\\'s the great\\npuzzle!” And she began thinking over all the children she knew that were of\\nthe same age as herself, to see if she could have been changed for any of them.\\n“I\\'m sure I\\'m not Ada,” she said, “for her hair goes in such long ringlets,\\nand mine doesn\\'t go in ringlets at all; and I\\'m sure I can\\'t be Mabel, for I know\\nall sorts of things, and she, oh! she knows such a very little! Besides, SHE\\'S she,\\nand I\\'m I, and-oh dear, how puzzling it all is! I\\'ll try if I know all the things I\\nused to know. Let me see: four times five is twelve, and four times six is\\nthirteen, and four times seven is-oh dear! I shall never get to twenty at that\\nrate! However, the Multiplication Table doesn\\'t signify: let\\'s try Geography.\\nLondon is the capital of Paris, and Paris is the capital of Rome, and Rome-no,\\nThat\\'s all wrong, I\\'m certain! I must have been changed for Mabel! I\\'ll try and\\nsay ‘How doth the little-’” and she crossed her hands on her lap as if she were\\nsaying lessons, and began to repeat it, but her voice sounded hoarse and\\nstrange, and the words did not come the same as they used to do:-\\n“How doth the little crocodile\\nImprove his shining tail,\\nAnd pour the waters of the Nile\\nOn every golden scale!\\n“How cheerfully he seems to grin,\\nHow neatly spread his claws,\\nAnd welcome little fishes in\\nWith gently smiling jaws!”\\n“I\\'m sure those are not the right words,” said poor Alice, and her eyes\\nfilled with tears again as she went on, “I must be Mabel after all, and I shall\\nhave to go and live in that poky little house, and have next to no toys to play\\nwith, and oh! ever so many lessons to learn! No, I\\'ve made up my mind about\\nit; if I\\'m Mabel, I\\'ll stay down here! It\\'ll be no use their putting their heads\\ndown and saying ‘Come up again, dear!’ I shall only look up and say ‘Who am\\nI then? Tell me that first, and then, if I like being that person, I\\'ll come up: if\\nnot, I\\'ll stay down here till I\\'m somebody else’-but, oh dear!” cried Alice, with\\na sudden burst of tears, “I do wish they would put their heads down! I am so\\nVery tired of being all alone here!”\\nAs she said this she looked down at her hands, and was surprised to see\\nthat she had put on one of the Rabbit\\'s little white kid gloves while she was\\ntalking. “How Can I have done that?” she thought. “I must be growing small\\nagain.” She got up and went to the table to measure herself by it, and found\\nthat, as nearly as she could guess, she was now about two feet high, and was\\ngoing on shrinking rapidly: she soon found out that the cause of this was the\\nfan she was holding, and she dropped it hastily, just in time to avoid shrinking\\naway altogether.\\n“That Was a narrow escape!” said Alice, a good deal frightened at the\\nsudden change, but very glad to find herself still in existence; “and now for the\\ngarden!” and she ran with all speed back to the little door: but, alas! the little\\ndoor was shut again, and the little golden key was lying on the glass table as\\nbefore, “and things are worse than ever,” thought the poor child, “for I never\\nwas so small as this before, never! And I declare it\\'s too bad, that it is!”\\nAs she said these words\\nher foot slipped, and in another moment, splash! she was up to her chin in salt\\nwater. Her first idea was that she had somehow fallen into the sea, “and in that\\ncase I can go back by railway,” she said to herself. (Alice had been to the\\nseaside once in her life, and had come to the general conclusion, that wherever\\nyou go to on the English coast you find a number of bathing machines in the\\nsea, some children digging in the sand with wooden spades, then a row of\\nlodging houses, and behind them a railway station.) However, she soon made\\nout that she was in the pool of tears which she had wept when she was nine\\nfeet high.\\n“I wish I hadn\\'t cried so much!” said Alice, as she swam about, trying to\\nfind her way out. “I shall be punished for it now, I suppose, by being drowned\\nin my own tears! That Will be a queer thing, to be sure! However, everything is\\nqueer to-day.”\\nJust then she heard something splashing about in the pool a little way off,\\nand she swam nearer to make out what it was: at first she thought it must be a\\nwalrus or hippopotamus, but then she remembered how small she was now,\\nand she soon made out that it was only a mouse that had slipped in like\\nherself.\\n“Would it be of any use, now,” thought Alice, “to speak to this mouse?\\nEverything is so out-of-the-way down here, that I should think very likely it\\ncan talk: at any rate, there\\'s no harm in trying.” So she began: “O Mouse, do\\nyou know the way out of this pool? I am very tired of swimming about here, O\\nMouse!” (Alice thought this must be the right way of speaking to a mouse: she\\nhad never done such a thing before, but she remembered having seen in her\\nbrother\\'s Latin Grammar, “A mouse-of a mouse-to a mouse-a mouse-O\\nmouse!” The Mouse looked at her rather inquisitively, and seemed to her to\\nwink with one of its little eyes, but it said nothing.\\n“Perhaps it doesn\\'t understand English,” thought Alice; “I daresay it\\'s a\\nFrench mouse, come over with William the Conqueror.” (For, with all her\\nknowledge of history, Alice had no very clear notion how long ago anything\\nhad happened.) So she began again: “Où est ma chatte?” which was the first\\nsentence in her French lesson-book. The Mouse gave a sudden leap out of the\\nwater, and seemed to quiver all over with fright. “Oh, I beg your pardon!” cried\\nAlice hastily, afraid that she had hurt the poor animal\\'s feelings. “I quite forgot\\nyou didn\\'t like cats.”\\n“Not like cats!” cried the Mouse, in a shrill, passionate voice. “Would You\\nlike cats if you were me?”\\n“Well, perhaps not,” said Alice in a soothing tone: “don\\'t be angry about\\nit. And yet I wish I could show you our cat Dinah: I think you\\'d take a fancy to\\ncats if you could only see her. She is such a dear quiet thing,” Alice went on,\\nhalf to herself, as she swam lazily about in the pool, “and she sits purring so\\nnicely by the fire, licking her paws and washing her face-and she is such a\\nnice soft thing to nurse-and she\\'s such a capital one for catching mice-oh, I\\nbeg your pardon!” cried Alice again, for this time the Mouse was bristling all\\nover, and she felt certain it must be really offended. “We won\\'t talk about her\\nany more if you\\'d rather not.”\\n“We indeed!” cried the Mouse, who was trembling down to the end of his\\ntail. “As if I would talk on such a subject! Our family always Hated cats: nasty,\\nlow, vulgar things! Don\\'t let me hear the name again!”\\n“I won\\'t indeed!” said Alice, in a great hurry to change the subject of\\nconversation. “Are you-are you fond-of-of dogs?” The Mouse did not\\nanswer, so Alice went on eagerly: “There is such a nice little dog near our\\nhouse I should like to show you! A little bright-eyed terrier, you know, with oh,\\nsuch long curly brown hair! And it\\'ll fetch things when you throw them, and\\nit\\'ll sit up and beg for its dinner, and all sorts of things-I can\\'t remember half\\nof them-and it belongs to a farmer, you know, and he says it\\'s so useful, it\\'s\\nworth a hundred pounds! He says it kills all the rats and-oh dear!” cried Alice\\nin a sorrowful tone, “I\\'m afraid I\\'ve offended it again!” For the Mouse was\\nswimming away from her as hard as it could go, and making quite a\\ncommotion in the pool as it went.\\nSo she called softly after it, “Mouse dear! Do come back again, and we\\nwon\\'t talk about cats or dogs either, if you don\\'t like them!” When the Mouse\\nheard this, it turned round and swam slowly back to her: its face was quite pale\\n(with passion, Alice thought), and it said in a low trembling voice, “Let us get\\nto the shore, and then I\\'ll tell you my history, and you\\'ll understand why it is I\\nhate cats and dogs.”\\nIt was high time to go, for the pool was getting quite crowded with the\\nbirds and animals that had fallen into it: there were a Duck and a Dodo, a Lory\\nand an Eaglet, and several other curious creatures. Alice led the way, and the\\nwhole party swam to the shore.\\nChapter III\\nA Caucus-Race and a Long Tale\\nThey were indeed a queer-looking party that assembled on the bank-the\\nbirds with draggled feathers, the animals with their fur clinging close to them,\\nand all dripping wet, cross, and uncomfortable.\\nThe first question of course was, how to get dry again: they had a\\nconsultation about this, and after a few minutes it seemed quite natural to\\nAlice to find herself talking familiarly with them, as if she had known them all\\nher life. Indeed, she had quite a long argument with the Lory, who at last\\nturned sulky, and would only say, “I am older than you, and must know\\nbetter”; and this Alice would not allow without knowing how old it was, and,\\nas the Lory positively refused to tell its age, there was no more to be said.\\nAt last the Mouse, who seemed to be a person of authority among them,\\ncalled out, “Sit down, all of you, and listen to me! I\\'ll soon make you dry\\nenough!” They all sat down at once, in a large ring, with the Mouse in the\\nmiddle. Alice kept her eyes anxiously fixed on it, for she felt sure she would\\ncatch a bad cold if she did not get dry very soon.\\n“Ahem!” said the Mouse with an important air, “are you all ready? This is\\nthe driest thing I know. Silence all round, if you please! ‘William the\\nConqueror, whose cause was favoured by the pope, was soon submitted to by\\nthe English, who wanted leaders, and had been of late much accustomed to\\nusurpation and conquest. Edwin and Morcar, the earls of Mercia and\\nNorthumbria-’”\\n“Ugh!” said the Lory, with a shiver.\\n“I beg your pardon!” said the Mouse, frowning, but very politely: “Did\\nyou speak?”\\n“Not I!” said the Lory hastily.\\n“I thought you did,” said the Mouse. “-I proceed. ‘Edwin and Morcar, the\\nearls of Mercia and Northumbria, declared for him: and even Stigand, the\\npatriotic archbishop of Canterbury, found it advisable-’”\\n“Found what?” said the Duck.\\n“Found It,” the Mouse replied rather crossly: “of course you know what ‘it’\\nmeans.”\\n“I know what ‘it’ means well enough, when I find a thing,” said the Duck:\\n“it\\'s generally a frog or a worm. The question is, what did the archbishop find?”\\nThe Mouse did not notice this question, but hurriedly went on, “‘-found\\nit advisable to go with Edgar Atheling to meet William and offer him the\\ncrown. William\\'s conduct at first was moderate. But the insolence of his\\nNormans-’ How are you getting on now, my dear?” it continued, turning to\\nAlice as it spoke.\\n“As wet as ever,” said Alice in a melancholy tone: “it doesn\\'t seem to dry\\nme at all.”\\n“In that case,” said the Dodo solemnly, rising to its feet, “I move that the\\nmeeting adjourn, for the immediate adoption of more energetic remedies-”\\n“Speak English!” said the Eaglet. “I don\\'t know the meaning of half those\\nlong words, and, what\\'s more, I don\\'t believe you do either!” And the Eaglet\\nbent down its head to hide a smile: some of the other birds tittered audibly.\\n“What I was going to say,” said the Dodo in an offended tone, “was, that\\nthe best thing to get us dry would be a Caucus-race.”\\n“What Is a Caucus-race?” said Alice; not that she wanted much to know,\\nbut the Dodo had paused as if it thought that somebody ought to speak, and\\nno one else seemed inclined to say anything.\\n“Why,” said the Dodo, “the best way to explain it is to do it.” (And, as you\\nmight like to try the thing yourself, some winter day, I will tell you how the\\nDodo managed it.)\\nFirst it marked out a race-course, in a sort of circle, (“the exact shape\\ndoesn\\'t matter,” it said,) and then all the party were placed along the course,\\nhere and there. There was no “One, two, three, and away,” but they began\\nrunning when they liked, and left off when they liked, so that it was not easy to\\nknow when the race was over. However, when they had been running half an\\nhour or so, and were quite dry again, the Dodo suddenly called out “The race\\nis over!” and they all crowded round it, panting, and asking, “But who has\\nwon?”\\nThis question the Dodo could not answer without a great deal of thought,\\nand it sat for a long time with one finger pressed upon its forehead (the\\nposition in which you usually see Shakespeare, in the pictures of him), while\\nthe rest waited in silence. At last the Dodo said, “everybody has won, and all\\nmust have prizes.”\\n“But who is to give the prizes?” quite a chorus of voices asked.\\n“Why, she, of course,” said the\\nDodo, pointing to Alice with one finger; and the whole party at once crowded\\nround her, calling out in a confused way, “Prizes! Prizes!”\\nAlice had no idea what to do, and in despair she put her hand in her\\npocket, and pulled out a box of comfits, (luckily the salt water had not got into\\nit), and handed them round as prizes. There was exactly one a-piece all round.\\n“But she must have a prize herself, you know,” said the Mouse.\\n“Of course,” the Dodo replied very gravely. “What else have you got in\\nyour pocket?” he went on, turning to Alice.\\n“Only a thimble,” said Alice sadly.\\n“Hand it over here,” said the Dodo.\\nThen they all crowded round her once more, while the Dodo solemnly\\npresented the thimble, saying “We beg your acceptance of this elegant\\nthimble”; and, when it had finished this short speech, they all cheered.\\nAlice thought the whole thing very absurd, but they all looked so grave\\nthat she did not dare to laugh; and, as she could not think of anything to say,\\nshe simply bowed, and took the thimble, looking as solemn as she could.\\nThe next thing was to eat the comfits: this caused some noise and\\nconfusion, as the large birds complained that they could not taste theirs, and\\nthe small ones choked and had to be patted on the back. However, it was over\\nat last, and they sat down again in a ring, and begged the Mouse to tell them\\nsomething more.\\n“You promised to tell me your history, you know,” said Alice, “and why it\\nis you hate-C and D,” she added in a whisper, half afraid that it would be\\noffended again.\\n“Mine is a long and a sad tale!” said the Mouse, turning to Alice, and\\nsighing.\\n“It is a long tail, certainly,” said Alice, looking down with wonder at the\\nMouse\\'s tail; “but why do you call it sad?” And she kept on puzzling about it\\nwhile the Mouse was speaking, so that her idea of the tale was something like\\nthis:-\\n“Fury said to\\na mouse, That\\nhe met in the\\nhouse, ‘Let\\nus both go\\nto law: I\\nwill prosecute you.-\\nCome, I\\'ll\\ntake no denial; We\\nmust have\\nthe trial;\\nFor really\\nthis morning I\\'ve\\nnothing\\nto do.’\\nSaid the\\nmouse to\\nthe cur,\\n‘Such a\\ntrial, dear\\nsir, With\\nno jury\\nor judge,\\nwould\\nbe wasting our\\nbreath.’\\n‘I\\'ll be\\njudge,\\nI\\'ll be\\njury,’\\nsaid\\ncunning\\nold\\nFury:\\n‘I\\'ll\\ntry\\nthe\\nwhole\\ncause,\\nand\\ncondemn\\nyou to\\ndeath.’”\\n“You are not attending!” said the Mouse to Alice severely. “What are you\\nthinking of?”\\n“I beg your pardon,” said Alice very humbly: “you had got to the fifth\\nbend, I think?”\\n“I had not!” cried the Mouse, sharply and very angrily.\\n“A knot!” said Alice, always ready to make herself useful, and looking\\nanxiously about her. “Oh, do let me help to undo it!”\\n“I shall do nothing of the sort,” said the Mouse, getting up and walking\\naway. “You insult me by talking such nonsense!”\\n“I didn\\'t mean it!” pleaded poor Alice. “But you\\'re so easily offended, you\\nknow!”\\nThe Mouse only growled in reply.\\n“Please come back and finish your story!” Alice called after it; and the\\nothers all joined in chorus, “Yes, please do!” but the Mouse only shook its head\\nimpatiently, and walked a little quicker.\\n“What a pity it wouldn\\'t stay!” sighed the Lory, as soon as it was quite out\\nof sight; and an old Crab took the opportunity of saying to her daughter “Ah,\\nmy dear! Let this be a lesson to you never to lose your temper!” “Hold your\\ntongue, Ma!” said the young Crab, a little snappishly. “You\\'re enough to try the\\npatience of an oyster!”\\n“I wish I had our Dinah here, I know I do!” said Alice aloud, addressing\\nnobody in particular. “She\\'d soon fetch it back!”\\n“And who is Dinah, if I might venture to ask the question?” said the Lory.\\nAlice replied eagerly, for she was always ready to talk about her pet:\\n“Dinah\\'s our cat. And she\\'s such a capital one for catching mice you can\\'t\\nthink! And oh, I wish you could see her after the birds! Why, she\\'ll eat a little\\nbird as soon as look at it!”\\nThis speech caused a remarkable sensation among the party. Some of the\\nbirds hurried off at once: one old Magpie began wrapping itself up very\\ncarefully, remarking, “I really must be getting home; the night-air doesn\\'t suit\\nmy throat!” and a Canary called out in a trembling voice to its children, “Come\\naway, my dears! It\\'s high time you were all in bed!” On various pretexts they all\\nmoved off, and Alice was soon left alone.\\n“I wish I hadn\\'t mentioned Dinah!” she said to herself in a melancholy\\ntone. “Nobody seems to like her, down here, and I\\'m sure she\\'s the best cat in\\nthe world! Oh, my dear Dinah! I wonder if I shall ever see you any more!” And\\nhere poor Alice began to cry again, for she felt very lonely and low-spirited. In\\na little while, however, she again heard a little pattering of footsteps in the\\ndistance, and she looked up eagerly, half hoping that the Mouse had changed\\nhis mind, and was coming back to finish his story.\\nChapter IV\\nThe Rabbit Sends in a Little Bill\\nIt was the White Rabbit, trotting slowly back again, and looking anxiously\\nabout as it went, as if it had lost something; and she heard it muttering to itself\\n“The Duchess! The Duchess! Oh my dear paws! Oh my fur and whiskers! She\\'ll\\nget me executed, as sure as ferrets are ferrets! Where can I have dropped them,\\nI wonder?” Alice guessed in a moment that it was looking for the fan and the\\npair of white kid gloves, and she very good-naturedly began hunting about for\\nthem, but they were nowhere to be seen-everything seemed to have changed\\nsince her swim in the pool, and the great hall, with the glass table and the little\\ndoor, had vanished completely.\\nVery soon the Rabbit noticed Alice, as she went hunting about, and called\\nout to her in an angry tone, “Why, Mary Ann, what are you doing out here?\\nRun home this moment, and fetch me a pair of gloves and a fan! Quick, now!”\\nAnd Alice was so much frightened that she ran off at once in the direction it\\npointed to, without trying to explain the mistake it had made.\\n“He took me for his housemaid,” she said to herself as she ran. “How\\nsurprised he\\'ll be when he finds out who I am! But I\\'d better take him his fan\\nand gloves-that is, if I can find them.” As she said this, she came upon a neat\\nlittle house, on the door of which was a bright brass plate with the name “W.\\nRABBIT” engraved upon it. She went in without knocking, and hurried\\nupstairs, in great fear lest she should meet the real Mary Ann, and be turned\\nout of the house before she had found the fan and gloves.\\n“How queer it seems,” Alice said to herself, “to be going messages for a\\nrabbit! I suppose Dinah\\'ll be sending me on messages next!” And she began\\nfancying the sort of thing that would happen: “‘Miss Alice! Come here directly,\\nand get ready for your walk!’ ‘Coming in a minute, nurse! But I\\'ve got to see\\nthat the mouse doesn\\'t get out.’ Only I don\\'t think,” Alice went on, “that they\\'d\\nlet Dinah stop in the house if it began ordering people about like that!”\\nBy this time she had found her way into a tidy little room with a table in\\nthe window, and on it (as she had hoped) a fan and two or three pairs of tiny\\nwhite kid gloves: she took up the fan and a pair of the gloves, and was just\\ngoing to leave the room, when her eye fell upon a little bottle that stood near\\nthe looking- glass. There was no label this time with the words “DRINK ME,”\\nbut nevertheless she uncorked it and put it to her lips. “I know something\\ninteresting is sure to happen,” she said to herself, “whenever I eat or drink\\nanything; so I\\'ll just see what this bottle does. I do hope it\\'ll make me grow\\nlarge again, for really I\\'m quite tired of being such a tiny little thing!”\\nIt did so indeed, and much sooner than she had expected: before she had\\ndrunk half the bottle, she found her head pressing against the ceiling, and had\\nto stoop to save her neck from being broken. She hastily put down the bottle,\\nsaying to herself “That\\'s quite enough-I hope I shan\\'t grow any more-As it\\nis, I can\\'t get out at the door-I do wish I hadn\\'t drunk quite so much!”\\nAlas! it was too late to wish that! She went on growing, and growing, and\\nvery soon had to kneel down on the floor: in another minute there was not\\neven room for this, and she tried the effect of lying down with one elbow\\nagainst the door, and the other arm curled round her head. Still she went on\\ngrowing, and, as a last resource, she put one arm out of the window, and one\\nfoot up the chimney, and said to herself “Now I can do no more, whatever\\nhappens. What will become of me?”\\nLuckily for Alice, the little magic bottle had now had its full effect, and\\nshe grew no larger: still it was very uncomfortable, and, as there seemed to be\\nno sort of chance of her ever getting out of the room again, no wonder she felt\\nunhappy.\\n“It was much pleasanter at home,” thought poor Alice, “when one wasn\\'t\\nalways growing larger and smaller, and being ordered about by mice and\\nrabbits. I almost wish I hadn\\'t gone down that rabbit-hole-and yet-and yet\\n-it\\'s rather curious, you know, this sort of life! I do wonder what Can have\\nhappened to me! When I used to read fairy-tales, I fancied that kind of thing\\nnever happened, and now here I am in the middle of one! There ought to be a\\nbook written about me, that there ought! And when I grow up, I\\'ll write onebut I\\'m grown up now,” she added in a sorrowful tone; “at least there\\'s no room\\nto grow up any more here.”\\n“But then,” thought Alice, “shall I never get any older than I am now?\\nThat\\'ll be a comfort, one way-never to be an old woman- but then-always\\nto have lessons to learn! Oh, I shouldn\\'t like that!”\\n“Oh, you foolish Alice!” she answered herself. “How can you learn lessons\\nin here? Why, there\\'s hardly room for you, and no room at all for any lessonbooks!”\\nAnd so she went on, taking first one side and then the other, and making\\nquite a conversation of it altogether; but after a few minutes she heard a voice\\noutside, and stopped to listen.\\n“Mary Ann! Mary Ann!” said the voice. “Fetch me my gloves this\\nmoment!” Then came a little pattering of feet on the stairs. Alice knew it was\\nthe Rabbit coming to look for her, and she trembled till she shook the house,\\nquite forgetting that she was now about a thousand times as large as the\\nRabbit, and had no reason to be afraid of it.\\nPresently the Rabbit came up to the door, and tried to open it; but, as the\\ndoor opened inwards, and Alice\\'s elbow was pressed hard against it, that\\nattempt proved a failure. Alice heard it say to itself “Then I\\'ll go round and get\\nin at the window.”\\n“That you won\\'t” thought Alice, and, after waiting till she fancied she\\nheard the Rabbit just under the window, she suddenly spread out her hand,\\nand made a snatch in the air. She did not get hold of anything, but she heard a\\nlittle shriek and a fall, and a crash of broken glass, from which she concluded\\nthat it was just possible it had fallen into a cucumber-frame, or something of\\nthe sort.\\nNext came an angry voice-the Rabbit\\'s\\n-“Pat! Pat! Where are you?” And then a voice she had never heard before,\\n“Sure then I\\'m here! Digging for apples, yer honour!”\\n“Digging for apples, indeed!” said the Rabbit angrily. “Here! Come and\\nhelp me out of this!” (Sounds of more broken glass.)\\n“Now tell me, Pat, what\\'s that in the window?”\\n“Sure, it\\'s an arm, yer honour!” (He pronounced it “arrum.”)\\n“An arm, you goose! Who ever saw one that size? Why, it fills the whole\\nwindow!”\\n“Sure, it does, yer honour: but it\\'s an arm for all that.”\\n“Well, it\\'s got no business there, at any rate: go and take it away!”\\nThere was a long silence after this, and Alice could only hear whispers\\nnow and then; such as, “Sure, I don\\'t like it, yer honour, at all, at all!” “Do as I\\ntell you, you coward!” and at last she spread out her hand again, and made\\nanother snatch in the air. This time there were two little shrieks, and more\\nsounds of broken glass. “What a number of cucumber-frames there must be!”\\nthought Alice. “I wonder what they\\'ll do next! As for pulling me out of the\\nwindow, I only wish they could! I\\'m sure I don\\'t want to stay in here any\\nlonger!”\\nShe waited for some time without hearing anything more: at last came a\\nrumbling of little cartwheels, and the sound of a good many voices all talking\\ntogether: she made out the words: “Where\\'s the other ladder?-Why, I hadn\\'t\\nto bring but one; Bill\\'s got the other-Bill! fetch it here, lad!-Here, put \\'em up\\nat this corner-No, tie \\'em together first-they don\\'t reach half high enough\\nyet-Oh! they\\'ll do well enough; don\\'t be particular- Here, Bill! catch hold of\\nthis rope-Will the roof bear?-Mind that loose slate-Oh, it\\'s coming down!\\nHeads below!” (a loud crash)-“Now, who did that?-It was Bill, I fancyWho\\'s to go down the chimney?-Nay, I shan\\'t! You do it!-That I won\\'t,\\nthen!-Bill\\'s to go down-Here, Bill! the master says you\\'re to go down the\\nchimney!”\\n“Oh! So Bill\\'s got to come down the chimney, has he?” said Alice to\\nherself. “Shy, they seem to put everything upon Bill! I wouldn\\'t be in Bill\\'s\\nplace for a good deal: this fireplace is narrow, to be sure; but I think I can kick\\na little!”\\nShe drew her foot as far down the chimney as she could, and waited till\\nshe heard a little animal (she couldn\\'t guess of what sort it was) scratching and\\nscrambling about in the chimney close above her: then, saying to herself “This\\nis Bill,” she gave one sharp kick, and waited to see what would happen next.\\nThe first thing she heard was a general chorus of\\n“There goes Bill!” then the Rabbit\\'s voice along-“Catch him, you by the\\nhedge!” then silence, and then another confusion of voices-“Hold up his head\\n-Brandy now-Don\\'t choke him-How was it, old fellow? What happened to\\nyou? Tell us all about it!”\\nLast came a little feeble, squeaking voice, (“That\\'s Bill,” thought Alice,)\\n“Well, I hardly know-No more, thank ye; I\\'m better now-but I\\'m a deal too\\nflustered to tell you-all I know is, something comes at me like a Jack-in-thebox, and up I goes like a sky-rocket!”\\n“So you did, old fellow!” said the others.\\n“We must burn the house down!” said the Rabbit\\'s voice; and Alice called\\nout as loud as she could, “If you do. I\\'ll set Dinah at you!”\\nThere was a dead silence instantly, and Alice thought to herself, “I wonder\\nwhat they will do next! If they had any sense, they\\'d take the roof off.” After a\\nminute or two, they began moving about again, and Alice heard the Rabbit say,\\n“A barrowful will do, to begin with.”\\n“A barrowful of what?” thought Alice; but she had not long to doubt, for\\nthe next moment a shower of little pebbles came rattling in at the window, and\\nsome of them hit her in the face. “I\\'ll put a stop to this,” she said to herself, and\\nshouted out, “You\\'d better not do that again!” which produced another dead\\nsilence.\\nAlice noticed with some surprise that the pebbles were all turning into\\nlittle cakes as they lay on the floor, and a bright idea came into her head. “If I\\neat one of these cakes,” she thought, “it\\'s sure to make some change in my size;\\nand as it can\\'t possibly make me larger, it must make me smaller, I suppose.”\\nSo she swallowed one of the cakes, and was delighted to find that she\\nbegan shrinking directly. As soon as she was small enough to get through the\\ndoor, she ran out of the house, and found quite a crowd of little animals and\\nbirds waiting outside. The poor little Lizard, Bill, was in the middle, being held\\nup by two guinea-pigs, who were giving it something out of a bottle. They all\\nmade a rush at Alice the moment she appeared; but she ran off as hard as she\\ncould, and soon found herself safe in a thick wood.\\n“The first thing I\\'ve got to do,” said Alice to herself, as she wandered about\\nin the wood, “is to grow to my right size again; and the second thing is to find\\nmy way into that lovely garden. I think that will be the best plan.”\\nIt sounded an excellent plan, no doubt, and very neatly and simply\\narranged; the only difficulty was, that she had not the smallest idea how to set\\nabout it; and while she was peering about anxiously among the trees, a little\\nsharp bark just over her head made her look up in a great hurry.\\nAn enormous puppy was looking down at her with large round eyes, and\\nfeebly stretching out one paw, trying to touch her. “Poor little thing!” said\\nAlice, in a coaxing tone, and she tried hard to whistle to it; but she was terribly\\nfrightened all the time at the thought that it might be hungry, in which case it\\nwould be very likely to eat her up in spite of all her coaxing.\\nHardly knowing what she\\ndid, she picked up a little bit of stick, and held it out to the puppy; whereupon\\nthe puppy jumped into the air off all its feet at once, with a yelp of delight, and\\nrushed at the stick, and made believe to worry it; then Alice dodged behind a\\ngreat thistle, to keep herself from being run over; and the moment she\\nappeared on the other side, the puppy made another rush at the stick, and\\ntumbled head over heels in its hurry to get hold of it; then Alice, thinking it\\nwas very like having a game of play with a cart-horse, and expecting every\\nmoment to be trampled under its feet, ran round the thistle again; then the\\npuppy began a series of short charges at the stick, running a very little way\\nforwards each time and a long way back, and barking hoarsely all the while, till\\nat last it sat down a good way off, panting, with its tongue hanging out of its\\nmouth, and its great eyes half shut.\\nThis seemed to Alice a good opportunity for making her escape; so she\\nset off at once, and ran till she was quite tired and out of breath, and till the\\npuppy\\'s bark sounded quite faint in the distance.\\n“And yet what a dear little puppy it was!” said Alice, as she leant against a\\nbuttercup to rest herself, and fanned herself with one of the leaves: “I should\\nhave liked teaching it tricks very much, if-if I\\'d only been the right size to do\\nit! Oh dear! I\\'d nearly forgotten that I\\'ve got to grow up again! Let me seehow is it to be managed? I suppose I ought to eat or drink something or other;\\nbut the great question is, what?”\\nThe great question certainly was, what? Alice looked all round her at the\\nflowers and the blades of grass, but she did not see anything that looked like\\nthe right thing to eat or drink under the circumstances. There was a large\\nmushroom growing near her, about the same height as herself; and when she\\nhad looked under it, and on both sides of it, and behind it, it occurred to her\\nthat she might as well look and see what was on the top of it.\\nShe stretched herself up on tiptoe, and peeped over the edge of the\\nmushroom, and her eyes immediately met those of a large caterpillar, that was\\nsitting on the top with its arms folded, quietly smoking a long hookah, and\\ntaking not the smallest notice of her or of anything else.\\nChapter V\\nAdvice from a Caterpillar\\nThe Caterpillar and Alice looked at each\\nother for some time in silence: at last the Caterpillar took the hookah out of its\\nmouth, and addressed her in a languid, sleepy voice.\\n“Who are you?” said the Caterpillar.\\nThis was not an encouraging opening for a conversation. Alice replied,\\nrather shyly, “I-I hardly know, sir, just at present- at least I know who I was\\nwhen I got up this morning, but I think I must have been changed several\\ntimes since then.”\\n“What do you mean by that?” said the Caterpillar sternly. “Explain\\nyourself!”\\n“I can\\'t explain myself, I\\'m afraid, sir” said Alice, “because I\\'m not myself,\\nyou see.”\\n“I don\\'t see,” said the Caterpillar.\\n“I\\'m afraid I can\\'t put it more clearly,” Alice replied very politely, “for I\\ncan\\'t understand it myself to begin with; and being so many different sizes in a\\nday is very confusing.”\\n“It isn\\'t,” said the Caterpillar.\\n“Well, perhaps you haven\\'t found it so yet,” said Alice; “but when you\\nhave to turn into a chrysalis-you will some day, you know-and then after\\nthat into a butterfly, I should think you\\'ll feel it a little queer, won\\'t you?”\\n“Not a bit,” said the Caterpillar.\\n“Well, perhaps your feelings may be different,” said Alice; “all I know is, it\\nwould feel very queer to me.”\\n“You!” said the Caterpillar contemptuously. “Who are You?”\\nWhich brought them back again to the beginning of the conversation.\\nAlice felt a little irritated at the Caterpillar\\'s making such very short remarks,\\nand she drew herself up and said, very gravely, “I think, you ought to tell me\\nwho you are, first.”\\n“Why?” said the Caterpillar.\\nHere was another puzzling question; and as Alice could not think of any\\ngood reason, and as the Caterpillar seemed to be in a very unpleasant state of\\nmind, she turned away.\\n“Come back!” the Caterpillar called after her. “I\\'ve something important\\nto say!”\\nThis sounded promising, certainly: Alice turned and came back again.\\n“Keep your temper,” said the Caterpillar.\\n“Is that all?” said Alice, swallowing down her anger as well as she could.\\n“No,” said the Caterpillar.\\nAlice thought she might as well wait, as she had nothing else to do, and\\nperhaps after all it might tell her something worth hearing. For some minutes\\nit puffed away without speaking, but at last it unfolded its arms, took the\\nhookah out of its mouth again, and said, “So you think you\\'re changed, do\\nyou?”\\n“I\\'m afraid I am, sir,” said Alice; “I can\\'t remember things as I used-and I\\ndon\\'t keep the same size for ten minutes together!”\\n“Can\\'t remember what things?” said the Caterpillar.\\n“Well, I\\'ve tried to say ‘How Doth The Little Busy Bee,’ but it all came\\ndifferent!” Alice replied in a very melancholy voice.\\n“Repeat, ‘You Are Old, Father William,’” said the Caterpillar.\\nAlice folded her hands, and began:-\\n“You are old, Father William,” the young man said,\\n“And your hair has become very white;\\nAnd yet you incessantly stand on your headDo you think, at your age, it is right?”\\n“In my youth,” Father William replied to his son,\\n“I feared it might injure the brain;\\nBut, now that I\\'m perfectly sure I have none,\\nWhy, I do it again and again.”\\n“You are old,” said the youth, “as I mentioned before,\\nAnd have grown most uncommonly fat;\\nYet you turned a back-somersault in at the doorPray, what is the reason of that?”\\n“In my youth,” said the sage, as he shook his grey\\nlocks,\\n“I kept all my limbs very supple\\nBy the use of this ointment-one shilling the boxAllow me to sell you a couple?”\\n“You are old,” said the youth, “and your jaws are too\\nweak\\nFor anything tougher than suet;\\nYet you finished the goose, with the bones and the\\nbeakPray how did you manage to do it?”\\n“In my youth,” said his father, “I took to the law,\\nAnd argued each case with my wife;\\nAnd the muscular strength, which it gave to my jaw,\\nHas lasted the rest of my life.”\\n“You are old,” said the youth, “one would hardly\\nsuppose\\nThat your eye was as steady as ever;\\nYet you balanced an eel on the end of your noseWhat made you so awfully clever?”\\n“I have answered three questions, and that is enough,”\\nSaid his father; “don\\'t give yourself airs!\\nDo you think I can listen all day to such stuff?\\nBe off, or I\\'ll kick you down stairs!”\\n“That is not said right,” said the Caterpillar.\\n“Not quite right, I\\'m afraid,” said Alice, timidly; “some of the words have\\ngot altered.”\\n“It is wrong from beginning to end,” said the Caterpillar decidedly, and\\nthere was silence for some minutes.\\nThe Caterpillar was the first to speak.\\n“What size do you want to be?” it asked.\\n“Oh, I\\'m not particular as to size,” Alice hastily replied; “only one doesn\\'t\\nlike changing so often, you know.”\\n“I don\\'t know,” said the Caterpillar.\\nAlice said nothing: she had never been so much contradicted in her life\\nbefore, and she felt that she was losing her temper.\\n“Are you content now?” said the Caterpillar.\\n“Well, I should like to be a little larger, sir, if you wouldn\\'t mind,” said\\nAlice: “three inches is such a wretched height to be.”\\n“It is a very good height indeed!” said the Caterpillar angrily, rearing itself\\nupright as it spoke (it was exactly three inches high).\\n“But I\\'m not used to it!” pleaded poor Alice in a piteous tone. And she\\nthought of herself, “I wish the creatures wouldn\\'t be so easily offended!”\\n“You\\'ll get used to it in time,” said the Caterpillar; and it put the hookah\\ninto its mouth and began smoking again.\\nThis time Alice waited patiently until it chose to speak again. In a minute\\nor two the Caterpillar took the hookah out of its mouth and yawned once or\\ntwice, and shook itself. Then it got down off the mushroom, and crawled away\\nin the grass, merely remarking as it went, “One side will make you grow taller,\\nand the other side will make you grow shorter.”\\n“One side of what? The other side of what?” thought Alice to herself.\\n“Of the mushroom,” said the Caterpillar, just as if she had asked it aloud;\\nand in another moment it was out of sight.\\nAlice remained looking thoughtfully at the mushroom for a minute,\\ntrying to make out which were the two sides of it; and as it was perfectly\\nround, she found this a very difficult question. However, at last she stretched\\nher arms round it as far as they would go, and broke off a bit of the edge with\\neach hand.\\n“And now which is which?” she said to herself, and nibbled a little of the\\nright-hand bit to try the effect: the next moment she felt a violent blow\\nunderneath her chin: it had struck her foot!\\nShe was a good deal frightened by this very sudden change, but she felt\\nthat there was no time to be lost, as she was shrinking rapidly; so she set to\\nwork at once to eat some of the other bit. Her chin was pressed so closely\\nagainst her foot, that there was hardly room to open her mouth; but she did it\\nat last, and managed to swallow a morsel of the lefthand bit.\\n* * * * * * *\\n* * * * * *\\n* * * * * * *\\n“Come, my head\\'s free at last!” said Alice in a tone of delight, which\\nchanged into alarm in another moment, when she found that her shoulders\\nwere nowhere to be found: all she could see, when she looked down, was an\\nimmense length of neck, which seemed to rise like a stalk out of a sea of green\\nleaves that lay far below her.\\n“What can all that green stuff be?” said Alice. “And where have my\\nshoulders got to? And oh, my poor hands, how is it I can\\'t see you?” She was\\nmoving them about as she spoke, but no result seemed to follow, except a little\\nshaking among the distant green leaves.\\nAs there seemed to be no chance of getting her hands up to her head, she\\ntried to get her head down to them, and was delighted to find that her neck\\nwould bend about easily in any direction, like a serpent. She had just\\nsucceeded in curving it down into a graceful zigzag, and was going to dive in\\namong the leaves, which she found to be nothing but the tops of the trees\\nunder which she had been wandering, when a sharp hiss made her draw back\\nin a hurry: a large pigeon had flown into her face, and was beating her\\nviolently with its wings.\\n“Serpent!” screamed the Pigeon.\\n“I\\'m not a serpent!” said Alice indignantly. “Let me alone!”\\n“Serpent, I say again!” repeated the Pigeon, but in a more subdued tone,\\nand added with a kind of sob, “I\\'ve tried every way, and nothing seems to suit\\nthem!”\\n“I haven\\'t the least idea what you\\'re talking about,” said Alice.\\n“I\\'ve tried the roots of trees, and I\\'ve tried banks, and I\\'ve tried hedges,”\\nthe Pigeon went on, without attending to her; “but those serpents! There\\'s no\\npleasing them!”\\nAlice was more and more puzzled, but she thought there was no use in\\nsaying anything more till the Pigeon had finished.\\n“As if it wasn\\'t trouble enough hatching the eggs,” said the Pigeon; “but I\\nmust be on the look-out for serpents night and day! Why, I haven\\'t had a wink\\nof sleep these three weeks!”\\n“I\\'m very sorry you\\'ve been annoyed,” said Alice, who was beginning to\\nsee its meaning.\\n“And just as I\\'d taken the highest tree in the wood,” continued the Pigeon,\\nraising its voice to a shriek, “and just as I was thinking I should be free of them\\nat last, they must needs come wriggling down from the sky! Ugh, Serpent!”\\n“But I\\'m Not a serpent, I tell you!” said Alice. “I\\'m a-I\\'m a-”\\n“Well! What are you?” said the Pigeon. “I can see you\\'re trying to invent\\nsomething!”\\n“I-I\\'m a little girl,” said Alice, rather doubtfully, as she remembered the\\nnumber of changes she had gone through that day.\\n“A likely story indeed!” said the Pigeon in a tone of the deepest contempt.\\n“I\\'ve seen a good many little girls in my time, but never one with such a neck\\nas that! No, no! You\\'re a serpent; and there\\'s no use denying it. I suppose you\\'ll\\nbe telling me next that you never tasted an egg!”\\n“I have tasted eggs, certainly,” said Alice, who was a very truthful child;\\n“but little girls eat eggs quite as much as serpents do, you know.”\\n“I don\\'t believe it,” said the Pigeon; “but if they do, why then they\\'re a\\nkind of serpent, that\\'s all I can say.”\\nThis was such a new idea to Alice, that she was quite silent for a minute or\\ntwo, which gave the Pigeon the opportunity of adding, “You\\'re looking for\\neggs, I know that well enough; and what does it matter to me whether you\\'re a\\nlittle girl or a serpent?”\\n“It matters a good deal to me,” said Alice hastily; “but I\\'m not looking for\\neggs, as it happens; and if I was, I shouldn\\'t want yours: I don\\'t like them raw.”\\n“Well, be off, then!” said the Pigeon in a sulky tone, as it settled down\\nagain into its nest. Alice crouched down among the trees as well as she could,\\nfor her neck kept getting entangled among the branches, and every now and\\nthen she had to stop and untwist it. After a while she remembered that she still\\nheld the pieces of mushroom in her hands, and she set to work very carefully,\\nnibbling first at one and then at the other, and growing sometimes taller and\\nsometimes shorter, until she had succeeded in bringing herself down to her\\nusual height.\\nIt was so long since she had been anything near the right size, that it felt\\nquite strange at first; but she got used to it in a few minutes, and began talking\\nto herself, as usual. “Come, there\\'s half my plan done now! How puzzling all\\nthese changes are! I\\'m never sure what I\\'m going to be, from one minute to\\nanother! However, I\\'ve got back to my right size: the next thing is, to get into\\nthat beautiful garden-how Is that to be done, I wonder?” As she said this, she\\ncame suddenly upon an open place, with a little house in it about four feet\\nhigh. “Whoever lives there,” thought Alice, “it\\'ll never do to come upon them\\nthis size: why, I should frighten them out of their wits!” So she began nibbling\\nat the righthand bit again, and did not venture to go near the house till she had\\nbrought herself down to nine inches high.\\nChapter VI\\nPig and Pepper\\nFor a minute or two she stood\\nlooking at the house, and wondering what to do next, when suddenly a\\nfootman in livery came running out of the wood-(she considered him to be a\\nfootman because he was in livery: otherwise, judging by his face only, she\\nwould have called him a fish)-and rapped loudly at the door with his\\nknuckles. It was opened by another footman in livery, with a round face, and\\nlarge eyes like a frog; and both footmen, Alice noticed, had powdered hair that\\ncurled all over their heads. She felt very curious to know what it was all about,\\nand crept a little way out of the wood to listen.\\nThe Fish-Footman began by producing from under his arm a great letter,\\nnearly as large as himself, and this he handed over to the other, saying, in a\\nsolemn tone, “For the Duchess. An invitation from the Queen to play croquet.”\\nThe Frog-Footman repeated, in the same solemn tone, only changing the order\\nof the words a little, “From the Queen. An invitation for the Duchess to play\\ncroquet.”\\nThen they both bowed low, and their curls got entangled together.\\nAlice laughed so much at this, that she had to run back into the wood for\\nfear of their hearing her; and when she next peeped out the Fish-Footman was\\ngone, and the other was sitting on the ground near the door, staring stupidly\\nup into the sky.\\nAlice went timidly up to the door, and knocked.\\n“There\\'s no sort of use in knocking,” said the Footman, “and that for two\\nreasons. First, because I\\'m on the same side of the door as you are; secondly,\\nbecause they\\'re making such a noise inside, no one could possibly hear you.”\\nAnd certainly there was a most extraordinary noise going on within-a\\nconstant howling and sneezing, and every now and then a great crash, as if a\\ndish or kettle had been broken to pieces.\\n“Please, then,” said Alice, “how am I to get in?”\\n“There might be some sense in your knocking,” the Footman went on\\nwithout attending to her, “if we had the door between us. For instance, if you\\nwere Inside, you might knock, and I could let you out, you know.” He was\\nlooking up into the sky all the time he was speaking, and this Alice thought\\ndecidedly uncivil. “But perhaps he can\\'t help it,” she said to herself; “his eyes\\nare so Very nearly at the top of his head. But at any rate he might answer\\nquestions.-How am I to get in?” she repeated, aloud.\\n“I shall sit here,” the Footman remarked, “till tomorrow-”\\nAt this moment the door of the house opened, and a large plate came\\nskimming out, straight at the Footman\\'s head: it just grazed his nose, and\\nbroke to pieces against one of the trees behind him.\\n“-or next day, maybe,” the Footman continued in the same tone, exactly\\nas if nothing had happened.\\n“How am I to get in?” asked Alice again, in a louder tone.\\n“Are you to get in at all?” said the Footman. “That\\'s the first question, you\\nknow.”\\nIt was, no doubt: only Alice did not like to be told so. “It\\'s really dreadful,”\\nshe muttered to herself, “the way all the creatures argue. It\\'s enough to drive\\none crazy!”\\nThe Footman seemed to think this a good opportunity for repeating his\\nremark, with variations. “I shall sit here,” he said, “on and off, for days and\\ndays.”\\n“But what am I to do?” said Alice.\\n“Anything you like,” said the Footman, and began whistling.\\n“Oh, there\\'s no use in talking to him,” said Alice desperately: “he\\'s\\nperfectly idiotic!” And she opened the door and went in.\\nThe door led right into a large kitchen, which was full of smoke from one\\nend to the other: the Duchess was sitting on a three-legged stool in the middle,\\nnursing a baby; the cook was leaning over the fire, stirring a large cauldron\\nwhich seemed to be full of soup.\\n“There\\'s certainly too much pepper in that soup!” Alice said to herself, as\\nwell as she could for sneezing.\\nThere was certainly too much of it in the air. Even the Duchess sneezed\\noccasionally; and as for the baby, it was sneezing and howling alternately\\nwithout a moment\\'s pause. The only things in the kitchen that did not sneeze,\\nwere the cook, and a large cat which was sitting on the hearth and grinning\\nfrom ear to ear.\\n“Please would you tell me,” said Alice, a little timidly, for she was not\\nquite sure whether it was good manners for her to speak first, “why your cat\\ngrins like that?”\\n“It\\'s a Cheshire cat,” said the Duchess, “and that\\'s why. Pig!”\\nShe said the last word with such sudden violence that Alice quite jumped;\\nbut she saw in another moment that it was addressed to the baby, and not to\\nher, so she took courage, and went on again:-\\n“I didn\\'t know that Cheshire cats always grinned; in fact, I didn\\'t know\\nthat cats could grin.”\\n“They all can,” said the Duchess; “and most of \\'em do.”\\n“I don\\'t know of any that do,” Alice said very politely, feeling quite pleased\\nto have got into a conversation.\\n“You don\\'t know much,” said the Duchess; “and that\\'s a fact.”\\nAlice did not at all like the tone of this remark, and thought it would be as\\nwell to introduce some other subject of conversation. While she was trying to\\nfix on one, the cook took the cauldron of soup off the fire, and at once set to\\nwork throwing everything within her reach at the Duchess and the baby -the\\nfire-irons came first; then followed a shower of saucepans, plates, and dishes.\\nThe Duchess took no notice of them even when they hit her; and the baby was\\nhowling so much already, that it was quite impossible to say whether the blows\\nhurt it or not.\\n“Oh, Please mind what you\\'re doing!” cried Alice, jumping up and down\\nin an agony of terror. “Oh, there goes his Precious nose”; as an unusually large\\nsaucepan flew close by it, and very nearly carried it off.\\n“If everybody minded their own business,” the Duchess said in a hoarse\\ngrowl, “the world would go round a deal faster than it does.”\\n“Which would not be an advantage,” said Alice, who felt very glad to get\\nan opportunity of showing off a little of her knowledge. “Just think of what\\nwork it would make with the day and night! You see the earth takes twentyfour hours to turn round on its axis-”\\n“Talking of axes,” said the Duchess, “chop off her head!”\\nAlice glanced rather anxiously at the cook, to see if she meant to take the\\nhint; but the cook was busily stirring the soup, and seemed not to be listening,\\nso she went on again: “Twenty-four hours, I think; or is it twelve? I-”\\n“Oh, don\\'t bother me,” said the Duchess; “I never could abide figures!”\\nAnd with that she began nursing her child again, singing a sort of lullaby to it\\nas she did so, and giving it a violent shake at the end of every line:\\n“Speak roughly to your little boy,\\nAnd beat him when he sneezes:\\nHe only does it to annoy,\\nBecause he knows it teases.”\\nChorus.\\n(In which the cook and the baby joined):-\\n“Wow! wow! wow!”\\nWhile the Duchess sang the second verse of the song, she kept tossing the\\nbaby violently up and down, and the poor little thing howled so, that Alice\\ncould hardly hear the words:-\\n“I speak severely to my boy,\\nI beat him when he sneezes;\\nFor he can thoroughly enjoy\\nThe pepper when he pleases!”\\nChorus.\\n“Wow! wow! wow!”\\n“Here! you may nurse it a bit, if you\\nlike!” the Duchess said to Alice, flinging the baby at her as she spoke. “I must\\ngo and get ready to play croquet with the Queen,” and she hurried out of the\\nroom. The cook threw a frying-pan after her as she went out, but it just missed\\nher.\\nAlice caught the baby with some difficulty, as it was a queer- shaped little\\ncreature, and held out its arms and legs in all directions, “just like a star-fish,”\\nthought Alice. The poor little thing was snorting like a steam-engine when she\\ncaught it, and kept doubling itself up and straightening itself out again, so that\\naltogether, for the first minute or two, it was as much as she could do to hold it.\\nAs soon as she had made out the proper way of nursing it, (which was to\\ntwist it up into a sort of knot, and then keep tight hold of its right ear and left\\nfoot, so as to prevent its undoing itself,) she carried it out into the open air. “If\\nI don\\'t take this child away with me,” thought Alice, “they\\'re sure to kill it in a\\nday or two: wouldn\\'t it be murder to leave it behind?” She said the last words\\nout loud, and the little thing grunted in reply (it had left off sneezing by this\\ntime). “Don\\'t grunt,” said Alice; “that\\'s not at all a proper way of expressing\\nyourself.”\\nThe baby grunted again, and Alice looked very anxiously into its face to\\nsee what was the matter with it. There could be no doubt that it had a Very\\nturn-up nose, much more like a snout than a real nose; also its eyes were\\ngetting extremely small for a baby: altogether Alice did not like the look of the\\nthing at all. “But perhaps it was only sobbing,” she thought, and looked into its\\neyes again, to see if there were any tears.\\nNo, there were no tears. “If you\\'re going to turn into a pig, my dear,” said\\nAlice, seriously, “I\\'ll have nothing more to do with you. Mind now!” The poor\\nlittle thing sobbed again (or grunted, it was impossible to say which), and they\\nwent on for some while in silence.\\nAlice was just beginning to think to herself, “Now, what am I to do with\\nthis creature when I get it home?” when it grunted again, so violently, that she\\nlooked down into its face in some alarm. This time there could be no mistake\\nabout it: it was neither more nor less than a pig, and she felt that it would be\\nquite absurd for her to carry it further.\\nSo she set the little creature down, and felt quite relieved to see it trot away\\nquietly into the wood. “If it had grown up,” she said to herself, “it would have\\nmade a dreadfully ugly child: but it makes rather a handsome pig, I think.”\\nAnd she began thinking over other children she knew, who might do very well\\nas pigs, and was just saying to herself, “if one only knew the right way to\\nchange them-” when she was a little startled by seeing the Cheshire Cat\\nsitting on a bough of a tree a few yards off.\\nThe Cat only grinned when it saw Alice. It looked good- natured, she\\nthought: still it had Very long claws and a great many teeth, so she felt that it\\nought to be treated with respect.\\n“Cheshire Puss,” she began, rather timidly, as she did not at all know\\nwhether it would like the name: however, it only grinned a little wider. “Come,\\nit\\'s pleased so far,” thought Alice, and she went on. “Would you tell me, please,\\nwhich way I ought to go from here?”\\n“That depends a good deal on where you want to get to,” said the Cat.\\n“I don\\'t much care where-” said Alice.\\n“Then it doesn\\'t matter which way you go,” said the Cat.\\n“-so long as I get somewhere,” Alice added as an explanation.\\n“Oh, you\\'re sure to do that,” said the Cat, “if you only walk long enough.”\\nAlice felt that this could not be denied, so she tried another question.\\n“What sort of people live about here?”\\n“In That direction,” the Cat said, waving its right paw round, “lives a\\nHatter: and in That direction,” waving the other paw, “lives a March Hare. Visit\\neither you like: they\\'re both mad.”\\n“But I don\\'t want to go among mad people,” Alice remarked.\\n“Oh, you can\\'t help that,” said the Cat: “we\\'re all mad here. I\\'m mad.\\nYou\\'re mad.”\\n“How do you know I\\'m mad?” said Alice.\\n“You must be,” said the Cat, “or you wouldn\\'t have come here.”\\nAlice didn\\'t think that proved it at all; however, she went on “And how do\\nyou know that you\\'re mad?”\\n“To begin with,” said the Cat, “a dog\\'s not mad. You grant that?”\\n“I suppose so,” said Alice.\\n“Well, then,” the Cat went on, “you see, a dog growls when it\\'s angry, and\\nwags its tail when it\\'s pleased. Now I growl when I\\'m pleased, and wag my tail\\nwhen I\\'m angry. Therefore I\\'m mad.”\\n“I call it purring, not growling,” said Alice.\\n“Call it what you like,” said the Cat. “Do you play croquet with the Queen\\nto-day?”\\n“I should like it very much,” said Alice, “but I haven\\'t been invited yet.”\\n“You\\'ll see me there,” said the Cat, and vanished.\\nAlice was not much surprised at this, she was getting so used to queer\\nthings happening. While she was looking at the place where it had been, it\\nsuddenly appeared again.\\n“By-the-bye, what became of the baby?” said the Cat. “I\\'d nearly forgotten\\nto ask.”\\n“It turned into a pig,” Alice quietly said, just as if it had come back in a\\nnatural way.\\n“I thought it would,” said the Cat, and vanished again.\\nAlice waited a little, half expecting to see it again, but it did not appear,\\nand after a minute or two she walked on in the direction in which the March\\nHare was said to live. “I\\'ve seen hatters before,” she said to herself; “the March\\nHare will be much the most interesting, and perhaps as this is May it won\\'t be\\nraving mad-at least not so mad as it was in March.” As she said this, she\\nlooked up, and there was the Cat again, sitting on a branch of a tree.\\n“Did you say pig, or fig?” said the Cat.\\n“I said pig,” replied Alice; “and I wish you wouldn\\'t keep appearing and\\nvanishing so suddenly: you make one quite giddy.”\\n“All right,” said the Cat; and this time it vanished quite slowly, beginning\\nwith the end of the tail, and ending with the grin, which remained some time\\nafter the rest of it had gone.\\n“Well! I\\'ve often seen a cat without a grin,” thought Alice; “but a grin\\nwithout a cat! It\\'s the most curious thing I ever saw in my life!”\\nShe had not gone much farther before she came in sight of the house of\\nthe March Hare: she thought it must be the right house, because the chimneys\\nwere shaped like ears and the roof was thatched with fur. It was so large a\\nhouse, that she did not like to go nearer till she had nibbled some more of the\\nlefthand bit of mushroom, and raised herself to about two feet high: even then\\nshe walked up towards it rather timidly, saying to herself “Suppose it should be\\nraving mad after all! I almost wish I\\'d gone to see the Hatter instead!”\\nChapter VII\\nA Mad Tea-Party\\nThere was a table set out under a tree in front of the house, and the March\\nHare and the Hatter were having tea at it: a Dormouse was sitting between\\nthem, fast asleep, and the other two were using it as a cushion, resting their\\nelbows on it, and talking over its head. \\'Very uncomfortable for the Dormouse,\\'\\nthought Alice; \\'only, as it\\'s asleep, I suppose it doesn\\'t mind.\\'\\nThe table was a large one, but the three were all crowded together at one\\ncorner of it: \\'No room! No room!\\' they cried out when they saw Alice coming.\\n\\'There\\'s Plenty of room!\\' said Alice indignantly, and she sat down in a large\\narm-chair at one end of the table.\\n\\'Have some wine,\\' the March Hare said in an encouraging tone.\\nAlice looked all round the table, but there was nothing on it but tea. \\'I\\ndon\\'t see any wine,\\' she remarked.\\n\\'There isn\\'t any,\\' said the March Hare.\\n\\'Then it wasn\\'t very civil of you to offer it,\\' said Alice angrily.\\n\\'It wasn\\'t very civil of you to sit down without being invited,\\' said the\\nMarch Hare.\\n\\'I didn\\'t know it was Your table,\\' said Alice; \\'it\\'s laid for a great many more\\nthan three.\\'\\n\\'Your hair wants cutting,\\' said the Hatter. He had been looking at Alice for\\nsome time with great curiosity, and this was his first speech.\\n\\'You should learn not to make personal remarks,\\' Alice said with some\\nseverity; \\'it\\'s very rude.\\'\\nThe Hatter opened his eyes very wide on hearing this; but all he Said was,\\n\\'Why is a raven like a writing-desk?\\'\\n\\'Come, we shall have some fun now!\\' thought Alice. \\'I\\'m glad they\\'ve\\nbegun asking riddles.--I believe I can guess that,\\' she added aloud.\\n\\'Do you mean that you think you can find out the answer to it?\\' said the\\nMarch Hare.\\n\\'Exactly so,\\' said Alice.\\n\\'Then you should say what you mean,\\' the March Hare went on.\\n\\'I do,\\' Alice hastily replied; \\'at least--at least I mean what I say--that\\'s the\\nsame thing, you know.\\'\\n\\'Not the same thing a bit!\\' said the Hatter. \\'You might just as well say that\\n\"I see what I eat\" is the same thing as \"I eat what I see\"!\\'\\n\\'You might just as well say,\\' added the March Hare, \\'that \"I like what I get\"\\nis the same thing as \"I get what I like\"!\\'\\n\\'You might just as well say,\\' added the Dormouse, who seemed to be\\ntalking in his sleep, \\'that \"I breathe when I sleep\" is the same thing as \"I sleep\\nwhen I breathe\"!\\'\\n\\'It Is the same thing with you,\\' said the Hatter, and here the conversation\\ndropped, and the party sat silent for a minute, while Alice thought over all she\\ncould remember about ravens and writing-desks, which wasn\\'t much.\\nThe Hatter was the first to break the silence. \\'What day of the month is it?\\'\\nhe said, turning to Alice: he had taken his watch out of his pocket, and was\\nlooking at it uneasily, shaking it every now and then, and holding it to his ear.\\nAlice considered a little, and then said \\'The fourth.\\'\\n\\'Two days wrong!\\' sighed the Hatter. \\'I told you butter wouldn\\'t suit the\\nworks!\\' he added looking angrily at the March Hare.\\n\\'It was the Best butter,\\' the March Hare meekly replied.\\n\\'Yes, but some crumbs must have got in as well,\\' the Hatter grumbled: \\'you\\nshouldn\\'t have put it in with the bread-knife.\\'\\nThe March Hare took the watch and looked at it gloomily: then he dipped\\nit into his cup of tea, and looked at it again: but he could think of nothing\\nbetter to say than his first remark, \\'It was the Best butter, you know.\\'\\nAlice had been looking over his shoulder with some curiosity. \\'What a\\nfunny watch!\\' she remarked. \\'It tells the day of the month, and doesn\\'t tell what\\no\\'clock it is!\\'\\n\\'Why should it?\\' muttered the Hatter. \\'Does Your watch tell you what year\\nit is?\\'\\n\\'Of course not,\\' Alice replied very readily: \\'but that\\'s because it stays the\\nsame year for such a long time together.\\'\\n\\'Which is just the case with Mine,\\' said the Hatter.\\nAlice felt dreadfully puzzled. The Hatter\\'s remark seemed to have no sort\\nof meaning in it, and yet it was certainly English. \\'I don\\'t quite understand\\nyou,\\' she said, as politely as she could.\\n\\'The Dormouse is asleep again,\\' said the Hatter, and he poured a little hot\\ntea upon its nose.\\nThe Dormouse shook its head impatiently, and said, without opening its\\neyes, \\'Of course, of course; just what I was going to remark myself.\\'\\n\\'Have you guessed the riddle yet?\\' the Hatter said, turning to Alice again.\\n\\'No, I give it up,\\' Alice replied: \\'what\\'s the answer?\\'\\n\\'I haven\\'t the slightest idea,\\' said the Hatter.\\n\\'Nor I,\\' said the March Hare.\\nAlice sighed wearily. \\'I think you might do something better with the\\ntime,\\' she said, \\'than waste it in asking riddles that have no answers.\\'\\n\\'If you knew Time as well as I do,\\' said the Hatter, \\'you wouldn\\'t talk about\\nwasting It. It\\'s Him.\\'\\n\\'I don\\'t know what you mean,\\' said Alice.\\n\\'Of course you don\\'t!\\' the Hatter said, tossing his head contemptuously. \\'I\\ndare say you never even spoke to Time!\\'\\n\\'Perhaps not,\\' Alice cautiously replied: \\'but I know I have to beat time\\nwhen I learn music.\\'\\n\\'Ah! that accounts for it,\\' said the Hatter. \\'He won\\'t stand beating. Now, if\\nyou only kept on good terms with him, he\\'d do almost anything you liked with\\nthe clock. For instance, suppose it were nine o\\'clock in the morning, just time\\nto begin lessons: you\\'d only have to whisper a hint to Time, and round goes\\nthe clock in a twinkling! Half-past one, time for dinner!\\'\\n(\\'I only wish it was,\\' the March Hare said to itself in a whisper.)\\n\\'That would be grand, certainly,\\' said Alice thoughtfully: \\'but then--I\\nshouldn\\'t be hungry for it, you know.\\'\\n\\'Not at first, perhaps,\\' said the Hatter: \\'but you could keep it to half-past\\none as long as you liked.\\'\\n\\'Is that the way You manage?\\' Alice asked.\\nThe Hatter shook his head mournfully. \\'Not I!\\' he replied. \\'We quarrelled\\nlast March--just before He went mad, you know--\\' (pointing with his tea spoon\\nat the March Hare,) \\'--it was at the great concert given by the Queen of Hearts,\\nand I had to sing\\n\"Twinkle, twinkle, little bat!\\nHow I wonder what you\\'re at!\"\\nYou know the song, perhaps?\\'\\n\\'I\\'ve heard something like it,\\' said Alice.\\n\\'It goes on, you know,\\' the Hatter continued, \\'in this way:--\\n\"Up above the world you fly,\\nLike a tea-tray in the sky.\\nTwinkle, twinkle--\"\\'\\nHere the Dormouse shook itself, and began singing in its sleep \\'Twinkle,\\ntwinkle, twinkle, twinkle--\\' and went on so long that they had to pinch it to\\nmake it stop.\\n\\'Well, I\\'d hardly finished the first verse,\\' said the Hatter, \\'when the Queen\\njumped up and bawled out, \"He\\'s murdering the time! Off with his head!\"\\'\\n\\'How dreadfully savage!\\' exclaimed Alice.\\n\\'And ever since that,\\' the Hatter went on in a mournful tone, \\'he won\\'t do\\na thing I ask! It\\'s always six o\\'clock now.\\'\\nA bright idea came into Alice\\'s head. \\'Is that the reason so many teathings are put out here?\\' she asked.\\n\\'Yes, that\\'s it,\\' said the Hatter with a sigh: \\'it\\'s always tea-time, and we\\'ve\\nno time to wash the things between whiles.\\'\\n\\'Then you keep moving round, I suppose?\\' said Alice.\\n\\'Exactly so,\\' said the Hatter: \\'as the things get used up.\\'\\n\\'But what happens when you come to the beginning again?\\' Alice\\nventured to ask.\\n\\'Suppose we change the subject,\\' the March Hare interrupted, yawning.\\n\\'I\\'m getting tired of this. I vote the young lady tells us a story.\\'\\n\\'I\\'m afraid I don\\'t know one,\\' said Alice, rather alarmed at the proposal.\\n\\'Then the Dormouse shall!\\' they both cried. \\'Wake up, Dormouse!\\' And\\nthey pinched it on both sides at once.\\nThe Dormouse slowly opened his eyes. \\'I wasn\\'t asleep,\\' he said in a\\nhoarse, feeble voice: \\'I heard every word you fellows were saying.\\'\\n\\'Tell us a story!\\' said the March Hare.\\n\\'Yes, please do!\\' pleaded Alice.\\n\\'And be quick about it,\\' added the Hatter, \\'or you\\'ll be asleep again before\\nit\\'s done.\\'\\n\\'Once upon a time there were three little sisters,\\' the Dormouse began in a\\ngreat hurry; \\'and their names were Elsie, Lacie, and Tillie; and they lived at the\\nbottom of a well--\\'\\n\\'What did they live on?\\' said Alice, who always took a great interest in\\nquestions of eating and drinking.\\n\\'They lived on treacle,\\' said the Dormouse, after thinking a minute or two.\\n\\'They couldn\\'t have done that, you know,\\' Alice gently remarked; \\'they\\'d\\nhave been ill.\\'\\n\\'So they were,\\' said the Dormouse; \\'Very ill.\\'\\nAlice tried to fancy to herself what such an extraordinary ways of living\\nwould be like, but it puzzled her too much, so she went on: \\'But why did they\\nlive at the bottom of a well?\\'\\n\\'Take some more tea,\\' the March Hare said to Alice, very earnestly.\\n\\'I\\'ve had nothing yet,\\' Alice replied in an offended tone, \\'so I can\\'t take\\nmore.\\'\\n\\'You mean you can\\'t take LESS,\\' said the Hatter: \\'it\\'s very easy to take\\nMORE than nothing.\\'\\n\\'Nobody asked Your opinion,\\' said Alice.\\n\\'Who\\'s making personal remarks now?\\' the Hatter asked triumphantly.\\nAlice did not quite know what to say to this: so she helped herself to some\\ntea and bread-and-butter, and then turned to the Dormouse, and repeated her\\nquestion. \\'Why did they live at the bottom of a well?\\'\\nThe Dormouse again took a minute or two to think about it, and then\\nsaid, \\'It was a treacle-well.\\'\\n\\'There\\'s no such thing!\\' Alice was beginning very angrily, but the Hatter\\nand the March Hare went \\'Sh! sh!\\' and the Dormouse sulkily remarked, \\'If you\\ncan\\'t be civil, you\\'d better finish the story for yourself.\\'\\n\\'No, please go on!\\' Alice said very humbly; \\'I won\\'t interrupt again. I dare\\nsay there may be One.\\'\\n\\'One, indeed!\\' said the Dormouse indignantly. However, he consented to\\ngo on. \\'And so these three little sisters--they were learning to draw, you\\nknow--\\'\\n\\'What did they draw?\\' said Alice, quite forgetting her promise.\\n\\'Treacle,\\' said the Dormouse, without considering at all this time.\\n\\'I want a clean cup,\\' interrupted the Hatter: \\'let\\'s all move one place on.\\'\\nHe moved on as he spoke, and the Dormouse followed him: the March\\nHare moved into the Dormouse\\'s place, and Alice rather unwillingly took the\\nplace of the March Hare. The Hatter was the only one who got any advantage\\nfrom the change: and Alice was a good deal worse off than before, as the\\nMarch Hare had just upset the milk-jug into his plate.\\nAlice did not wish to offend the Dormouse again, so she began very\\ncautiously: \\'But I don\\'t understand. Where did they draw the treacle from?\\'\\n\\'You can draw water out of a water-well,\\' said the Hatter; \\'so I should\\nthink you could draw treacle out of a treacle-well--eh, stupid?\\'\\n\\'But they were IN the well,\\' Alice said to the Dormouse, not choosing to\\nnotice this last remark.\\n\\'Of course they were\\', said the Dormouse; \\'--well in.\\'\\nThis answer so confused poor Alice, that she let the Dormouse go on for\\nsome time without interrupting it.\\n\\'They were learning to draw,\\' the Dormouse went on, yawning and\\nrubbing its eyes, for it was getting very sleepy; \\'and they drew all manner of\\nthings--everything that begins with an M--\\'\\n\\'Why with an M?\\' said Alice.\\n\\'Why not?\\' said the March Hare.\\nAlice was silent.\\nThe Dormouse had closed its eyes by this time, and was going off into a\\ndoze; but, on being pinched by the Hatter, it woke up again with a little shriek,\\nand went on: \\'--that begins with an M, such as mouse-traps, and the moon,\\nand memory, and muchness-- you know you say things are \"much of a\\nmuchness\"--did you ever see such a thing as a drawing of a muchness?\\'\\n\\'Really, now you ask me,\\' said Alice, very much confused, \\'I don\\'t think--\\'\\n\\'Then you shouldn\\'t talk,\\' said the Hatter.\\nThis piece of rudeness was more than Alice could bear: she got up in great\\ndisgust, and walked off; the Dormouse fell asleep instantly, and neither of the\\nothers took the least notice of her going, though she looked back once or\\ntwice, half hoping that they would call after her: the last time she saw them,\\nthey were trying to put the Dormouse into the teapot.\\n\\'At any rate I\\'ll never go There again!\\' said Alice as she picked her way\\nthrough the wood. \\'It\\'s the stupidest tea-party I ever was at in all my life!\\'\\nJust as she said this, she noticed that one of the trees had a door leading\\nright into it. \\'That\\'s very curious!\\' she thought. \\'But everything\\'s curious today.\\nI think I may as well go in at once.\\' And in she went.\\nOnce more she found herself in the long hall, and close to the little glass\\ntable. \\'Now, I\\'ll manage better this time,\\' she said to herself, and began by\\ntaking the little golden key, and unlocking the door that led into the garden.\\nThen she went to work nibbling at the mushroom (she had kept a piece of it in\\nher pocket) till she was about a foot high: then she walked down the little\\npassage: and Then--she found herself at last in the beautiful garden, among the\\nbright flower-beds and the cool fountains.\\nChapter VIII\\nThe Queen\\'s Croquet-Ground\\nA large rose-tree stood near the entrance of the garden: the roses growing\\non it were white, but there were three gardeners at it, busily painting them red.\\nAlice thought this a very curious thing, and she went nearer to watch them,\\nand just as she came up to them she heard one of them say, \\'Look out now,\\nFive! Don\\'t go splashing paint over me like that!\\'\\n\\'I couldn\\'t help it,\\' said Five, in a sulky tone; \\'Seven jogged my elbow.\\'\\nOn which Seven looked up and said, \\'That\\'s right, Five! Always lay the\\nblame on others!\\'\\n\\'You\\'d better not talk!\\' said Five. \\'I heard the Queen say only yesterday you\\ndeserved to be beheaded!\\'\\n\\'What for?\\' said the one who had spoken first.\\n\\'That\\'s none of Your business, Two!\\' said Seven.\\n\\'Yes, it Is his business!\\' said Five, \\'and I\\'ll tell him--it was for bringing the\\ncook tulip-roots instead of onions.\\'\\nSeven flung down his brush, and had just begun \\'Well, of all the unjust\\nthings--\\' when his eye chanced to fall upon Alice, as she stood watching them,\\nand he checked himself suddenly: the others looked round also, and all of\\nthem bowed low.\\n\\'Would you tell me,\\' said Alice, a little timidly, \\'why you are painting those\\nroses?\\'\\nFive and Seven said nothing, but looked at Two. Two began in a low\\nvoice, \\'Why the fact is, you see, Miss, this here ought to have been a RED rosetree, and we put a white one in by mistake; and if the Queen was to find it out,\\nwe should all have our heads cut off, you know. So you see, Miss, we\\'re doing\\nour best, afore she comes, to--\\' At this moment Five, who had been anxiously\\nlooking across the garden, called out \\'The Queen! The Queen!\\' and the three\\ngardeners instantly threw themselves flat upon their faces. There was a sound\\nof many footsteps, and Alice looked round, eager to see the Queen.\\nFirst came ten soldiers carrying clubs; these were all shaped like the three\\ngardeners, oblong and flat, with their hands and feet at the corners: next the\\nten courtiers; these were ornamented all over with diamonds, and walked two\\nand two, as the soldiers did. After these came the royal children; there were ten\\nof them, and the little dears came jumping merrily along hand in hand, in\\ncouples: they were all ornamented with hearts. Next came the guests, mostly\\nKings and Queens, and among them Alice recognised the White Rabbit: it was\\ntalking in a hurried nervous manner, smiling at everything that was said, and\\nwent by without noticing her. Then followed the Knave of Hearts, carrying the\\nKing\\'s crown on a crimson velvet cushion; and, last of all this grand\\nprocession, came The King And Queen Of Hearts.\\nAlice was rather doubtful whether she ought not to lie down on her face\\nlike the three gardeners, but she could not remember ever having heard of\\nsuch a rule at processions; \\'and besides, what would be the use of a procession,\\'\\nthought she, \\'if people had all to lie down upon their faces, so that they\\ncouldn\\'t see it?\\' So she stood still where she was, and waited.\\nWhen the procession came opposite to Alice, they all stopped and looked\\nat her, and the Queen said severely \\'Who is this?\\' She said it to the Knave of\\nHearts, who only bowed and smiled in reply.\\n\\'Idiot!\\' said the Queen, tossing her head impatiently; and, turning to\\nAlice, she went on, \\'What\\'s your name, child?\\'\\n\\'My name is Alice, so please your Majesty,\\' said Alice very politely; but she\\nadded, to herself, \\'Why, they\\'re only a pack of cards, after all. I needn\\'t be\\nafraid of them!\\'\\n\\'And who are These?\\' said the Queen, pointing to the three gardeners who\\nwere lying round the rosetree; for, you see, as they were lying on their faces,\\nand the pattern on their backs was the same as the rest of the pack, she could\\nnot tell whether they were gardeners, or soldiers, or courtiers, or three of her\\nown children.\\n\\'How should I know?\\' said Alice, surprised at her own courage. \\'It\\'s no\\nbusiness of Mine.\\'\\nThe Queen turned crimson with fury, and, after glaring at her for a\\nmoment like a wild beast, screamed \\'Off with her head! Off--\\'\\n\\'Nonsense!\\' said Alice, very loudly and decidedly, and the Queen was\\nsilent.\\nThe King laid his hand upon her arm, and timidly said \\'Consider, my\\ndear: she is only a child!\\'\\nThe Queen turned angrily away from him, and said to the Knave \\'Turn\\nthem over!\\'\\nThe Knave did so, very carefully, with one foot.\\n\\'Get up!\\' said the Queen, in a shrill, loud voice, and the three gardeners\\ninstantly jumped up, and began bowing to the King, the Queen, the royal\\nchildren, and everybody else.\\n\\'Leave off that!\\' screamed the Queen. \\'You make me giddy.\\' And then,\\nturning to the rose-tree, she went on, \\'What Have you been doing here?\\'\\n\\'May it please your Majesty,\\' said Two, in a very humble tone, going down\\non one knee as he spoke, \\'we were trying--\\'\\n\\'I see!\\' said the Queen, who had meanwhile been examining the roses. \\'Off\\nwith their heads!\\' and the procession moved on, three of the soldiers\\nremaining behind to execute the unfortunate gardeners, who ran to Alice for\\nprotection.\\n\\'You shan\\'t be beheaded!\\' said Alice, and she put them into a large flowerpot that stood near. The three soldiers wandered about for a minute or two,\\nlooking for them, and then quietly marched off after the others.\\n\\'Are their heads off?\\' shouted the Queen.\\n\\'Their heads are gone, if it please your Majesty!\\' the soldiers shouted in\\nreply.\\n\\'That\\'s right!\\' shouted the Queen. \\'Can you play croquet?\\'\\nThe soldiers were silent, and looked at Alice, as the question was\\nevidently meant for her.\\n\\'Yes!\\' shouted Alice.\\n\\'Come on, then!\\' roared the Queen, and Alice joined the procession,\\nwondering very much what would happen next.\\n\\'It\\'s--it\\'s a very fine day!\\' said a timid voice at her side. She was walking by\\nthe White Rabbit, who was peeping anxiously into her face.\\n\\'Very,\\' said Alice: \\'--where\\'s the Duchess?\\'\\n\\'Hush! Hush!\\' said the Rabbit in a low, hurried tone. He looked anxiously\\nover his shoulder as he spoke, and then raised himself upon tiptoe, put his\\nmouth close to her ear, and whispered \\'She\\'s under sentence of execution.\\'\\n\\'What for?\\' said Alice.\\n\\'Did you say \"What a pity!\"?\\' the Rabbit asked.\\n\\'No, I didn\\'t,\\' said Alice: \\'I don\\'t think it\\'s at all a pity. I said \"What for?\"\\'\\n\\'She boxed the Queen\\'s ears--\\' the Rabbit began. Alice gave a little scream\\nof laughter. \\'Oh, hush!\\' the Rabbit whispered in a frightened tone. \\'The Queen\\nwill hear you! You see, she came rather late, and the Queen said--\\'\\n\\'Get to your places!\\' shouted the Queen in a voice of thunder, and people\\nbegan running about in all directions, tumbling up against each other;\\nhowever, they got settled down in a minute or two, and the game began. Alice\\nthought she had never seen such a curious croquet-ground in her life; it was all\\nridges and furrows; the balls were live hedgehogs, the mallets live flamingoes,\\nand the soldiers had to double themselves up and to stand on their hands and\\nfeet, to make the arches.\\nThe chief difficulty Alice found at first was in managing her flamingo: she\\nsucceeded in getting its body tucked away, comfortably enough, under her\\narm, with its legs hanging down, but generally, just as she had got its neck\\nnicely straightened out, and was going to give the hedgehog a blow with its\\nhead, it Would twist itself round and look up in her face, with such a puzzled\\nexpression that she could not help bursting out laughing: and when she had\\ngot its head down, and was going to begin again, it was very provoking to find\\nthat the hedgehog had unrolled itself, and was in the act of crawling away:\\nbesides all this, there was generally a ridge or furrow in the way wherever she\\nwanted to send the hedgehog to, and, as the doubled-up soldiers were always\\ngetting up and walking off to other parts of the ground, Alice soon came to the\\nconclusion that it was a very difficult game indeed.\\nThe players all played at once without waiting for turns, quarrelling all the\\nwhile, and fighting for the hedgehogs; and in a very short time the Queen was\\nin a furious passion, and went stamping about, and shouting \\'Off with his\\nhead!\\' or \\'Off with her head!\\' about once in a minute.\\nAlice began to feel very uneasy: to be sure, she had not as yet had any\\ndispute with the Queen, but she knew that it might happen any minute, \\'and\\nthen,\\' thought she, \\'what would become of me? They\\'re dreadfully fond of\\nbeheading people here; the great wonder is, that there\\'s any one left alive!\\'\\nShe was looking about for some way of escape, and wondering whether\\nshe could get away without being seen, when she noticed a curious appearance\\nin the air: it puzzled her very much at first, but, after watching it a minute or\\ntwo, she made it out to be a grin, and she said to herself \\'It\\'s the Cheshire Cat:\\nnow I shall have somebody to talk to.\\'\\n\\'How are you getting on?\\' said the Cat, as soon as there was mouth\\nenough for it to speak with.\\nAlice waited till the eyes appeared, and then nodded. \\'It\\'s no use speaking\\nto it,\\' she thought, \\'till its ears have come, or at least one of them.\\' In another\\nminute the whole head appeared, and then Alice put down her flamingo, and\\nbegan an account of the game, feeling very glad she had someone to listen to\\nher. The Cat seemed to think that there was enough of it now in sight, and no\\nmore of it appeared.\\n\\'I don\\'t think they play at all fairly,\\' Alice began, in rather a complaining\\ntone, \\'and they all quarrel so dreadfully one can\\'t hear oneself speak--and they\\ndon\\'t seem to have any rules in particular; at least, if there are, nobody attends\\nto them--and you\\'ve no idea how confusing it is all the things being alive; for\\ninstance, there\\'s the arch I\\'ve got to go through next walking about at the other\\nend of the ground--and I should have croqueted the Queen\\'s hedgehog just\\nnow, only it ran away when it saw mine coming!\\'\\n\\'How do you like the Queen?\\' said the Cat in a low voice.\\n\\'Not at all,\\' said Alice: \\'she\\'s so extremely--\\' Just then she noticed that the\\nQueen was close behind her, listening: so she went on, \\'--likely to win, that it\\'s\\nhardly worth while finishing the game.\\'\\nThe Queen smiled and passed on.\\n\\'Who Are you talking to?\\' said the King, going up to Alice, and looking at\\nthe Cat\\'s head with great curiosity.\\n\\'It\\'s a friend of mine--a Cheshire Cat,\\' said Alice: \\'allow me to introduce\\nit.\\'\\n\\'I don\\'t like the look of it at all,\\' said the King: \\'however, it may kiss my\\nhand if it likes.\\'\\n\\'I\\'d rather not,\\' the Cat remarked.\\n\\'Don\\'t be impertinent,\\' said the King, \\'and don\\'t look at me like that!\\' He\\ngot behind Alice as he spoke.\\n\\'A cat may look at a king,\\' said Alice. \\'I\\'ve read that in some book, but I\\ndon\\'t remember where.\\'\\n\\'Well, it must be removed,\\' said the King very decidedly, and he called the\\nQueen, who was passing at the moment, \\'My dear! I wish you would have this\\ncat removed!\\'\\nThe Queen had only one way of settling all difficulties, great or small. \\'Off\\nwith his head!\\' she said, without even looking round.\\n\\'I\\'ll fetch the executioner myself,\\' said the King eagerly, and he hurried off.\\nAlice thought she might as well go back, and see how the game was going\\non, as she heard the Queen\\'s voice in the distance, screaming with passion. She\\nhad already heard her sentence three of the players to be executed for having\\nmissed their turns, and she did not like the look of things at all, as the game\\nwas in such confusion that she never knew whether it was her turn or not. So\\nshe went in search of her hedgehog.\\nThe hedgehog was engaged in a fight with another hedgehog, which\\nseemed to Alice an excellent opportunity for croqueting one of them with the\\nother: the only difficulty was, that her flamingo was gone across to the other\\nside of the garden, where Alice could see it trying in a helpless sort of way to\\nfly up into a tree.\\nBy the time she had caught the flamingo and brought it back, the fight\\nwas over, and both the hedgehogs were out of sight: \\'but it doesn\\'t matter\\nmuch,\\' thought Alice, \\'as all the arches are gone from this side of the ground.\\'\\nSo she tucked it away under her arm, that it might not escape again, and went\\nback for a little more conversation with her friend.\\nWhen she got back to the Cheshire Cat, she was surprised to find quite a\\nlarge crowd collected round it: there was a dispute going on between the\\nexecutioner, the King, and the Queen, who were all talking at once, while all\\nthe rest were quite silent, and looked very uncomfortable.\\nThe moment Alice appeared, she was appealed to by all three to settle the\\nquestion, and they repeated their arguments to her, though, as they all spoke at\\nonce, she found it very hard indeed to make out exactly what they said.\\nThe executioner\\'s argument was, that you couldn\\'t cut off a head unless\\nthere was a body to cut it off from: that he had never had to do such a thing\\nbefore, and he wasn\\'t going to begin at HIS time of life.\\nThe King\\'s argument was, that anything that had a head could be\\nbeheaded, and that you weren\\'t to talk nonsense.\\nThe Queen\\'s argument was, that if something wasn\\'t done about it in less\\nthan no time she\\'d have everybody executed, all round. (It was this last remark\\nthat had made the whole party look so grave and anxious.)\\nAlice could think of nothing else to say but \\'It belongs to the Duchess:\\nyou\\'d better ask Her about it.\\'\\n\\'She\\'s in prison,\\' the Queen said to the executioner: \\'fetch her here.\\' And\\nthe executioner went off like an arrow.\\nThe Cat\\'s head began fading away the moment he was gone, and, by the\\ntime he had come back with the Dutchess, it had entirely disappeared; so the\\nKing and the executioner ran wildly up and down looking for it, while the rest\\nof the party went back to the game.\\nChapter IX\\nThe Mock Turtle\\'s Story\\n\\'You can\\'t think how glad I am to see you again, you dear old thing!\\' said\\nthe Duchess, as she tucked her arm affectionately into Alice\\'s, and they walked\\noff together.\\nAlice was very glad to find her in such a pleasant temper, and thought to\\nherself that perhaps it was only the pepper that had made her so savage when\\nthey met in the kitchen.\\n\\'When I\\'M a Duchess,\\' she said to herself, (not in a very hopeful tone\\nthough), \\'I won\\'t have any pepper in my kitchen At All. Soup does very well\\nwithout--Maybe it\\'s always pepper that makes people hot-tempered,\\' she went\\non, very much pleased at having found out a new kind of rule, \\'and vinegar\\nthat makes them sour--and camomile that makes them bitter--and--and\\nbarley-sugar and such things that make children sweet-tempered. I only wish\\npeople knew that: then they wouldn\\'t be so stingy about it, you know--\\'\\nShe had quite forgotten the Duchess by this time, and was a little startled\\nwhen she heard her voice close to her ear. \\'You\\'re thinking about something,\\nmy dear, and that makes you forget to talk. I can\\'t tell you just now what the\\nmoral of that is, but I shall remember it in a bit.\\'\\n\\'Perhaps it hasn\\'t one,\\' Alice ventured to remark.\\n\\'Tut, tut, child!\\' said the Duchess. \\'Everything\\'s got a moral, if only you\\ncan find it.\\' And she squeezed herself up closer to Alice\\'s side as she spoke.\\nAlice did not much like keeping so close to her: first, because the Duchess\\nwas Very ugly; and secondly, because she was exactly the right height to rest\\nher chin upon Alice\\'s shoulder, and it was an uncomfortably sharp chin.\\nHowever, she did not like to be rude, so she bore it as well as she could.\\n\\'The game\\'s going on rather better now,\\' she said, by way of keeping up\\nthe conversation a little.\\n\\'\\'Tis so,\\' said the Duchess: \\'and the moral of that is--\"Oh, \\'tis love, \\'tis love,\\nthat makes the world go round!\"\\'\\n\\'Somebody said,\\' Alice whispered, \\'that it\\'s done by everybody minding\\ntheir own business!\\'\\n\\'Ah, well! It means much the same thing,\\' said the Duchess, digging her\\nsharp little chin into Alice\\'s shoulder as she added, \\'and the moral of That\\nis--\"Take care of the sense, and the sounds will take care of themselves.\"\\'\\n\\'How fond she is of finding morals in things!\\' Alice thought to herself.\\n\\'I dare say you\\'re wondering why I don\\'t put my arm round your waist,\\'\\nthe Duchess said after a pause: \\'the reason is, that I\\'m doubtful about the\\ntemper of your flamingo. Shall I try the experiment?\\'\\n\\'HE might bite,\\' Alice cautiously replied, not feeling at all anxious to have\\nthe experiment tried.\\n\\'Very true,\\' said the Duchess: \\'flamingoes and mustard both bite. And the\\nmoral of that is--\"Birds of a feather flock together.\"\\'\\n\\'Only mustard isn\\'t a bird,\\' Alice remarked.\\n\\'Right, as usual,\\' said the Duchess: \\'what a clear way you have of putting\\nthings!\\'\\n\\'It\\'s a mineral, I Think,\\' said Alice.\\n\\'Of course it is,\\' said the Duchess, who seemed ready to agree to\\neverything that Alice said; \\'there\\'s a large mustard-mine near here. And the\\nmoral of that is--\"The more there is of mine, the less there is of yours.\"\\'\\n\\'Oh, I know!\\' exclaimed Alice, who had not attended to this last remark,\\n\\'it\\'s a vegetable. It doesn\\'t look like one, but it is.\\'\\n\\'I quite agree with you,\\' said the Duchess; \\'and the moral of that is--\"Be\\nwhat you would seem to be\"--or if you\\'d like it put more simply--\"Never\\nimagine yourself not to be otherwise than what it might appear to others that\\nwhat you were or might have been was not otherwise than what you had been\\nwould have appeared to them to be otherwise.\"\\'\\n\\'I think I should understand that better,\\' Alice said very politely, \\'if I had it\\nwritten down: but I can\\'t quite follow it as you say it.\\'\\n\\'That\\'s nothing to what I could say if I chose,\\' the Duchess replied, in a\\npleased tone.\\n\\'Pray don\\'t trouble yourself to say it any longer than that,\\' said Alice.\\n\\'Oh, don\\'t talk about trouble!\\' said the Duchess. \\'I make you a present of\\neverything I\\'ve said as yet.\\'\\n\\'A cheap sort of present!\\' thought Alice. \\'I\\'m glad they don\\'t give birthday\\npresents like that!\\' But she did not venture to say it out loud.\\n\\'Thinking again?\\' the Duchess asked, with another dig of her sharp little\\nchin.\\n\\'I\\'ve a right to think,\\' said Alice sharply, for she was beginning to feel a\\nlittle worried.\\n\\'Just about as much right,\\' said the Duchess, \\'as pigs have to fly; and the\\nm--\\'\\nBut here, to Alice\\'s great surprise, the Duchess\\'s voice died away, even in\\nthe middle of her favourite word \\'moral,\\' and the arm that was linked into hers\\nbegan to tremble. Alice looked up, and there stood the Queen in front of them,\\nwith her arms folded, frowning like a thunderstorm.\\n\\'A fine day, your Majesty!\\' the Duchess began in a low, weak voice.\\n\\'Now, I give you fair warning,\\' shouted the Queen, stamping on the\\nground as she spoke; \\'either you or your head must be off, and that in about\\nhalf no time! Take your choice!\\'\\nThe Duchess took her choice, and was gone in a moment.\\n\\'Let\\'s go on with the game,\\' the Queen said to Alice; and Alice was too\\nmuch frightened to say a word, but slowly followed her back to the croquetground.\\nThe other guests had taken advantage of the Queen\\'s absence, and were\\nresting in the shade: however, the moment they saw her, they hurried back to\\nthe game, the Queen merely remarking that a moment\\'s delay would cost them\\ntheir lives.\\nAll the time they were playing the Queen never left off quarrelling with\\nthe other players, and shouting \\'Off with his head!\\' or \\'Off with her head!\\'\\nThose whom she sentenced were taken into custody by the soldiers, who of\\ncourse had to leave off being arches to do this, so that by the end of half an\\nhour or so there were no arches left, and all the players, except the King, the\\nQueen, and Alice, were in custody and under sentence of execution.\\nThen the Queen left off, quite out of breath, and said to Alice, \\'Have you\\nseen the Mock Turtle yet?\\'\\n\\'No,\\' said Alice. \\'I don\\'t even know what a Mock Turtle is.\\'\\n\\'It\\'s the thing Mock Turtle Soup is made from,\\' said the Queen.\\n\\'I never saw one, or heard of one,\\' said Alice.\\n\\'Come on, then,\\' said the Queen, \\'and he shall tell you his history,\\'\\nAs they walked off together, Alice heard the King say in a low voice, to the\\ncompany generally, \\'You are all pardoned.\\' \\'Come, That\\'s a good thing!\\' she said\\nto herself, for she had felt quite unhappy at the number of executions the\\nQueen had ordered.\\nThey very soon came upon a Gryphon, lying fast asleep in the sun. (IF\\nyou don\\'t know what a Gryphon is, look at the picture.) \\'Up, lazy thing!\\' said\\nthe Queen, \\'and take this young lady to see the Mock Turtle, and to hear his\\nhistory. I must go back and see after some executions I have ordered\\'; and she\\nwalked off, leaving Alice alone with the Gryphon. Alice did not quite like the\\nlook of the creature, but on the whole she thought it would be quite as safe to\\nstay with it as to go after that savage Queen: so she waited.\\nThe Gryphon sat up and rubbed its eyes: then it watched the Queen till\\nshe was out of sight: then it chuckled. \\'What fun!\\' said the Gryphon, half to\\nitself, half to Alice.\\n\\'What Is the fun?\\' said Alice.\\n\\'Why, She,\\' said the Gryphon. \\'It\\'s all her fancy, that: they never executes\\nnobody, you know. Come on!\\'\\n\\'Everybody says \"come on!\" here,\\' thought Alice, as she went slowly after\\nit: \\'I never was so ordered about in all my life, never!\\'\\nThey had not gone far before they saw the Mock Turtle in the distance,\\nsitting sad and lonely on a little ledge of rock, and, as they came nearer, Alice\\ncould hear him sighing as if his heart would break. She pitied him deeply.\\n\\'What is his sorrow?\\' she asked the Gryphon, and the Gryphon answered, very\\nnearly in the same words as before, \\'It\\'s all his fancy, that: he hasn\\'t got no\\nsorrow, you know. Come on!\\'\\nSo they went up to the Mock Turtle, who looked at them with large eyes\\nfull of tears, but said nothing.\\n\\'This here young lady,\\' said the Gryphon, \\'she wants for to know your\\nhistory, she do.\\'\\n\\'I\\'ll tell it her,\\' said the Mock Turtle in a deep, hollow tone: \\'sit down, both\\nof you, and don\\'t speak a word till I\\'ve finished.\\'\\nSo they sat down, and nobody spoke for some minutes. Alice thought to\\nherself, \\'I don\\'t see how he can EVEN finish, if he doesn\\'t begin.\\' But she\\nwaited patiently.\\n\\'Once,\\' said the Mock Turtle at last, with a deep sigh, \\'I was a real Turtle.\\'\\nThese words were followed by a very long silence, broken only by an\\noccasional exclamation of \\'Hjckrrh!\\' from the Gryphon, and the constant\\nheavy sobbing of the Mock Turtle. Alice was very nearly getting up and saying,\\n\\'Thank you, sir, for your interesting story,\\' but she could not help thinking\\nthere Must be more to come, so she sat still and said nothing.\\n\\'When we were little,\\' the Mock Turtle went on at last, more calmly,\\nthough still sobbing a little now and then, \\'we went to school in the sea. The\\nmaster was an old Turtle--we used to call him Tortoise--\\'\\n\\'Why did you call him Tortoise, if he wasn\\'t one?\\' Alice asked.\\n\\'We called him Tortoise because he taught us,\\' said the Mock Turtle\\nangrily: \\'really you are very dull!\\'\\n\\'You ought to be ashamed of yourself for asking such a simple question,\\'\\nadded the Gryphon; and then they both sat silent and looked at poor Alice,\\nwho felt ready to sink into the earth. At last the Gryphon said to the Mock\\nTurtle, \\'Drive on, old fellow! Don\\'t be all day about it!\\' and he went on in these\\nwords:\\n\\'Yes, we went to school in the sea, though you mayn\\'t believe it--\\'\\n\\'I never said I didn\\'t!\\' interrupted Alice.\\n\\'You did,\\' said the Mock Turtle.\\n\\'Hold your tongue!\\' added the Gryphon, before Alice could speak again.\\nThe Mock Turtle went on.\\n\\'We had the best of educations--in fact, we went to school every day--\\'\\n\\'I\\'VE been to a day-school, too,\\' said Alice; \\'you needn\\'t be so proud as all\\nthat.\\'\\n\\'With extras?\\' asked the Mock Turtle a little anxiously.\\n\\'Yes,\\' said Alice, \\'we learned French and music.\\'\\n\\'And washing?\\' said the Mock Turtle.\\n\\'Certainly not!\\' said Alice indignantly.\\n\\'Ah! then yours wasn\\'t a really good school,\\' said the Mock Turtle in a\\ntone of great relief. \\'Now at Ours they had at the end of the bill, \"French,\\nmusic, And Washing--extra.\"\\'\\n\\'You couldn\\'t have wanted it much,\\' said Alice; \\'living at the bottom of the\\nsea.\\'\\n\\'I couldn\\'t afford to learn it.\\' said the Mock Turtle with a sigh. \\'I only took\\nthe regular course.\\'\\n\\'What was that?\\' inquired Alice.\\n\\'Reeling and Writhing, of course, to begin with,\\' the Mock Turtle replied;\\n\\'and then the different branches of Arithmetic-- Ambition, Distraction,\\nUglification, and Derision.\\'\\n\\'I never heard of \"Uglification,\"\\' Alice ventured to say. \\'What is it?\\'\\nThe Gryphon lifted up both its paws in surprise. \\'What! Never heard of\\nuglifying!\\' it exclaimed. \\'You know what to beautify is, I suppose?\\'\\n\\'Yes,\\' said Alice doubtfully: \\'it means--to--make--anything--prettier.\\'\\n\\'Well, then,\\' the Gryphon went on, \\'if you don\\'t know what to uglify is,\\nyou Are a simpleton.\\'\\nAlice did not feel encouraged to ask any more questions about it, so she\\nturned to the Mock Turtle, and said \\'What else had you to learn?\\'\\n\\'Well, there was Mystery,\\' the Mock Turtle replied, counting off the\\nsubjects on his flappers, \\'--Mystery, ancient and modern, with Seaography:\\nthen Drawling--the Drawling-master was an old conger-eel, that used to come\\nonce a week: He taught us Drawling, Stretching, and Fainting in Coils.\\'\\n\\'What was That like?\\' said Alice.\\n\\'Well, I can\\'t show it you myself,\\' the Mock Turtle said: \\'I\\'m too stiff. And\\nthe Gryphon never learnt it.\\'\\n\\'Hadn\\'t time,\\' said the Gryphon: \\'I went to the Classics master, though. He\\nwas an old crab, He was.\\'\\n\\'I never went to him,\\' the Mock Turtle said with a sigh: \\'he taught\\nLaughing and Grief, they used to say.\\'\\n\\'So he did, so he did,\\' said the Gryphon, sighing in his turn; and both\\ncreatures hid their faces in their paws.\\n\\'And how many hours a day did you do lessons?\\' said Alice, in a hurry to\\nchange the subject.\\n\\'Ten hours the first day,\\' said the Mock Turtle: \\'nine the next, and so on.\\'\\n\\'What a curious plan!\\' exclaimed Alice.\\n\\'That\\'s the reason they\\'re called lessons,\\' the Gryphon remarked: \\'because\\nthey lessen from day to day.\\'\\nThis was quite a new idea to Alice, and she thought it over a little before\\nshe made her next remark. \\'Then the eleventh day must have been a holiday?\\'\\n\\'Of course it was,\\' said the Mock Turtle.\\n\\'And how did you manage on the twelfth?\\' Alice went on eagerly.\\n\\'That\\'s enough about lessons,\\' the Gryphon interrupted in a very decided\\ntone: \\'tell her something about the games now.\\'\\nChapter X\\nThe Lobster Quadrille\\nThe Mock Turtle sighed deeply, and drew the back of one flapper across\\nhis eyes. He looked at Alice, and tried to speak, but for a minute or two sobs\\nchoked his voice. \\'Same as if he had a bone in his throat,\\' said the Gryphon:\\nand it set to work shaking him and punching him in the back. At last the Mock\\nTurtle recovered his voice, and, with tears running down his cheeks, he went\\non again:--\\n\\'You may not have lived much under the sea--\\' (\\'I haven\\'t,\\' said Alice)--\\n\\'and perhaps you were never even introduced to a lobster--\\' (Alice began to say\\n\\'I once tasted--\\' but checked herself hastily, and said \\'No, never\\') \\'--so you can\\nhave no idea what a delightful thing a Lobster Quadrille is!\\'\\n\\'No, indeed,\\' said Alice. \\'What sort of a dance is it?\\'\\n\\'Why,\\' said the Gryphon, \\'you first form into a line along the sea-shore--\\'\\n\\'Two lines!\\' cried the Mock Turtle. \\'Seals, turtles, salmon, and so on; then,\\nwhen you\\'ve cleared all the jelly-fish out of the way--\\'\\n\\'That generally takes some time,\\' interrupted the Gryphon.\\n\\'--you advance twice--\\'\\n\\'Each with a lobster as a partner!\\' cried the Gryphon.\\n\\'Of course,\\' the Mock Turtle said: \\'advance twice, set to partners--\\'\\n\\'--change lobsters, and retire in same order,\\' continued the Gryphon.\\n\\'Then, you know,\\' the Mock Turtle went on, \\'you throw the--\\'\\n\\'The lobsters!\\' shouted the Gryphon, with a bound into the air.\\n\\'--as far out to sea as you can--\\'\\n\\'Swim after them!\\' screamed the Gryphon.\\n\\'Turn a somersault in the sea!\\' cried the Mock Turtle, capering wildly\\nabout.\\n\\'Change lobster\\'s again!\\' yelled the Gryphon at the top of its voice.\\n\\'Back to land again, and that\\'s all the first figure,\\' said the Mock Turtle,\\nsuddenly dropping his voice; and the two creatures, who had been jumping\\nabout like mad things all this time, sat down again very sadly and quietly, and\\nlooked at Alice.\\n\\'It must be a very pretty dance,\\' said Alice timidly.\\n\\'Would you like to see a little of it?\\' said the Mock Turtle.\\n\\'Very much indeed,\\' said Alice.\\n\\'Come, let\\'s try the first figure!\\' said the Mock Turtle to the Gryphon. \\'We\\ncan do without lobsters, you know. Which shall sing?\\'\\n\\'Oh, You sing,\\' said the Gryphon. \\'I\\'ve forgotten the words.\\'\\nSo they began solemnly dancing round and round Alice, every now and\\nthen treading on her toes when they passed too close, and waving their\\nforepaws to mark the time, while the Mock Turtle sang this, very slowly and\\nsadly:--\\n\\'\"Will you walk a little faster?\" said a whiting to a snail. \"There\\'s a porpoise\\nclose behind us, and he\\'s treading on my tail. See how eagerly the lobsters and\\nthe turtles all advance! They are waiting on the shingle--will you come and join\\nthe dance?\\nWill you, won\\'t you, will you, won\\'t you, will you join the dance? Will\\nyou, won\\'t you, will you, won\\'t you, won\\'t you join the dance?\\n\"You can really have no notion how delightful it will be\\nWhen they take us up and throw us, with the lobsters,\\nout to sea!\"\\nBut the snail replied \"Too far, too far!\" and gave a look\\naskance--\\nSaid he thanked the whiting kindly, but he would not\\njoin the dance.\\nWould not, could not, would not, could not, would not\\njoin the dance.\\nWould not, could not, would not, could not, could not\\njoin the dance.\\n\\'\"What matters it how far we go?\" his scaly friend replied. \"There is\\nanother shore, you know, upon the other side. The further off from England\\nthe nearer is to France-- Then turn not pale, beloved snail, but come and join\\nthe dance.\\nWill you, won\\'t you, will you, won\\'t you, will you join\\nthe dance?\\nWill you, won\\'t you, will you, won\\'t you, won\\'t you join\\nthe dance?\"\\'\\n\\'Thank you, it\\'s a very interesting dance to watch,\\' said Alice, feeling very\\nglad that it was over at last: \\'and I do so like that curious song about the\\nwhiting!\\'\\n\\'Oh, as to the whiting,\\' said the Mock Turtle, \\'they--you\\'ve seen them, of\\ncourse?\\'\\n\\'Yes,\\' said Alice, \\'I\\'ve often seen them at dinn--\\' she checked herself hastily.\\n\\'I don\\'t know where Dinn may be,\\' said the Mock Turtle, \\'but if you\\'ve\\nseen them so often, of course you know what they\\'re like.\\'\\n\\'I believe so,\\' Alice replied thoughtfully. \\'They have their tails in their\\nmouths--and they\\'re all over crumbs.\\'\\n\\'You\\'re wrong about the crumbs,\\' said the Mock Turtle: \\'crumbs would all\\nwash off in the sea. But they Have their tails in their mouths; and the reason\\nis--\\' here the Mock Turtle yawned and shut his eyes.--\\'Tell her about the reason\\nand all that,\\' he said to the Gryphon.\\n\\'The reason is,\\' said the Gryphon, \\'that they Would go with the lobsters to\\nthe dance. So they got thrown out to sea. So they had to fall a long way. So they\\ngot their tails fast in their mouths. So they couldn\\'t get them out again. That\\'s\\nall.\\'\\n\\'Thank you,\\' said Alice, \\'it\\'s very interesting. I never knew so much about\\na whiting before.\\'\\n\\'I can tell you more than that, if you like,\\' said the Gryphon. \\'Do you\\nknow why it\\'s called a whiting?\\'\\n\\'I never thought about it,\\' said Alice. \\'Why?\\'\\n\\'It Does The Boots And Shoes.\\' the Gryphon replied very solemnly.\\nAlice was thoroughly puzzled. \\'Does the boots and shoes!\\' she repeated in\\na wondering tone.\\n\\'Why, what are Your shoes done with?\\' said the Gryphon. \\'I mean, what\\nmakes them so shiny?\\'\\nAlice looked down at them, and considered a little before she gave her\\nanswer. \\'They\\'re done with blacking, I believe.\\'\\n\\'Boots and shoes under the sea,\\' the Gryphon went on in a deep voice, \\'are\\ndone with a whiting. Now you know.\\'\\n\\'And what are they made of?\\' Alice asked in a tone of great curiosity.\\n\\'Soles and eels, of course,\\' the Gryphon replied rather impatiently: \\'any\\nshrimp could have told you that.\\'\\n\\'If I\\'d been the whiting,\\' said Alice, whose thoughts were still running on\\nthe song, \\'I\\'d have said to the porpoise, \"Keep back, please: we don\\'t want You\\nwith us!\"\\'\\n\\'They were obliged to have him with them,\\' the Mock Turtle said: \\'no wise\\nfish would go anywhere without a porpoise.\\'\\n\\'Wouldn\\'t it really?\\' said Alice in a tone of great surprise.\\n\\'Of course not,\\' said the Mock Turtle: \\'why, if a fish came to Me, and told\\nme he was going a journey, I should say \"With what porpoise?\"\\'\\n\\'Don\\'t you mean \"purpose\"?\\' said Alice.\\n\\'I mean what I say,\\' the Mock Turtle replied in an offended tone. And the\\nGryphon added \\'Come, let\\'s hear some of Your adventures.\\'\\n\\'I could tell you my adventures--beginning from this morning,\\' said Alice\\na little timidly: \\'but it\\'s no use going back to yesterday, because I was a different\\nperson then.\\'\\n\\'Explain all that,\\' said the Mock Turtle.\\n\\'No, no! The adventures first,\\' said the Gryphon in an impatient tone:\\n\\'explanations take such a dreadful time.\\'\\nSo Alice began telling them her adventures from the time when she first\\nsaw the White Rabbit. She was a little nervous about it just at first, the two\\ncreatures got so close to her, one on each side, and opened their eyes and\\nmouths so Very wide, but she gained courage as she went on. Her listeners\\nwere perfectly quiet till she got to the part about her repeating \\'You Are Old,\\nFather William,\\' to the Caterpillar, and the words all coming different, and\\nthen the Mock Turtle drew a long breath, and said \\'That\\'s very curious.\\'\\n\\'It\\'s all about as curious as it can be,\\' said the Gryphon.\\n\\'It all came different!\\' the Mock Turtle repeated thoughtfully. \\'I should like\\nto hear her try and repeat something now. Tell her to begin.\\' He looked at the\\nGryphon as if he thought it had some kind of authority over Alice.\\n\\'Stand up and repeat \"\\'Tis The Voice Of The Sluggard,\"\\' said the Gryphon.\\n\\'How the creatures order one about, and make one repeat lessons!\\'\\nthought Alice; \\'I might as well be at school at once.\\' However, she got up, and\\nbegan to repeat it, but her head was so full of the Lobster Quadrille, that she\\nhardly knew what she was saying, and the words came very queer indeed:--\\n\\'\\'Tis the voice of the Lobster; I heard him declare,\\n\"You have baked me too brown, I must sugar my hair.\"\\nAs a duck with its eyelids, so he with his nose\\nTrims his belt and his buttons, and turns out his toes.\\'\\n[later editions continued as follows\\nWhen the sands are all dry, he is gay as a lark,\\nAnd will talk in contemptuous tones of the Shark,\\nBut, when the tide rises and sharks are around,\\nHis voice has a timid and tremulous sound.]\\n\\'That\\'s different from what I used to say when I was a child,\\' said the\\nGryphon.\\n\\'Well, I never heard it before,\\' said the Mock Turtle; \\'but it sounds\\nuncommon nonsense.\\'\\nAlice said nothing; she had sat down with her face in her hands,\\nwondering if anything would Ever happen in a natural way again.\\n\\'I should like to have it explained,\\' said the Mock Turtle.\\n\\'She can\\'t explain it,\\' said the Gryphon hastily. \\'Go on with the next verse.\\'\\n\\'But about his toes?\\' the Mock Turtle persisted. \\'How COULD he turn\\nthem out with his nose, you know?\\'\\n\\'It\\'s the first position in dancing.\\' Alice said; but was dreadfully puzzled by\\nthe whole thing, and longed to change the subject.\\n\\'Go on with the next verse,\\' the Gryphon repeated impatiently: \\'it begins\\n\"I passed by his garden.\"\\'\\nAlice did not dare to disobey, though she felt sure it would all come\\nwrong, and she went on in a trembling voice:--\\n\\'I passed by his garden, and marked, with one eye,\\nHow the Owl and the Panther were sharing a pie--\\'\\n[later editions continued as follows\\nThe Panther took pie-crust, and gravy, and meat,\\nWhile the Owl had the dish as its share of the treat.\\nWhen the pie was all finished, the Owl, as a boon,\\nWas kindly permitted to pocket the spoon:\\nWhile the Panther received knife and fork with a growl,\\nAnd concluded the banquet--]\\n\\'What Is the use of repeating all that stuff,\\' the Mock Turtle interrupted, \\'if\\nyou don\\'t explain it as you go on? It\\'s by far the most confusing thing I ever\\nheard!\\'\\n\\'Yes, I think you\\'d better leave off,\\' said the Gryphon: and Alice was only\\ntoo glad to do so.\\n\\'Shall we try another figure of the Lobster Quadrille?\\' the Gryphon went\\non. \\'Or would you like the Mock Turtle to sing you a song?\\'\\n\\'Oh, a song, please, if the Mock Turtle would be so kind,\\' Alice replied, so\\neagerly that the Gryphon said, in a rather offended tone, \\'Hm! No accounting\\nfor tastes! Sing her \"Turtle Soup,\" will you, old fellow?\\'\\nThe Mock Turtle sighed deeply, and began, in a voice sometimes choked\\nwith sobs, to sing this:--\\n\\'Beautiful Soup, so rich and green,\\nWaiting in a hot tureen!\\nWho for such dainties would not stoop?\\nSoup of the evening, beautiful Soup!\\nSoup of the evening, beautiful Soup!\\nBeau--ootiful Soo--oop!\\nBeau--ootiful Soo--oop!\\nSoo--oop of the e--e--evening,\\nBeautiful, beautiful Soup!\\n\\'Beautiful Soup! Who cares for fish,\\nGame, or any other dish?\\nWho would not give all else for two p\\nennyworth only of beautiful Soup?\\nPennyworth only of beautiful Soup?\\nBeau--ootiful Soo--oop!\\nBeau--ootiful Soo--oop!\\nSoo--oop of the e--e--evening,\\nBeautiful, beauti--Ful Soup!\\'\\n\\'Chorus again!\\' cried the Gryphon, and the Mock Turtle had just begun to\\nrepeat it, when a cry of \\'The trial\\'s beginning!\\' was heard in the distance.\\n\\'Come on!\\' cried the Gryphon, and, taking Alice by the hand, it hurried\\noff, without waiting for the end of the song.\\n\\'What trial is it?\\' Alice panted as she ran; but the Gryphon only answered\\n\\'Come on!\\' and ran the faster, while more and more faintly came, carried on\\nthe breeze that followed them, the melancholy words:--\\n\\'Soo--oop of the e--e--evening,\\nBeautiful, beautiful Soup!\\'\\nChapter XI\\nWho Stole the Tarts?\\nThe King and Queen of Hearts were seated on their throne when they\\narrived, with a great crowd assembled about them--all sorts of little birds and\\nbeasts, as well as the whole pack of cards: the Knave was standing before them,\\nin chains, with a soldier on each side to guard him; and near the King was the\\nWhite Rabbit, with a trumpet in one hand, and a scroll of parchment in the\\nother. In the very middle of the court was a table, with a large dish of tarts\\nupon it: they looked so good, that it made Alice quite hungry to look at\\nthem--\\'I wish they\\'d get the trial done,\\' she thought, \\'and hand round the\\nrefreshments!\\' But there seemed to be no chance of this, so she began looking\\nat everything about her, to pass away the time.\\nAlice had never been in a court of justice before, but she had read about\\nthem in books, and she was quite pleased to find that she knew the name of\\nnearly everything there. \\'That\\'s the judge,\\' she said to herself, \\'because of his\\ngreat wig.\\'\\nThe judge, by the way, was the King; and as he wore his crown over the\\nwig, (look at the frontispiece if you want to see how he did it,) he did not look\\nat all comfortable, and it was certainly not becoming.\\n\\'And that\\'s the jury-box,\\' thought Alice, \\'and those twelve creatures,\\' (she\\nwas obliged to say \\'creatures,\\' you see, because some of them were animals, and\\nsome were birds,) \\'I suppose they are the jurors.\\' She said this last word two or\\nthree times over to herself, being rather proud of it: for she thought, and\\nrightly too, that very few little girls of her age knew the meaning of it at all.\\nHowever, \\'jury-men\\' would have done just as well.\\nThe twelve jurors were all writing very busily on slates. \\'What are they\\ndoing?\\' Alice whispered to the Gryphon. \\'They can\\'t have anything to put\\ndown yet, before the trial\\'s begun.\\'\\n\\'They\\'re putting down their names,\\' the Gryphon whispered in reply, \\'for\\nfear they should forget them before the end of the trial.\\'\\n\\'Stupid things!\\' Alice began in a loud, indignant voice, but she stopped\\nhastily, for the White Rabbit cried out, \\'Silence in the court!\\' and the King put\\non his spectacles and looked anxiously round, to make out who was talking.\\nAlice could see, as well as if she were looking over their shoulders, that all\\nthe jurors were writing down \\'stupid things!\\' on their slates, and she could even\\nmake out that one of them didn\\'t know how to spell \\'stupid,\\' and that he had to\\nask his neighbour to tell him. \\'A nice muddle their slates\\'ll be in before the\\ntrial\\'s over!\\' thought Alice.\\nOne of the jurors had a pencil that squeaked. This of course, Alice could\\nnot stand, and she went round the court and got behind him, and very soon\\nfound an opportunity of taking it away. She did it so quickly that the poor little\\njuror (it was Bill, the Lizard) could not make out at all what had become of it;\\nso, after hunting all about for it, he was obliged to write with one finger for the\\nrest of the day; and this was of very little use, as it left no mark on the slate.\\n\\'Herald, read the accusation!\\' said the King.\\nOn this the White Rabbit blew three blasts on the trumpet, and then\\nunrolled the parchment scroll, and read as follows:--\\n\\'The Queen of Hearts, she made some tarts,\\nAll on a summer day:\\nThe Knave of Hearts, he stole those tarts,\\nAnd took them quite away!\\'\\n\\'Consider your verdict,\\' the King said to the jury.\\n\\'Not yet, not yet!\\' the Rabbit hastily interrupted. \\'There\\'s a great deal to\\ncome before that!\\'\\n\\'Call the first witness,\\' said the King; and the White Rabbit blew three\\nblasts on the trumpet, and called out, \\'First witness!\\'\\nThe first witness was the Hatter. He came in with a teacup in one hand\\nand a piece of bread-and-butter in the other. \\'I beg pardon, your Majesty,\\' he\\nbegan, \\'for bringing these in: but I hadn\\'t quite finished my tea when I was sent\\nfor.\\'\\n\\'You ought to have finished,\\' said the King. \\'When did you begin?\\'\\nThe Hatter looked at the March Hare, who had followed him into the\\ncourt, arm-in-arm with the Dormouse. \\'Fourteenth of March, I think it was,\\'\\nhe said.\\n\\'Fifteenth,\\' said the March Hare.\\n\\'Sixteenth,\\' added the Dormouse.\\n\\'Write that down,\\' the King said to the jury, and the jury eagerly wrote\\ndown all three dates on their slates, and then added them up, and reduced the\\nanswer to shillings and pence.\\n\\'Take off your hat,\\' the King said to the Hatter.\\n\\'It isn\\'t mine,\\' said the Hatter.\\n\\'Stolen!\\' the King exclaimed, turning to the jury, who instantly made a\\nmemorandum of the fact.\\n\\'I keep them to sell,\\' the Hatter added as an explanation; \\'I\\'ve none of my\\nown. I\\'m a hatter.\\'\\nHere the Queen put on her spectacles, and began staring at the Hatter,\\nwho turned pale and fidgeted.\\n\\'Give your evidence,\\' said the King; \\'and don\\'t be nervous, or I\\'ll have you\\nexecuted on the spot.\\'\\nThis did not seem to encourage the witness at all: he kept shifting from\\none foot to the other, looking uneasily at the Queen, and in his confusion he\\nbit a large piece out of his teacup instead of the bread-and-butter.\\nJust at this moment Alice felt a very curious sensation, which puzzled her\\na good deal until she made out what it was: she was beginning to grow larger\\nagain, and she thought at first she would get up and leave the court; but on\\nsecond thoughts she decided to remain where she was as long as there was\\nroom for her.\\n\\'I wish you wouldn\\'t squeeze so.\\' said the Dormouse, who was sitting next\\nto her. \\'I can hardly breathe.\\'\\n\\'I can\\'t help it,\\' said Alice very meekly: \\'I\\'m growing.\\'\\n\\'You\\'ve no right to grow here,\\' said the Dormouse.\\n\\'Don\\'t talk nonsense,\\' said Alice more boldly: \\'you know you\\'re growing\\ntoo.\\'\\n\\'Yes, but I grow at a reasonable pace,\\' said the Dormouse: \\'not in that\\nridiculous fashion.\\' And he got up very sulkily and crossed over to the other\\nside of the court.\\nAll this time the Queen had never left off staring at the Hatter, and, just as\\nthe Dormouse crossed the court, she said to one of the officers of the court,\\n\\'Bring me the list of the singers in the last concert!\\' on which the wretched\\nHatter trembled so, that he shook both his shoes off.\\n\\'Give your evidence,\\' the King repeated angrily, \\'or I\\'ll have you executed,\\nwhether you\\'re nervous or not.\\'\\n\\'I\\'m a poor man, your Majesty,\\' the Hatter began, in a trembling voice, \\'--\\nand I hadn\\'t begun my tea--not above a week or so--and what with the breadand-butter getting so thin--and the twinkling of the tea--\\'\\n\\'The twinkling of the what?\\' said the King.\\n\\'It began with the tea,\\' the Hatter replied.\\n\\'Of course twinkling begins with a T!\\' said the King sharply. \\'Do you take\\nme for a dunce? Go on!\\'\\n\\'I\\'m a poor man,\\' the Hatter went on, \\'and most things twinkled after\\nthat--only the March Hare said--\\'\\n\\'I didn\\'t!\\' the March Hare interrupted in a great hurry.\\n\\'You did!\\' said the Hatter.\\n\\'I deny it!\\' said the March Hare.\\n\\'He denies it,\\' said the King: \\'leave out that part.\\'\\n\\'Well, at any rate, the Dormouse said--\\' the Hatter went on, looking\\nanxiously round to see if he would deny it too: but the Dormouse denied\\nnothing, being fast asleep.\\n\\'After that,\\' continued the Hatter, \\'I cut some more bread- and-butter--\\'\\n\\'But what did the Dormouse say?\\' one of the jury asked.\\n\\'That I can\\'t remember,\\' said the Hatter.\\n\\'You Must remember,\\' remarked the King, \\'or I\\'ll have you executed.\\'\\nThe miserable Hatter dropped his teacup and bread-and-butter, and went\\ndown on one knee. \\'I\\'m a poor man, your Majesty,\\' he began.\\n\\'You\\'re a very poor speaker,\\' said the King.\\nHere one of the guinea-pigs cheered, and was immediately suppressed by\\nthe officers of the court. (As that is rather a hard word, I will just explain to\\nyou how it was done. They had a large canvas bag, which tied up at the mouth\\nwith strings: into this they slipped the guinea-pig, head first, and then sat upon\\nit.)\\n\\'I\\'m glad I\\'ve seen that done,\\' thought Alice. \\'I\\'ve so often read in the\\nnewspapers, at the end of trials, \"There was some attempts at applause, which\\nwas immediately suppressed by the officers of the court,\" and I never\\nunderstood what it meant till now.\\'\\n\\'If that\\'s all you know about it, you may stand down,\\' continued the King.\\n\\'I can\\'t go no lower,\\' said the Hatter: \\'I\\'m on the floor, as it is.\\'\\n\\'Then you may SIT down,\\' the King replied.\\nHere the other guinea-pig cheered, and was suppressed.\\n\\'Come, that finished the guinea-pigs!\\' thought Alice. \\'Now we shall get on\\nbetter.\\'\\n\\'I\\'d rather finish my tea,\\' said the Hatter, with an anxious look at the\\nQueen, who was reading the list of singers.\\n\\'You may go,\\' said the King, and the Hatter hurriedly left the court,\\nwithout even waiting to put his shoes on.\\n\\'--and just take his head off outside,\\' the Queen added to one of the\\nofficers: but the Hatter was out of sight before the officer could get to the door.\\n\\'Call the next witness!\\' said the King.\\nThe next witness was the Duchess\\'s cook. She carried the pepper-box in\\nher hand, and Alice guessed who it was, even before she got into the court, by\\nthe way the people near the door began sneezing all at once.\\n\\'Give your evidence,\\' said the King.\\n\\'Shan\\'t,\\' said the cook.\\nThe King looked anxiously at the White Rabbit, who said in a low voice,\\n\\'Your Majesty must cross-examine This witness.\\'\\n\\'Well, if I must, I must,\\' the King said, with a melancholy air, and, after\\nfolding his arms and frowning at the cook till his eyes were nearly out of sight,\\nhe said in a deep voice, \\'What are tarts made of?\\'\\n\\'Pepper, mostly,\\' said the cook.\\n\\'Treacle,\\' said a sleepy voice behind her.\\n\\'Collar that Dormouse,\\' the Queen shrieked out. \\'Behead that Dormouse!\\nTurn that Dormouse out of court! Suppress him! Pinch him! Off with his\\nwhiskers!\\'\\nFor some minutes the whole court was in confusion, getting the\\nDormouse turned out, and, by the time they had settled down again, the cook\\nhad disappeared.\\n\\'Never mind!\\' said the King, with an air of great relief. \\'Call the next\\nwitness.\\' And he added in an undertone to the Queen, \\'Really, my dear, You\\nmust cross-examine the next witness. It quite makes my forehead ache!\\'\\nAlice watched the White Rabbit as he fumbled over the list, feeling very\\ncurious to see what the next witness would be like, \\'--for they haven\\'t got much\\nevidence Yet,\\' she said to herself. Imagine her surprise, when the White Rabbit\\nread out, at the top of his shrill little voice, the name \\'Alice!\\'\\nChapter XII\\nAlice\\'s Evidence\\n\\'Here!\\' cried Alice, quite forgetting in the flurry of the moment how large\\nshe had grown in the last few minutes, and she jumped up in such a hurry that\\nshe tipped over the jury-box with the edge of her skirt, upsetting all the\\njurymen on to the heads of the crowd below, and there they lay sprawling\\nabout, reminding her very much of a globe of goldfish she had accidentally\\nupset the week before.\\n\\'Oh, I BEG your pardon!\\' she exclaimed in a tone of great dismay, and\\nbegan picking them up again as quickly as she could, for the accident of the\\ngoldfish kept running in her head, and she had a vague sort of idea that they\\nmust be collected at once and put back into the jury-box, or they would die.\\n\\'The trial cannot proceed,\\' said the King in a very grave voice, \\'until all the\\njurymen are back in their proper places-- All,\\' he repeated with great\\nemphasis, looking hard at Alice as he said do.\\nAlice looked at the jury-box, and saw that, in her haste, she had put the\\nLizard in head downwards, and the poor little thing was waving its tail about\\nin a melancholy way, being quite unable to move. She soon got it out again,\\nand put it right; \\'not that it signifies much,\\' she said to herself; \\'I should think it\\nwould be Quite as much use in the trial one way up as the other.\\'\\nAs soon as the jury had a little recovered from the shock of being upset,\\nand their slates and pencils had been found and handed back to them, they set\\nto work very diligently to write out a history of the accident, all except the\\nLizard, who seemed too much overcome to do anything but sit with its mouth\\nopen, gazing up into the roof of the court.\\n\\'What do you know about this business?\\' the King said to Alice.\\n\\'Nothing,\\' said Alice.\\n\\'Nothing Whatever?\\' persisted the King.\\n\\'Nothing whatever,\\' said Alice.\\n\\'That\\'s very important,\\' the King said, turning to the jury. They were just\\nbeginning to write this down on their slates, when the White Rabbit\\ninterrupted: \\'UNimportant, your Majesty means, of course,\\' he said in a very\\nrespectful tone, but frowning and making faces at him as he spoke.\\n\\'UNimportant, of course, I meant,\\' the King hastily said, and went on to\\nhimself\\nin\\nan\\nundertone,\\n\\'important--unimportant--\\nunimportant--\\nimportant--\\' as if he were trying which word sounded best.\\nSome of the jury wrote it down \\'important,\\' and some \\'unimportant.\\'\\nAlice could see this, as she was near enough to look over their slates; \\'but it\\ndoesn\\'t matter a bit,\\' she thought to herself.\\nAt this moment the King, who had been for some time busily writing in\\nhis note-book, cackled out \\'Silence!\\' and read out from his book, \\'Rule Fortytwo. All Persons More Than A Mile High To Leave The Court.\\'\\nEverybody looked at Alice.\\n\\'I\\'M not a mile high,\\' said Alice.\\n\\'You are,\\' said the King.\\n\\'Nearly two miles high,\\' added the Queen.\\n\\'Well, I shan\\'t go, at any rate,\\' said Alice: \\'besides, that\\'s not a regular rule:\\nyou invented it just now.\\'\\n\\'It\\'s the oldest rule in the book,\\' said the King.\\n\\'Then it ought to be Number One,\\' said Alice.\\nThe King turned pale, and shut his note-book hastily. \\'Consider your\\nverdict,\\' he said to the jury, in a low, trembling voice.\\n\\'There\\'s more evidence to come yet, please your Majesty,\\' said the White\\nRabbit, jumping up in a great hurry; \\'this paper has just been picked up.\\'\\n\\'What\\'s in it?\\' said the Queen.\\n\\'I haven\\'t opened it yet,\\' said the White Rabbit, \\'but it seems to be a letter,\\nwritten by the prisoner to--to somebody.\\'\\n\\'It must have been that,\\' said the King, \\'unless it was written to nobody,\\nwhich isn\\'t usual, you know.\\'\\n\\'Who is it directed to?\\' said one of the jurymen.\\n\\'It isn\\'t directed at all,\\' said the White Rabbit; \\'in fact, there\\'s nothing\\nwritten on the Outside.\\' He unfolded the paper as he spoke, and added \\'It isn\\'t\\na letter, after all: it\\'s a set of verses.\\'\\n\\'Are they in the prisoner\\'s handwriting?\\' asked another of they jurymen.\\n\\'No, they\\'re not,\\' said the White Rabbit, \\'and that\\'s the queerest thing\\nabout it.\\' (The jury all looked puzzled.)\\n\\'He must have imitated somebody else\\'s hand,\\' said the King. (The jury all\\nbrightened up again.)\\n\\'Please your Majesty,\\' said the Knave, \\'I didn\\'t write it, and they can\\'t\\nprove I did: there\\'s no name signed at the end.\\'\\n\\'If you didn\\'t sign it,\\' said the King, \\'that only makes the matter worse.\\nYou Must have meant some mischief, or else you\\'d have signed your name like\\nan honest man.\\'\\nThere was a general clapping of hands at this: it was the first really clever\\nthing the King had said that day.\\n\\'That Proves his guilt,\\' said the Queen.\\n\\'It proves nothing of the sort!\\' said Alice. \\'Why, you don\\'t even know what\\nthey\\'re about!\\'\\n\\'Read them,\\' said the King.\\nThe White Rabbit put on his spectacles. \\'Where shall I begin, please your\\nMajesty?\\' he asked.\\n\\'Begin at the beginning,\\' the King said gravely, \\'and go on till you come to\\nthe end: then stop.\\'\\nThese were the verses the White Rabbit read:--\\n\\'They told me you had been to her,\\nAnd mentioned me to him:\\nShe gave me a good character,\\nBut said I could not swim.\\nHe sent them word I had not gone\\n(We know it to be true):\\nIf she should push the matter on,\\nWhat would become of you?\\nI gave her one, they gave him two,\\nYou gave us three or more;\\nThey all returned from him to you,\\nThough they were mine before.\\nIf I or she should chance to be\\nInvolved in this affair,\\nHe trusts to you to set them free,\\nExactly as we were.\\nMy notion was that you had been\\n(Before she had this fit)\\nAn obstacle that came between\\nHim, and ourselves, and it.\\nDon\\'t let him know she liked them best,\\nFor this must ever be\\nA secret, kept from all the rest,\\nBetween yourself and me.\\'\\n\\'That\\'s the most important piece of evidence we\\'ve heard yet,\\' said the\\nKing, rubbing his hands; \\'so now let the jury--\\'\\n\\'If any one of them can explain it,\\' said Alice, (she had grown so large in\\nthe last few minutes that she wasn\\'t a bit afraid of interrupting him,) \\'I\\'ll give\\nhim sixpence. _I_ don\\'t believe there\\'s an atom of meaning in it.\\'\\nThe jury all wrote down on their slates, \\'SHE doesn\\'t believe there\\'s an\\natom of meaning in it,\\' but none of them attempted to explain the paper.\\n\\'If there\\'s no meaning in it,\\' said the King, \\'that saves a world of trouble,\\nyou know, as we needn\\'t try to find any. And yet I don\\'t know,\\' he went on,\\nspreading out the verses on his knee, and looking at them with one eye; \\'I seem\\nto see some meaning in them, after all. \"--Said I Could Not Swim--\" you can\\'t\\nswim, can you?\\' he added, turning to the Knave.\\nThe Knave shook his head sadly. \\'Do I look like it?\\' he said. (Which he\\ncertainly did Not, being made entirely of cardboard.)\\n\\'All right, so far,\\' said the King, and he went on muttering over the verses\\nto himself: \\'\"We Know It To Be True--\" that\\'s the jury, of course-- \"I Gave Her\\nOne, They Gave Him Two--\" why, that must be what he did with the tarts, you\\nknow--\\'\\n\\'But, it goes on \"They All Returned From Him To You,\"\\' said Alice.\\n\\'Why, there they are!\\' said the King triumphantly, pointing to the tarts on\\nthe table. \\'Nothing can be clearer than That. Then again--\"Before She Had This\\nFit--\" you never had fits, my dear, I think?\\' he said to the Queen.\\n\\'Never!\\' said the Queen furiously, throwing an inkstand at the Lizard as\\nshe spoke. (The unfortunate little Bill had left off writing on his slate with one\\nfinger, as he found it made no mark; but he now hastily began again, using the\\nink, that was trickling down his face, as long as it lasted.)\\n\\'Then the words don\\'t Fit you,\\' said the King, looking round the court\\nwith a smile. There was a dead silence.\\n\\'It\\'s a pun!\\' the King added in an offended tone, and everybody laughed,\\n\\'Let the jury consider their verdict,\\' the King said, for about the twentieth time\\nthat day.\\n\\'No, no!\\' said the Queen. \\'Sentence first--verdict afterwards.\\'\\n\\'Stuff and nonsense!\\' said Alice loudly. \\'The idea of having the sentence\\nfirst!\\'\\n\\'Hold your tongue!\\' said the Queen, turning purple.\\n\\'I won\\'t!\\' said Alice.\\n\\'Off with her head!\\' the Queen shouted at the top of her voice. Nobody\\nmoved.\\n\\'Who cares for you?\\' said Alice, (she had grown to her full size by this\\ntime.) \\'You\\'re nothing but a pack of cards!\\'\\nAt this the whole pack rose up into the air, and came flying down upon\\nher: she gave a little scream, half of fright and half of anger, and tried to beat\\nthem off, and found herself lying on the bank, with her head in the lap of her\\nsister, who was gently brushing away some dead leaves that had fluttered down\\nfrom the trees upon her face.\\n\\'Wake up, Alice dear!\\' said her sister; \\'Why, what a long sleep you\\'ve had!\\'\\n\\'Oh, I\\'ve had such a curious dream!\\' said Alice, and she told her sister, as\\nwell as she could remember them, all these strange Adventures of hers that you\\nhave just been reading about; and when she had finished, her sister kissed her,\\nand said, \\'It Was a curious dream, dear, certainly: but now run in to your tea;\\nit\\'s getting late.\\' So Alice got up and ran off, thinking while she ran, as well she\\nmight, what a wonderful dream it had been.\\nBut her sister sat still just as she left her, leaning her head on her hand,\\nwatching the setting sun, and thinking of little Alice and all her wonderful\\nAdventures, till she too began dreaming after a fashion, and this was her\\ndream:--\\nFirst, she dreamed of little Alice herself, and once again the tiny hands\\nwere clasped upon her knee, and the bright eager eyes were looking up into\\nhers--she could hear the very tones of her voice, and see that queer little toss of\\nher head to keep back the wandering hair that Would always get into her\\neyes--and still as she listened, or seemed to listen, the whole place around her\\nbecame alive the strange creatures of her little sister\\'s dream.\\nThe long grass rustled at her feet as the White Rabbit hurried by--the\\nfrightened Mouse splashed his way through the neighbouring pool--she could\\nhear the rattle of the teacups as the March Hare and his friends shared their\\nnever-ending meal, and the shrill voice of the Queen ordering off her\\nunfortunate guests to execution--once more the pig-baby was sneezing on the\\nDuchess\\'s knee, while plates and dishes crashed around it--once more the\\nshriek of the Gryphon, the squeaking of the Lizard\\'s slate-pencil, and the\\nchoking of the suppressed guinea-pigs, filled the air, mixed up with the distant\\nsobs of the miserable Mock Turtle.\\nSo she sat on, with closed eyes, and half believed herself in Wonderland,\\nthough she knew she had but to open them again, and all would change to dull\\nreality--the grass would be only rustling in the wind, and the pool rippling to\\nthe waving of the reeds--the rattling teacups would change to tinkling sheepbells, and the Queen\\'s shrill cries to the voice of the shepherd boy--and the\\nsneeze of the baby, the shriek of the Gryphon, and all thy other queer noises,\\nwould change (she knew) to the confused clamour of the busy farm-yard--\\nwhile the lowing of the cattle in the distance would take the place of the Mock\\nTurtle\\'s heavy sobs.\\nLastly, she pictured to herself how this same little sister of hers would, in\\nthe after-time, be herself a grown woman; and how she would keep, through\\nall her riper years, the simple and loving heart of her childhood: and how she\\nwould gather about her other little children, and make Their eyes bright and\\neager with many a strange tale, perhaps even with the dream of Wonderland of\\nlong ago: and how she would feel with all their simple sorrows, and find a\\npleasure in all their simple joys, remembering her own child-life, and the\\nhappy summer days.\\n-- End --')"
230
+ ]
231
+ },
232
+ "execution_count": 11,
233
+ "metadata": {},
234
+ "output_type": "execute_result"
235
+ }
236
+ ],
237
+ "source": [
238
+ "from content_core.content.extraction import extract_content\n",
239
+ "await extract_content(dict(file_path=\"../../../tests/input_content/file.epub\"))\n"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "code",
244
+ "execution_count": 12,
245
+ "metadata": {},
246
+ "outputs": [
247
+ {
248
+ "data": {
249
+ "text/plain": [
250
+ "ProcessSourceOutput(title='file.txt', source_type='file', identified_type='text/plain', identified_provider='', metadata={}, content='# 3-Day Itinerary for Buenos Aires\\n\\n## Day 1: Exploring the Heart of the City\\n**Morning:**\\n- **Breakfast at Café Tortoni** (8:00 AM - 9:30 AM) \\n Start your day at this iconic café with medialunas and coffee.\\n- **Plaza de Mayo** (10:00 AM - 11:00 AM) \\n Visit the historic square, see Casa Rosada, and snap photos.\\n- **Catedral Metropolitana** (11:15 AM - 12:00 PM) \\n Explore the cathedral and its stunning architecture.\\n\\n**Afternoon:**\\n- **Lunch at La Brigada** (12:30 PM - 2:00 PM) \\n Enjoy a classic Argentine steak with chimichurri.\\n- **San Telmo Market** (2:30 PM - 4:30 PM) \\n Wander through this vibrant market for antiques and local crafts.\\n\\n**Evening:**\\n- **Dinner at Don Julio** (7:00 PM - 9:00 PM) \\n Savor a parrilla experience with top-quality beef.\\n- **Tango Show at La Ventana** (9:30 PM - 11:30 PM) \\n End the day with a passionate tango performance.\\n\\n---\\n\\n## Day 2: Art, Culture, and Green Spaces\\n**Morning:**\\n- **Breakfast at Pani** (8:00 AM - 9:30 AM) \\n Try their avocado toast and fresh juices.\\n- **Recoleta Cemetery** (10:00 AM - 11:30 AM) \\n Explore the ornate mausoleums, including Evita’s.\\n- **Museo Nacional de Bellas Artes** (12:00 PM - 1:30 PM) \\n Admire Argentine and international art collections.\\n\\n**Afternoon:**\\n- **Lunch at El Preferido** (2:00 PM - 3:30 PM) \\n Enjoy traditional dishes like milanesa.\\n- **Jardín Botánico** (4:00 PM - 5:30 PM) \\n Stroll through this peaceful botanical garden.\\n\\n**Evening:**\\n- **Dinner at Tegui** (7:30 PM - 9:30 PM) \\n Indulge in a modern Argentine tasting menu.\\n- **Evening Walk in Palermo Soho** (10:00 PM - 11:00 PM) \\n Explore trendy bars and boutique shops.\\n\\n---\\n\\n## Day 3: La Boca and Modern Buenos Aires\\n**Morning:**\\n- **Breakfast at Las Violetas** (8:00 AM - 9:30 AM) \\n Enjoy pastries in this historic café.\\n- **La Boca & Caminito** (10:00 AM - 12:00 PM) \\n Wander the colorful streets and visit local art stalls.\\n\\n**Afternoon:**\\n- **Lunch at El Obrero** (12:30 PM - 2:00 PM) \\n Try hearty Argentine classics in a traditional bodegón.\\n- **Museo de Arte Latinoamericano (MALBA)** (2:30 PM - 4:30 PM) \\n Discover Latin American art, including works by Frida Kahlo.\\n\\n**Evening:**\\n- **Dinner at i Latina** (7:00 PM - 9:00 PM) \\n Experience a fusion of Latin American flavors.\\n- **Puerto Madero Stroll** (9:30 PM - 10:30 PM) \\n Walk along the waterfront to end your trip with city lights.\\n\\n---\\n\\n**Notes:** \\n- Book tango shows and upscale restaurants in advance. \\n- Wear comfortable shoes for walking. \\n- Check museum hours, as they may vary.')"
251
+ ]
252
+ },
253
+ "execution_count": 12,
254
+ "metadata": {},
255
+ "output_type": "execute_result"
256
+ }
257
+ ],
258
+ "source": [
259
+ "from content_core.content.extraction import extract_content\n",
260
+ "await extract_content(dict(file_path=\"../../../tests/input_content/file.txt\"))\n"
261
+ ]
262
+ },
263
+ {
264
+ "cell_type": "markdown",
265
+ "metadata": {},
266
+ "source": []
267
+ },
268
+ {
269
+ "cell_type": "code",
270
+ "execution_count": 13,
271
+ "metadata": {},
272
+ "outputs": [
273
+ {
274
+ "data": {
275
+ "text/plain": [
276
+ "ProcessSourceOutput(title='tmp4p9wxgoh.09869', source_type='url', identified_type='application/pdf', identified_provider='', metadata={}, content='Docling Technical Report\\nVersion 1.0\\nChristoph Auer\\nMaksym Lysak\\nAhmed Nassar\\nMichele Dolfi\\nNikolaos Livathinos\\nPanos Vagenas\\nCesar Berrospi Ramis\\nMatteo Omenetti\\nFabian Lindlbauer\\nKasper Dinkla\\nLokesh Mishra\\nYusik Kim\\nShubham Gupta\\nRafael Teixeira de Lima\\nValery Weber\\nLucas Morin\\nIngmar Meijer\\nViktor Kuropiatnyk\\nPeter W. J. Staar\\nAI4K Group, IBM Research\\nR ̈uschlikon, Switzerland\\nAbstract\\nThis technical report introduces Docling, an easy to use, self-contained, MITlicensed open-source package for PDF document conversion. It is powered by\\nstate-of-the-art specialized AI models for layout analysis (DocLayNet) and table\\nstructure recognition (TableFormer), and runs efficiently on commodity hardware\\nin a small resource budget. The code interface allows for easy extensibility and\\naddition of new features and models.\\n1\\nIntroduction\\nConverting PDF documents back into a machine-processable format has been a major challenge\\nfor decades due to their huge variability in formats, weak standardization and printing-optimized\\ncharacteristic, which discards most structural features and metadata. With the advent of LLMs\\nand popular application patterns such as retrieval-augmented generation (RAG), leveraging the rich\\ncontent embedded in PDFs has become ever more relevant. In the past decade, several powerful\\ndocument understanding solutions have emerged on the market, most of which are commercial software, cloud offerings [3] and most recently, multi-modal vision-language models. As of today, only\\na handful of open-source tools cover PDF conversion, leaving a significant feature and quality gap\\nto proprietary solutions.\\nWith Docling, we open-source a very capable and efficient document conversion tool which builds\\non the powerful, specialized AI models and datasets for layout analysis and table structure recognition we developed and presented in the recent past [12, 13, 9]. Docling is designed as a simple,\\nself-contained python library with permissive license, running entirely locally on commodity hardware. Its code architecture allows for easy extensibility and addition of new features and models.\\nDocling Technical Report\\n1\\narXiv:2408.09869v5 [cs.CL] 9 Dec 2024\\nHere is what Docling delivers today:\\n* Converts PDF documents to JSON or Markdown format, stable and lightning fast\\n* Understands detailed page layout, reading order, locates figures and recovers table structures\\n* Extracts metadata from the document, such as title, authors, references and language\\n* Optionally applies OCR, e.g. for scanned PDFs\\n* Can be configured to be optimal for batch-mode (i.e high throughput, low time-to-solution)\\nor interactive mode (compromise on efficiency, low time-to-solution)\\n* Can leverage different accelerators (GPU, MPS, etc).\\n2\\nGetting Started\\nTo use Docling, you can simply install the docling package from PyPI. Documentation and examples\\nare available in our GitHub repository at github.com/DS4SD/docling. All required model assets1 are\\ndownloaded to a local huggingface datasets cache on first use, unless you choose to pre-install the\\nmodel assets in advance.\\nDocling provides an easy code interface to convert PDF documents from file system, URLs or binary\\nstreams, and retrieve the output in either JSON or Markdown format. For convenience, separate\\nmethods are offered to convert single documents or batches of documents. A basic usage example\\nis illustrated below. Further examples are available in the Doclign code repository.\\nfrom\\ndocling. document_converter\\nimport\\nDocumentConverter\\nsource = \"https:// arxiv.org/pdf /2206.01062\"\\n# PDF path or URL\\nconverter = DocumentConverter ()\\nresult = converter. convert_single (source)\\nprint(result. render_as_markdown ())\\n# output: \"##\\nDocLayNet: A Large\\nHuman -Annotated\\nDataset\\nfor Document -Layout\\nAnalysis\\n[...]\"\\nOptionally, you can configure custom pipeline features and runtime options, such as turning on or\\noff features (e.g. OCR, table structure recognition), enforcing limits on the input document size, and\\ndefining the budget of CPU threads. Advanced usage examples and options are documented in the\\nREADME file. Docling also provides a Dockerfile to demonstrate how to install and run it inside a\\ncontainer.\\n3\\nProcessing pipeline\\nDocling implements a linear pipeline of operations, which execute sequentially on each given document (see Fig. 1). Each document is first parsed by a PDF backend, which retrieves the programmatic\\ntext tokens, consisting of string content and its coordinates on the page, and also renders a bitmap\\nimage of each page to support downstream operations. Then, the standard model pipeline applies a\\nsequence of AI models independently on every page in the document to extract features and content,\\nsuch as layout and table structures. Finally, the results from all pages are aggregated and passed\\nthrough a post-processing stage, which augments metadata, detects the document language, infers\\nreading-order and eventually assembles a typed document object which can be serialized to JSON\\nor Markdown.\\n3.1\\nPDF backends\\nTwo basic requirements to process PDF documents in our pipeline are a) to retrieve all text content\\nand their geometric coordinates on each page and b) to render the visual representation of each\\npage as it would appear in a PDF viewer. Both these requirements are encapsulated in Docling’s\\nPDF backend interface. While there are several open-source PDF parsing libraries available for\\npython, we faced major obstacles with all of them for different reasons, among which were restrictive\\n1see huggingface.co/ds4sd/docling-models/\\n2\\nLayout\\nAnalysis\\nSerialize as\\nJSON\\nor Markdown\\n{;}\\nParse\\nPDF pages\\nTable\\nStructure\\nOCR\\nModel Pipeline\\nAssemble results,\\nApply document\\npost-processing\\nFigure 1: Sketch of Docling’s default processing pipeline. The inner part of the model pipeline is\\neasily customizable and extensible.\\nlicensing (e.g. pymupdf [7]), poor speed or unrecoverable quality issues, such as merged text cells\\nacross far-apart text tokens or table columns (pypdfium, PyPDF) [15, 14].\\nWe therefore decided to provide multiple backend choices, and additionally open-source a custombuilt PDF parser, which is based on the low-level qpdf[4] library. It is made available in a separate\\npackage named docling-parse and powers the default PDF backend in Docling. As an alternative,\\nwe provide a PDF backend relying on pypdfium, which may be a safe backup choice in certain cases,\\ne.g. if issues are seen with particular font encodings.\\n3.2\\nAI models\\nAs part of Docling, we initially release two highly capable AI models to the open-source community,\\nwhich have been developed and published recently by our team. The first model is a layout analysis\\nmodel, an accurate object-detector for page elements [13]. The second model is TableFormer [12, 9],\\na state-of-the-art table structure recognition model. We provide the pre-trained weights (hosted on\\nhuggingface) and a separate package for the inference code as docling-ibm-models. Both models\\nare also powering the open-access deepsearch-experience, our cloud-native service for knowledge\\nexploration tasks.\\nLayout Analysis Model\\nOur layout analysis model is an object-detector which predicts the bounding-boxes and classes of\\nvarious elements on the image of a given page. Its architecture is derived from RT-DETR [16] and\\nre-trained on DocLayNet [13], our popular human-annotated dataset for document-layout analysis,\\namong other proprietary datasets. For inference, our implementation relies on the onnxruntime [5].\\nThe Docling pipeline feeds page images at 72 dpi resolution, which can be processed on a single\\nCPU with sub-second latency. All predicted bounding-box proposals for document elements are\\npost-processed to remove overlapping proposals based on confidence and size, and then intersected\\nwith the text tokens in the PDF to group them into meaningful and complete units such as paragraphs,\\nsection titles, list items, captions, figures or tables.\\nTable Structure Recognition\\nThe TableFormer model [12], first published in 2022 and since refined with a custom structure token\\nlanguage [9], is a vision-transformer model for table structure recovery. It can predict the logical\\nrow and column structure of a given table based on an input image, and determine which table\\ncells belong to column headers, row headers or the table body. Compared to earlier approaches,\\nTableFormer handles many characteristics of tables, such as partial or no borderlines, empty cells,\\nrows or columns, cell spans and hierarchy both on column-heading or row-heading level, tables with\\ninconsistent indentation or alignment and other complexities. For inference, our implementation\\nrelies on PyTorch [2].\\n3\\nThe Docling pipeline feeds all table objects detected in the layout analysis to the TableFormer model,\\nby providing an image-crop of the table and the included text cells. TableFormer structure predictions are matched back to the PDF cells in post-processing to avoid expensive re-transcription text\\nin the table image. Typical tables require between 2 and 6 seconds to be processed on a standard\\nCPU, strongly depending on the amount of included table cells.\\nOCR\\nDocling provides optional support for OCR, for example to cover scanned PDFs or content in\\nbitmaps images embedded on a page. In our initial release, we rely on EasyOCR [1], a popular thirdparty OCR library with support for many languages. Docling, by default, feeds a high-resolution\\npage image (216 dpi) to the OCR engine, to allow capturing small print detail in decent quality.\\nWhile EasyOCR delivers reasonable transcription quality, we observe that it runs fairly slow on\\nCPU (upwards of 30 seconds per page).\\nWe are actively seeking collaboration from the open-source community to extend Docling with\\nadditional OCR backends and speed improvements.\\n3.3\\nAssembly\\nIn the final pipeline stage, Docling assembles all prediction results produced on each page into a\\nwell-defined datatype that encapsulates a converted document, as defined in the auxiliary package\\ndocling-core. The generated document object is passed through a post-processing model which\\nleverages several algorithms to augment features, such as detection of the document language, correcting the reading order, matching figures with captions and labelling metadata such as title, authors\\nand references. The final output can then be serialized to JSON or transformed into a Markdown\\nrepresentation at the users request.\\n3.4\\nExtensibility\\nDocling provides a straight-forward interface to extend its capabilities, namely the model pipeline.\\nA model pipeline constitutes the central part in the processing, following initial document parsing\\nand preceding output assembly, and can be fully customized by sub-classing from an abstract baseclass (BaseModelPipeline) or cloning the default model pipeline. This effectively allows to fully\\ncustomize the chain of models, add or replace models, and introduce additional pipeline configuration parameters. To use a custom model pipeline, the custom pipeline class to instantiate can\\nbe provided as an argument to the main document conversion methods. We invite everyone in the\\ncommunity to propose additional or alternative models and improvements.\\nImplementations of model classes must satisfy the python Callable interface. The __call__ method\\nmust accept an iterator over page objects, and produce another iterator over the page objects which\\nwere augmented with the additional features predicted by the model, by extending the provided\\nPagePredictions data model accordingly.\\n4\\nPerformance\\nIn this section, we establish some reference numbers for the processing speed of Docling and the\\nresource budget it requires. All tests in this section are run with default options on our standard test\\nset distributed with Docling, which consists of three papers from arXiv and two IBM Redbooks,\\nwith a total of 225 pages. Measurements were taken using both available PDF backends on two\\ndifferent hardware systems: one MacBook Pro M3 Max, and one bare-metal server running Ubuntu\\n20.04 LTS on an Intel Xeon E5-2690 CPU. For reproducibility, we fixed the thread budget (through\\nsetting OMP NUM THREADS environment variable) once to 4 (Docling default) and once to 16\\n(equal to full core count on the test hardware). All results are shown in Table 1.\\nIf you need to run Docling in very low-resource environments, please consider configuring the\\npypdfium backend. While it is faster and more memory efficient than the default docling-parse\\nbackend, it will come at the expense of worse quality results, especially in table structure recovery.\\nEstablishing GPU acceleration support for the AI models is currently work-in-progress and largely\\nuntested, but may work implicitly when CUDA is available and discovered by the onnxruntime and\\n4\\ntorch runtimes backing the Docling pipeline. We will deliver updates on this topic at in a future\\nversion of this report.\\nTable 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our\\ntest dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution\\n(TTS), computed throughput in pages per second, and the peak memory used (resident set size) for\\nboth the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads.\\nCPU\\nThread\\nbudget\\nnative backend\\npypdfium backend\\nTTS\\nPages/s\\nMem\\nTTS\\nPages/s\\nMem\\nApple M3 Max\\n(16 cores)\\n4\\n177 s\\n1.27\\n6.20 GB\\n103 s\\n2.18\\n2.56 GB\\n16\\n167 s\\n1.34\\n92 s\\n2.45\\nIntel(R) Xeon\\nE5-2690\\n(16 cores)\\n4\\n375 s\\n0.60\\n6.16 GB\\n239 s\\n0.94\\n2.42 GB\\n16\\n244 s\\n0.92\\n143 s\\n1.57\\n5\\nApplications\\nThanks to the high-quality, richly structured document conversion achieved by Docling, its output qualifies for numerous downstream applications. For example, Docling can provide a base\\nfor detailed enterprise document search, passage retrieval or classification use-cases, or support\\nknowledge extraction pipelines, allowing specific treatment of different structures in the document,\\nsuch as tables, figures, section structure or references. For popular generative AI application patterns, such as retrieval-augmented generation (RAG), we provide quackling, an open-source package\\nwhich capitalizes on Docling’s feature-rich document output to enable document-native optimized\\nvector embedding and chunking. It plugs in seamlessly with LLM frameworks such as LlamaIndex [8]. Since Docling is fast, stable and cheap to run, it also makes for an excellent choice to build\\ndocument-derived datasets. With its powerful table structure recognition, it provides significant benefit to automated knowledge-base construction [11, 10]. Docling is also integrated within the open\\nIBM data prep kit [6], which implements scalable data transforms to build large-scale multi-modal\\ntraining datasets.\\n6\\nFuture work and contributions\\nDocling is designed to allow easy extension of the model library and pipelines. In the future, we\\nplan to extend Docling with several more models, such as a figure-classifier model, an equationrecognition model, a code-recognition model and more. This will help improve the quality of conversion for specific types of content, as well as augment extracted document metadata with additional information. Further investment into testing and optimizing GPU acceleration as well as\\nimproving the Docling-native PDF backend are on our roadmap, too.\\nWe encourage everyone to propose or implement additional features and models, and will\\ngladly take your inputs and contributions under review. The codebase of Docling is open for use\\nand contribution, under the MIT license agreement and in alignment with our contributing guidelines\\nincluded in the Docling repository. If you use Docling in your projects, please consider citing this\\ntechnical report.\\nReferences\\n[1] J. AI. Easyocr: Ready-to-use ocr with 80+ supported languages. https://github.com/\\nJaidedAI/EasyOCR, 2024. Version: 1.7.0.\\n[2] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell, D. Berard,\\nE. Burovski, G. Chauhan, A. Chourdia, W. Constable, A. Desmaison, Z. DeVito, E. Ellison,\\nW. Feng, J. Gong, M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso,\\nM. Saroufim, M. Y. Siraichi, H. Suk, M. Suo, P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang,\\nX. Zhao, K. Zhou, R. Zou, A. Mathews, G. Chanan, P. Wu, and S. Chintala. Pytorch 2: Faster\\n5\\nmachine learning through dynamic python bytecode transformation and graph compilation.\\nIn Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, 4 2024. doi:\\n10.1145/3620665.3640366. URL https://pytorch.org/assets/pytorch2-2.pdf.\\n[3] C. Auer, M. Dolfi, A. Carvalho, C. B. Ramis, and P. W. Staar. Delivering document conversion\\nas a cloud service with high throughput and responsiveness. In 2022 IEEE 15th International\\nConference on Cloud Computing (CLOUD), pages 363-373. IEEE, 2022.\\n[4] J. Berkenbilt. Qpdf: A content-preserving pdf document transformer, 2024. URL https:\\n//github.com/qpdf/qpdf.\\n[5] O. R. developers. Onnx runtime. https://onnxruntime.ai/, 2024. Version: 1.18.1.\\n[6] IBM.\\nData Prep Kit: a community project to democratize and accelerate unstructured\\ndata preparation for LLM app developers, 2024.\\nURL https://github.com/IBM/\\ndata-prep-kit.\\n[7] A. S. Inc. PyMuPDF, 2024. URL https://github.com/pymupdf/PyMuPDF.\\n[8] J. Liu. LlamaIndex, 11 2022. URL https://github.com/jerryjliu/llama_index.\\n[9] M. Lysak, A. Nassar, N. Livathinos, C. Auer, and P. Staar. Optimized Table Tokenization\\nfor Table Structure Recognition. In Document Analysis and Recognition - ICDAR 2023: 17th\\nInternational Conference, San Jos ́e, CA, USA, August 21-26, 2023, Proceedings, Part II, pages\\n37-50, Berlin, Heidelberg, Aug. 2023. Springer-Verlag. ISBN 978-3-031-41678-1. doi: 10.\\n1007/978-3-031-41679-8 3. URL https://doi.org/10.1007/978-3-031-41679-8_3.\\n[10] L. Mishra, S. Dhibi, Y. Kim, C. Berrospi Ramis, S. Gupta, M. Dolfi, and P. Staar. Statements: Universal information extraction from tables with large language models for ESG\\nKPIs. In D. Stammbach, J. Ni, T. Schimanski, K. Dutia, A. Singh, J. Bingler, C. Christiaen, N. Kushwaha, V. Muccione, S. A. Vaghefi, and M. Leippold, editors, Proceedings of the\\n1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024),\\npages 193-214, Bangkok, Thailand, Aug. 2024. Association for Computational Linguistics.\\nURL https://aclanthology.org/2024.climatenlp-1.15.\\n[11] L. Morin, V. Weber, G. I. Meijer, F. Yu, and P. W. J. Staar. Patcid: an open-access dataset of\\nchemical structures in patent documents. Nature Communications, 15(1):6532, August 2024.\\nISSN 2041-1723. doi: 10.1038/s41467-024-50779-y. URL https://doi.org/10.1038/\\ns41467-024-50779-y.\\n[12] A. Nassar, N. Livathinos, M. Lysak, and P. Staar. Tableformer: Table structure understanding\\nwith transformers.\\nIn Proceedings of the IEEE/CVF Conference on Computer Vision and\\nPattern Recognition, pages 4614-4623, 2022.\\n[13] B. Pfitzmann, C. Auer, M. Dolfi, A. S. Nassar, and P. Staar.\\nDoclaynet: a large humanannotated dataset for document-layout segmentation. pages 3743-3751, 2022.\\n[14] pypdf Maintainers. pypdf: A Pure-Python PDF Library, 2024. URL https://github.com/\\npy-pdf/pypdf.\\n[15] P. Team. PyPDFium2: Python bindings for PDFium, 2024. URL https://github.com/\\npypdfium2-team/pypdfium2.\\n[16] Y. Zhao, W. Lv, S. Xu, J. Wei, G. Wang, Q. Dang, Y. Liu, and J. Chen. Detrs beat yolos on\\nreal-time object detection, 2023.\\n6\\nAppendix\\nIn this section, we illustrate a few examples of Docling’s output in Markdown and JSON.\\nBirgit Pfitzmann IBM Research Rueschlikon, Switzerland bpf@zurich.ibm.com\\nChristoph Auer IBM Research Rueschlikon, Switzerland cau@zurich.ibm.com\\nMichele Dolfi IBM Research Rueschlikon, Switzerland dol@zurich.ibm.com\\nAhmed S. Nassar IBM Research Rueschlikon, Switzerland ahn@zurich.ibm.com\\nPeter Staar IBM Research Rueschlikon, Switzerland taa@zurich.ibm.com\\nAccurate document layout analysis is a key requirement for highquality PDF document conversion. With the recent availability of public, large groundtruth datasets such as PubLayNet and DocBank, deep-learning models have proven to be very effective at layout detection and segmentation. While\\nthese datasets are of adequate size to train such models, they severely lack in layout variability since they are sourced from scientific article\\nrepositories such as PubMed and arXiv only. Consequently, the accuracy of the layout segmentation drops significantly when these models are\\napplied on more challenging and diverse layouts. In this paper, we present DocLayNet, a new, publicly available, document-layout annotation dataset\\nin COCO format. It contains 80863 manually annotated pages from diverse data sources to represent a wide variability in layouts. For each PDF\\npage, the layout annotations provide labelled bounding-boxes with a choice of 11 distinct classes. DocLayNet also provides a subset of double- and\\ntriple-annotated pages to determine the inter-annotator agreement. In multiple experiments, we provide baseline accuracy scores (in mAP) for a set\\nof popular object detection models. We also demonstrate that these models fall approximately 10% behind the inter-annotator agreement.\\nFurthermore, we provide evidence that DocLayNet is of sufficient size. Lastly, we compare models trained on PubLayNet, DocBank and DocLayNet,\\nshowing that layout predictions of the DocLayNettrained models are more robust and thus the preferred choice for general-purpose document-layout\\nanalysis.\\n· Information systems → Document structure; · Applied computing → Document analysis; · Computing methodologies → Machine learning;\\nComputer vision; Object detection;\\nPermission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not\\nmade or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party\\ncomponents of this work must be honored. For all other uses, contact the owner/author(s).\\nKDD \\'22, August 14-18, 2022, Washington, DC, USA (c) 2022 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-9385-0/22/08.\\nhttps://doi.org/10.1145/3534678.3539043\\nFigure 1: Four examples of complex page layouts across different document categories\\nPDF document conversion, layout segmentation, object-detection, data set, Machine Learning\\nBirgit Pfitzmann, Christoph Auer, Michele Dolfi, Ahmed S. Nassar, and Peter Staar. 2022. DocLayNet: A Large Human-Annotated Dataset for\\nDocumentLayout Analysis. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD \\'22), August 14-18,\\n2022, Washington, DC, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/ 3534678.3539043\\nDocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis\\nABSTRACT\\nCCS CONCEPTS\\nKEYWORDS\\nACM Reference Format:\\nDocLayNet: A Large Human-Annotated Dataset for\\nDocument-Layout Analysis\\nBirgit Ptzmann\\nIBM Research\\nRueschlikon, Switzerland\\nbpf@zurich.ibm.com\\nChristoph Auer\\nIBM Research\\nRueschlikon, Switzerland\\ncau@zurich.ibm.com\\nMichele Dol\\nIBM Research\\nRueschlikon, Switzerland\\ndol@zurich.ibm.com\\nAhmed S. Nassar\\nIBM Research\\nRueschlikon, Switzerland\\nahn@zurich.ibm.com\\nPeter Staar\\nIBM Research\\nRueschlikon, Switzerland\\ntaa@zurich.ibm.com\\nABSTRACT\\nAccurate document layout analysis is a key requirement for highquality PDF document conversion. With the recent availability of\\npublic, large ground-truth datasets such as PubLayNet and DocBank,\\ndeep-learning models have proven to be very eective at layout\\ndetection and segmentation. While these datasets are of adequate\\nsize to train such models, they severely lack in layout variability\\nsince they are sourced from scientic article repositories such as\\nPubMed and arXiv only. Consequently, the accuracy of the layout\\nsegmentation drops signicantly when these models are applied\\non more challenging and diverse layouts. In this paper, we present\\nDocLayNet, a new, publicly available, document-layout annotation\\ndataset in COCO format. It contains 80863 manually annotated\\npages from diverse data sources to represent a wide variability in\\nlayouts. For each PDF page, the layout annotations provide labelled\\nbounding-boxes with a choice of 11 distinct classes. DocLayNet\\nalso provides a subset of double- and triple-annotated pages to\\ndetermine the inter-annotator agreement. In multiple experiments,\\nwe provide baseline accuracy scores (in mAP) for a set of popular\\nobject detection models. We also demonstrate that these models\\nfall approximately 10% behind the inter-annotator agreement. Furthermore, we provide evidence that DocLayNet is of sucient size.\\nLastly, we compare models trained on PubLayNet, DocBank and\\nDocLayNet, showing that layout predictions of the DocLayNettrained models are more robust and thus the preferred choice for\\ngeneral-purpose document-layout analysis.\\nCCS CONCEPTS\\n* Information systems →Document structure; * Applied computing →Document analysis; * Computing methodologies\\n→Machine learning; Computer vision; Object detection;\\nPermission to make digital or hard copies of part or all of this work for personal or\\nclassroom use is granted without fee provided that copies are not made or distributed\\nfor prot or commercial advantage and that copies bear this notice and the full citation\\non the rst page. Copyrights for third-party components of this work must be honored.\\nFor all other uses, contact the owner/author(s).\\nKDD ’22, August 14-18, 2022, Washington, DC, USA\\n(c) 2022 Copyright held by the owner/author(s).\\nACM ISBN 978-1-4503-9385-0/22/08.\\nhttps://doi.org/10.1145/3534678.3539043\\n13\\nUSING THE VERTICAL TUBE -\\nMODELS AY11230/11234\\n1. The vertical tube can be used for\\n\\ninstructional viewing or to photograph\\n\\nthe image with a digital camera or a\\n\\nmicro TV unit\\n\\n2. Loosen the retention screw, then rotate\\n\\nthe adjustment ring to change the\\n\\nlength of the vertical tube.\\n3. Make sure that both the images in\\n\\nOPERATION (cont.)\\nSELECTING OBJECTIVE\\nMAGNIFICATION\\n\\n1. There are two objectives. The lower\\nmagnification objective has a greater\\ndepth of field and view.\\n2. In order to observe the specimen\\neasily use the lower magnification\\nobjective first. Then, by rotating the\\ncase, the magnification can be\\nchanged.\\nCHANGING THE INTERPUPILLARY\\nDISTANCE\\n1. The distance between the observer\\'s\\npupils is the interpupillary distance.\\n2. To adjust the interpupillary distance\\nrotate the prism caps until both eyes\\ncoincide with the image in the\\neyepiece.\\n\\nFOCUSING\\n1. Remove the lens protective cover.\\n2. Place the specimen on the working\\nstage.\\n3. Focus the specimen with the left eye\\nfirst while turning the focus knob until\\nthe image appears clear and sharp.\\n4. Rotate the right eyepiece ring until the\\nimages in each eyepiece coincide and\\nare sharp and clear.\\nCHANGING THE BULB\\n1. Disconnect the power cord.\\n2. When the bulb is cool, remove the\\noblique illuminator cap and remove\\nthe halogen bulb with cap.\\n3. Replace with a new halogen bulb.\\n4. Open the window in the base plate and\\nreplace the halogen lamp or\\n\\nfluorescent lamp of transmitted\\nilluminator.\\nFOCUSING\\n1. Turn the focusing knob away or toward\\nyou until a clear image is viewed.\\n2. If the image is unclear, adjust the\\nheight of the elevator up or down,\\nthen turn the focusing knob again.\\nZOOM MAGNIFICATION\\n1. Turn the zoom magnification knob to\\nthe desired magnification and field of\\nview.\\n2. In most situations, it is recommended\\nthat you focus at the lowest\\n\\nmagnification, then move to a higher\\nmagnification and re-focus as\\n\\nnecessary.\\n3. If the image is not clear to both eyes\\nat the same time, the diopter ring may\\nneed adjustment.\\nDIOPTER RING ADJUSTMENT\\n1. To adjust the eyepiece for viewing with\\nor without eyeglasses and for\\n\\ndifferences in acuity between the right\\nand left eyes, follow the following\\nsteps:\\na. Observe an image through the left\\neyepiece and bring a specific point\\ninto focus using the focus knob.\\nb. By turning the diopter ring\\n\\nadjustment for the left eyepiece,\\nbring the same point into sharp\\nfocus.\\nc.Then bring the same point into\\nfocus through the right eyepiece\\nby turning the right diopter ring.\\nd.With more than one viewer, each\\nviewer should note their own\\ndiopter ring position for the left\\nand right eyepieces, then before\\nviewing set the diopter ring\\nadjustments to that setting.\\nCHANGING THE BULB\\n1. Disconnect the power cord from the\\nelectrical outlet.\\n2. When the bulb is cool, remove the\\noblique illuminator cap and remove\\nthe halogen bulb with cap.\\n3. Replace with a new halogen bulb.\\n4. Open the window in the base plate\\nand replace the halogen lamp or\\nfluorescent lamp of transmitted\\nilluminator.\\n\\nModel AY11230\\nModel AY11234\\n14\\nObjectives\\nRevolving Turret\\nCoarse\\nAdjustment\\nKnob\\nMODEL AY11236\\nMICROSCOPE USAGE\\nBARSKA Model AY11236 is a powerful fixed power compound\\nmicroscope designed for biological studies such as specimen\\nexamination. It can also be used for examining bacteria and\\nfor general clinical and medical studies and other scientific uses.\\nCONSTRUCTION\\nBARSKA Model AY11236 is a fixed power compound microscope.\\nIt is constructed with two optical paths at the same angle. It is\\nequipped with transmitted illumination. By using this instrument,\\nthe user can observe specimens at magnification from 40x to\\n1000x by selecting the desired objective lens. Coarse and fine\\nfocus adjustments provide accuracy and image detail. The rotating\\nhead allows the user to position the eyepieces for maximum\\nviewing comfort and easy access to all adjustment knobs.\\nModel AY11236\\nFine\\nAdjustment\\nKnob\\nStage\\nCondenser\\nFocusing\\nKnob\\nEyepiece\\nStand\\nLamp\\nOn/Off\\nSwitch\\nLamp\\nPower\\nCord\\nRotating Head\\nStage Clip\\nAdjustment\\nInterpupillary Slide Adjustment\\nCircling Minimums\\n7KHUHZDVDFKDQJHWRWKH7(536FULWHULDLQWKDWDႇHFWVFLUFOLQJDUHDGLPHQVLRQE\\\\H[SDQGLQJWKHDUHDVWRSURYLGH\\nimproved obstacle protection. To indicate that the new criteria had been applied to a given procedure, a\\nis placed on\\nthe circling line of minimums. The new circling tables and explanatory information is located in the Legend of the TPP.\\n7KHDSSURDFKHVXVLQJVWDQGDUGFLUFOLQJDSSURDFKDUHDVFDQEHLGHQWL¿HGE\\\\WKHDEVHQFHRIWKH\\non the circling line of\\nminima.\\n$SSO\\\\6WDQGDUG&LUFOLQJ$SSURDFK0DQHXYHULQJ5DGLXV7DEOH\\n$SSO\\\\([SDQGHG&LUFOLQJ$SSURDFK0DQHXYHULQJ$LUVSDFH5DGLXV\\nTable\\nAIRPORT SKETCH\\n\\nThe airport sketch is a depiction of the airport with emphasis on runway pattern and related\\ninformation, positioned in either the lower left or lower right corner of the chart to aid pilot recognition of the airport from the air and to provide some information to aid on ground\\nnavigation of the airport. The runways are drawn to scale and oriented to true north. Runway\\ndimensions (length and width) are shown for all active runways.\\nRunway(s) are depicted based on what type and construction of the runway.\\nHard Surface\\nOther Than\\nHard Surface\\nMetal Surface\\nClosed Runway\\nUnder Construction\\nStopways,\\nTaxiways, Parking Areas\\nDisplaced\\nThreshold\\nClosed\\nPavement\\nWater Runway\\nTaxiways and aprons are shaded grey. Other runway features that may be shown are runway numbers, runway dimensions, runway slope, arresting gear, and displaced threshold.\\n2WKHULQIRUPDWLRQFRQFHUQLQJOLJKWLQJ¿QDODSSURDFKEHDULQJVDLUSRUWEHDFRQREVWDFOHVFRQWUROWRZHU1$9$,\\'VKHOLpads may also be shown.\\n$LUSRUW(OHYDWLRQDQG7RXFKGRZQ=RQH(OHYDWLRQ\\nThe airport elevation is shown enclosed within a box in the upper left corner of the sketch box and the touchdown zone\\nelevation (TDZE) is shown in the upper right corner of the sketch box. The airport elevation is the highest point of an\\nDLUSRUW¶VXVDEOHUXQZD\\\\VPHDVXUHGLQIHHWIURPPHDQVHDOHYHO7KH7\\'=(LVWKHKLJKHVWHOHYDWLRQLQWKH¿UVWIHHWRI\\nthe landing surface. Circling only approaches will not show a TDZE.\\n114\\nFAA Chart Users’ Guide - Terminal Procedures Publication (TPP) - Terms\\nAGL 2013 Financial Calendar\\n22 August 2012\\n2012 full year result and final dividend announced\\n30 August 2012\\nEx-dividend trading commences\\n5 September 2012\\nRecord date for 2012 final dividend\\n27 September 2012\\nFinal dividend payable\\n23 October 2012\\nAnnual General Meeting\\n27 February 20131\\n2013 interim result and interim dividend announced\\n28 August 20131\\n2013 full year results and final dividend announced\\n1 Indicative dates only, subject to change/Board confirmation\\nAGL’s Annual General Meeting will be held at the City Recital Hall, Angel Place, Sydney\\ncommencing at 10.30am on Tuesday 23 October 2012.\\nYesterday\\nEstablished in Sydney in 1837, and then\\nknown as The Australian Gas Light Company,\\nthe AGL business has an established history\\nand reputation for serving the gas and\\nelectricity needs of Australian households.\\nIn 1841, when AGL supplied the gas to light\\nthe first public street lamp, it was reported\\nin the Sydney Gazette as a “wonderful\\nachievement of scientific knowledge, assisted\\nby mechanical ingenuity.” Within two years,\\n165 gas lamps were lighting the City of Sydney.\\nLooking back on\\n175 years of\\nlooking forward.\\nAGL Energy Limited ABN 74 115 061 375\\n29\\nsigns, signals and road markings\\n3\\nIn chapter 2, you and your vehicle, you learned about\\nsome of the controls in your vehicle. This chapter is a handy\\nreference section that gives examples of the most common\\nsigns, signals and road markings that keep traffic organized\\nand flowing smoothly.\\nSigns\\nThere are three ways to read signs: by their shape, colour and\\nthe messages printed on them. Understanding these three ways\\nof classifying signs will help you figure out the meaning of signs\\nthat are new to you.\\nStop\\nYield the right-of-way\\nShows driving\\nregulations\\nExplains lane use\\nSchool zone signs\\nare fluorescent\\nyellow-green\\nTells about motorist\\nservices\\nShows a permitted\\naction\\nShows an action that\\nis not permitted\\nWarns of hazards\\nahead\\nWarns of\\nconstruction zones\\nRailway crossing\\nShows distance and\\ndirection\\n* Signs\\n- regulatory signs\\n- school,\\nplayground and\\ncrosswalk signs\\n- lane use signs\\n- turn control signs\\n- parking signs\\n- reserved lane\\nsigns\\n- warning signs\\n- object markers\\n- construction\\nsigns\\n- information and\\ndestination signs\\n- railway signs\\n* Signals\\n- lane control\\nsignals\\n- traffic lights\\n* Road markings\\n- yellow lines\\n- white lines\\n- reserved lane\\nmarkings\\n- other markings\\nin this chapter\\nFigure 1: Four examples of complex page layouts across different document categories\\nKEYWORDS\\nPDF document conversion, layout segmentation, object-detection,\\ndata set, Machine Learning\\nACM Reference Format:\\nBirgit Ptzmann, Christoph Auer, Michele Dol, Ahmed S. Nassar, and Peter\\nStaar. 2022. DocLayNet: A Large Human-Annotated Dataset for DocumentLayout Analysis. In Proceedings of the 28th ACM SIGKDD Conference on\\nKnowledge Discovery and Data Mining (KDD ’22), August 14-18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/\\n3534678.3539043\\narXiv:2206.01062v1 [cs.CV] 2 Jun 2022\\nFigure 2: Title page of the DocLayNet paper (arxiv.org/pdf/2206.01062) - left PDF, right rendered\\nMarkdown. If recognized, metadata such as authors are appearing first under the title. Text content\\ninside figures is currently dropped, the caption is retained and linked to the figure in the JSON\\nrepresentation (not shown).\\n7\\nKDD ’22, August 14-18, 2022, Washington, DC, USA Birgit Pfitzmann, Christoph Auer, Michele Dolfi, Ahmed S. Nassar, and Peter Staar\\nTable 2: Prediction performance (mAP@0.5-0.95) of object\\ndetection networks on DocLayNet test set. The MRCNN\\n(Mask R-CNN) and FRCNN (Faster R-CNN) models with\\nResNet-50 or ResNet-101 backbone were trained based on\\nthe network architectures from the detectron2 model zoo\\n(Mask R-CNN R50, R101-FPN 3x, Faster R-CNN R101-FPN\\n3x), with default congurations. The YOLO implementation\\nutilized was YOLOv5x6 [13]. All models were initialised using pre-trained weights from the COCO 2017 dataset.\\nhuman\\nMRCNN\\nFRCNN\\nYOLO\\nR50\\nR101\\nR101\\nv5x6\\nCaption\\n84-89\\n68.4\\n71.5\\n70.1\\n77.7\\nFootnote\\n83-91\\n70.9\\n71.8\\n73.7\\n77.2\\nFormula\\n83-85\\n60.1\\n63.4\\n63.5\\n66.2\\nList-item\\n87-88\\n81.2\\n80.8\\n81.0\\n86.2\\nPage-footer\\n93-94\\n61.6\\n59.3\\n58.9\\n61.1\\nPage-header\\n85-89\\n71.9\\n70.0\\n72.0\\n67.9\\nPicture\\n69-71\\n71.7\\n72.7\\n72.0\\n77.1\\nSection-header\\n83-84\\n67.6\\n69.3\\n68.4\\n74.6\\nTable\\n77-81\\n82.2\\n82.9\\n82.2\\n86.3\\nText\\n84-86\\n84.6\\n85.8\\n85.4\\n88.1\\nTitle\\n60-72\\n76.7\\n80.4\\n79.9\\n82.7\\nAll\\n82-83\\n72.4\\n73.5\\n73.4\\n76.8\\nto avoid this at any cost in order to have clear, unbiased baseline\\nnumbers for human document-layout annotation. Third, we introduced the feature of snapping boxes around text segments to\\nobtain a pixel-accurate annotation and again reduce time and eort.\\nThe CCS annotation tool automatically shrinks every user-drawn\\nbox to the minimum bounding-box around the enclosed text-cells\\nfor all purely text-based segments, which excludes only Table and\\nPicture. For the latter, we instructed annotation stato minimise\\ninclusion of surrounding whitespace while including all graphical\\nlines. A downside of snapping boxes to enclosed text cells is that\\nsome wrongly parsed PDF pages cannot be annotated correctly and\\nneed to be skipped. Fourth, we established a way to ag pages as\\nrejected for cases where no valid annotation according to the label\\nguidelines could be achieved. Example cases for this would be PDF\\npages that render incorrectly or contain layouts that are impossible\\nto capture with non-overlapping rectangles. Such rejected pages are\\nnot contained in the nal dataset. With all these measures in place,\\nexperienced annotation stamanaged to annotate a single page in\\na typical timeframe of 20s to 60s, depending on its complexity.\\n5\\nEXPERIMENTS\\nThe primary goal of DocLayNet is to obtain high-quality ML models\\ncapable of accurate document-layout analysis on a wide variety\\nof challenging layouts. As discussed in Section 2, object detection\\nmodels are currently the easiest to use, due to the standardisation\\nof ground-truth data in COCO format [16] and the availability of\\ngeneral frameworks such as detectron2 [17]. Furthermore, baseline\\nnumbers in PubLayNet and DocBank were obtained using standard\\nobject detection models such as Mask R-CNN and Faster R-CNN.\\nAs such, we will relate to these object detection methods in this\\nFigure 5: Prediction performance (mAP@0.5-0.95) of a Mask\\nR-CNN network with ResNet50 backbone trained on increasing fractions of the DocLayNet dataset. The learning curve\\nattens around the 80% mark, indicating that increasing the\\nsize of the DocLayNet dataset with similar data will not yield\\nsignicantly better predictions.\\npaper and leave the detailed evaluation of more recent methods\\nmentioned in Section 2 for future work.\\nIn this section, we will present several aspects related to the\\nperformance of object detection models on DocLayNet. Similarly\\nas in PubLayNet, we will evaluate the quality of their predictions\\nusing mean average precision (mAP) with 10 overlaps that range\\nfrom 0.5 to 0.95 in steps of 0.05 (mAP@0.5-0.95). These scores are\\ncomputed by leveraging the evaluation code provided by the COCO\\nAPI [16].\\nBaselines for Object Detection\\nIn Table 2, we present baseline experiments (given in mAP) on Mask\\nR-CNN [12], Faster R-CNN [11], and YOLOv5 [13]. Both training\\nand evaluation were performed on RGB images with dimensions of\\n1025⇥1025 pixels. For training, we only used one annotation in case\\nof redundantly annotated pages. As one can observe, the variation\\nin mAP between the models is rather low, but overall between 6\\nand 10% lower than the mAP computed from the pairwise human\\nannotations on triple-annotated pages. This gives a good indication\\nthat the DocLayNet dataset poses a worthwhile challenge for the\\nresearch community to close the gap between human recognition\\nand ML approaches. It is interesting to see that Mask R-CNN and\\nFaster R-CNN produce very comparable mAP scores, indicating\\nthat pixel-based image segmentation derived from bounding-boxes\\ndoes not help to obtain better predictions. On the other hand, the\\nmore recent Yolov5x model does very well and even out-performs\\nhumans on selected labels such as Text, Table and Picture. This is\\nnot entirely surprising, as Text, Table and Picture are abundant and\\nthe most visually distinctive in a document.\\nFigure 3: Page 6 of the DocLayNet paper. If recognized, metadata such as authors are appearing\\nfirst under the title. Elements recognized as page headers or footers are suppressed in Markdown to\\ndeliver uninterrupted content in reading order. Tables are inserted in reading order. The paragraph\\nin ”5. Experiments” wrapping over the column end is broken up in two and interrupted by the table.\\n8\\n% of\\nTotal\\n% of\\nTotal\\n% of\\nTotal\\ntriple\\ninterannotator\\nmAP @\\n0.5-0.95\\n(%)\\ntriple\\ninterannotator\\nmAP @\\n0.5-0.95\\n(%)\\ntriple\\ninterannotator\\nmAP @\\n0.5-0.95\\n(%)\\ntriple\\ninterannotator\\nmAP @\\n0.5-0.95\\n(%)\\ntriple\\ninterannotator\\nmAP @\\n0.5-0.95\\n(%)\\ntriple\\ninterannotator\\nmAP @\\n0.5-0.95\\n(%)\\ntriple\\ninterannotator\\nmAP @\\n0.5-0.95\\n(%)\\nclass\\nlabel\\nCount\\nTrain\\nTest\\nVal\\nAll\\nFin\\nMan\\nSci\\nLaw\\nPat\\nTen\\nCaption\\n22524\\n2.04\\n1.77\\n2.32\\n84-89\\n40-61\\n86-92\\n94-99\\n95-99\\n69-78\\nn/a\\nFootnote\\n6318\\n0.60\\n0.31\\n0.58\\n83-91\\nn/a\\n100\\n62-88\\n85-94\\nn/a\\n82-97\\nFormula\\n25027\\n2.25\\n1.90\\n2.96\\n83-85\\nn/a\\nn/a\\n84-87\\n86-96\\nn/a\\nn/a\\nList-item\\n185660\\n17.19\\n13.34\\n15.82\\n87-88\\n74-83\\n90-92\\n97-97\\n81-85\\n75-88\\n93-95\\nPagefooter\\n70878\\n6.51\\n5.58\\n6.00\\n93-94\\n88-90\\n95-96\\n100\\n92-97\\n100\\n96-98\\nPageheader\\n58022\\n5.10\\n6.70\\n5.06\\n85-89\\n66-76\\n90-94\\n98-100\\n91-92\\n97-99\\n81-86\\nPicture\\n45976\\n4.21\\n2.78\\n5.31\\n69-71\\n56-59\\n82-86\\n69-82\\n80-95\\n66-71\\n59-76\\nSectionheader\\n142884\\n12.60\\n15.77\\n12.85\\n83-84\\n76-81\\n90-92\\n94-95\\n87-94\\n69-73\\n78-86\\nTable\\n34733\\n3.20\\n2.27\\n3.60\\n77-81\\n75-80\\n83-86\\n98-99\\n58-80\\n79-84\\n70-85\\nText\\n510377\\n45.82\\n49.28\\n45.00\\n84-86\\n81-86\\n88-93\\n89-93\\n87-92\\n71-79\\n87-95\\nTitle\\n5071\\n0.47\\n0.30\\n0.50\\n60-72\\n24-63\\n50-63\\n94-100\\n82-96\\n68-79\\n24-56\\nTotal\\n1107470\\n941123\\n99816\\n66531\\n82-83\\n71-74\\n79-81\\n89-94\\n86-91\\n71-76\\n68-85\\n% of Total\\ntriple inter-annotator mAP @ 0.5-0.95 (%)\\nclass label\\nCount\\nTrain\\nTest\\nVal\\nAll\\nFin\\nMan\\nSci\\nLaw\\nPat\\nTen\\nCaption\\n22524\\n2.04\\n1.77\\n2.32\\n84-89\\n40-61\\n86-92\\n94-99\\n95-99\\n69-78\\nn/a\\nFootnote\\n6318\\n0.60\\n0.31\\n0.58\\n83-91\\nn/a\\n100\\n62-88\\n85-94\\nn/a\\n82-97\\nFormula\\n25027\\n2.25\\n1.90\\n2.96\\n83-85\\nn/a\\nn/a\\n84-87\\n86-96\\nn/a\\nn/a\\nList-item\\n185660\\n17.19\\n13.34\\n15.82\\n87-88\\n74-83\\n90-92\\n97-97\\n81-85\\n75-88\\n93-95\\nPage-footer\\n70878\\n6.51\\n5.58\\n6.00\\n93-94\\n88-90\\n95-96\\n100\\n92-97\\n100\\n96-98\\nPage-header\\n58022\\n5.10\\n6.70\\n5.06\\n85-89\\n66-76\\n90-94\\n98-100\\n91-92\\n97-99\\n81-86\\nPicture\\n45976\\n4.21\\n2.78\\n5.31\\n69-71\\n56-59\\n82-86\\n69-82\\n80-95\\n66-71\\n59-76\\nSection-header\\n142884\\n12.60\\n15.77\\n12.85\\n83-84\\n76-81\\n90-92\\n94-95\\n87-94\\n69-73\\n78-86\\nTable\\n34733\\n3.20\\n2.27\\n3.60\\n77-81\\n75-80\\n83-86\\n98-99\\n58-80\\n79-84\\n70-85\\nText\\n510377\\n45.82\\n49.28\\n45.00\\n84-86\\n81-86\\n88-93\\n89-93\\n87-92\\n71-79\\n87-95\\nTitle\\n5071\\n0.47\\n0.30\\n0.50\\n60-72\\n24-63\\n50-63\\n94-100\\n82-96\\n68-79\\n24-56\\nTotal\\n1107470\\n941123\\n99816\\n66531\\n82-83\\n71-74\\n79-81\\n89-94\\n86-91\\n71-76\\n68-85\\nA\\nB\\nC\\nFigure 4: Table 1 from the DocLayNet paper in the original PDF (A), as rendered Markdown (B)\\nand in JSON representation (C). Spanning table cells, such as the multi-column header ”triple interannotator mAP@0.5-0.95 (%)”, is repeated for each column in the Markdown representation (B),\\nwhich guarantees that every data point can be traced back to row and column headings only by its\\ngrid coordinates in the table. In the JSON representation, the span information is reflected in the\\nfields of each table cell (C).\\n9')"
277
+ ]
278
+ },
279
+ "execution_count": 13,
280
+ "metadata": {},
281
+ "output_type": "execute_result"
282
+ }
283
+ ],
284
+ "source": [
285
+ "from content_core.content.extraction import extract_content\n",
286
+ "await extract_content(dict(url=\"https://arxiv.org/pdf/2408.09869\"))"
287
+ ]
288
+ },
289
+ {
290
+ "cell_type": "markdown",
291
+ "metadata": {},
292
+ "source": [
293
+ "## Docling"
294
+ ]
295
+ },
296
+ {
297
+ "cell_type": "code",
298
+ "execution_count": 14,
299
+ "metadata": {},
300
+ "outputs": [
301
+ {
302
+ "name": "stdout",
303
+ "output_type": "stream",
304
+ "text": [
305
+ "## 3-Day Itinerary for Buenos Aires\n",
306
+ "\n",
307
+ "## Day 1: Exploring the Heart of the City\n",
308
+ "\n",
309
+ "## Morning:\n",
310
+ "\n",
311
+ "- - Breakfast at Café Tortoni (8:00 AM - 9:30 AM)\n",
312
+ "- Start your day at this iconic café with medialunas and coffee.\n",
313
+ "- - Plaza de Mayo (10:00 AM - 11:00 AM) Visit the historic square, see Casa Rosada, and snap photos.\n",
314
+ "- - Catedral Metropolitana** (11:15 AM - 12:00 PM)\n",
315
+ "\n",
316
+ "Explore the cathedral and its stunning architecture.\n"
317
+ ]
318
+ }
319
+ ],
320
+ "source": [
321
+ "# from content_core.config import set_extraction_engine, set_docling_output_format\n",
322
+ "from content_core.content.extraction import extract_content\n",
323
+ "\n",
324
+ "# # 2) Turn on Docling\n",
325
+ "# set_extraction_engine(\"docling\")\n",
326
+ "\n",
327
+ "# # 3) (Optionally) pick your format – markdown, html or json\n",
328
+ "# set_docling_output_format(\"markdown\")\n",
329
+ "\n",
330
+ "# 4) Now extract exactly as before:\n",
331
+ "result = await extract_content({\n",
332
+ " \"file_path\": \"../../../tests/input_content/file.pdf\", \"engine\": \"docling\", \"output_format\": \"markdown\"\n",
333
+ "})\n",
334
+ "print(result.content)"
335
+ ]
336
+ }
337
+ ],
338
+ "metadata": {
339
+ "kernelspec": {
340
+ "display_name": ".venv",
341
+ "language": "python",
342
+ "name": "python3"
343
+ },
344
+ "language_info": {
345
+ "codemirror_mode": {
346
+ "name": "ipython",
347
+ "version": 3
348
+ },
349
+ "file_extension": ".py",
350
+ "mimetype": "text/x-python",
351
+ "name": "python",
352
+ "nbconvert_exporter": "python",
353
+ "pygments_lexer": "ipython3",
354
+ "version": "3.10.6"
355
+ }
356
+ },
357
+ "nbformat": 4,
358
+ "nbformat_minor": 2
359
+ }