consenrich 0.7.4b3__cp311-cp311-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of consenrich might be problematic. Click here for more details.
- consenrich/__init__.py +11 -0
- consenrich/cconsenrich.c +48685 -0
- consenrich/cconsenrich.cpython-311-darwin.so +0 -0
- consenrich/cconsenrich.pyx +861 -0
- consenrich/consenrich.py +1390 -0
- consenrich/constants.py +172 -0
- consenrich/core.py +1441 -0
- consenrich/data/ce10.sizes +6 -0
- consenrich/data/ce10_blacklist.bed +100 -0
- consenrich/data/ce10_sparse.bed +11828 -0
- consenrich/data/ce11.sizes +6 -0
- consenrich/data/ce11_blacklist.bed +97 -0
- consenrich/data/ce11_sparse.bed +11828 -0
- consenrich/data/dm6.sizes +7 -0
- consenrich/data/dm6_blacklist.bed +182 -0
- consenrich/data/dm6_sparse.bed +20000 -0
- consenrich/data/hg19.sizes +24 -0
- consenrich/data/hg19_blacklist.bed +834 -0
- consenrich/data/hg19_sparse.bed +288358 -0
- consenrich/data/hg38.sizes +24 -0
- consenrich/data/hg38_blacklist.bed +636 -0
- consenrich/data/hg38_sparse.bed +288699 -0
- consenrich/data/mm10.sizes +21 -0
- consenrich/data/mm10_blacklist.bed +3435 -0
- consenrich/data/mm10_sparse.bed +100400 -0
- consenrich/data/mm39.sizes +21 -0
- consenrich/data/mm39_blacklist.bed +3360 -0
- consenrich/data/mm39_sparse.bed +100381 -0
- consenrich/detrorm.py +249 -0
- consenrich/matching.py +901 -0
- consenrich/misc_util.py +122 -0
- consenrich-0.7.4b3.dist-info/METADATA +65 -0
- consenrich-0.7.4b3.dist-info/RECORD +37 -0
- consenrich-0.7.4b3.dist-info/WHEEL +6 -0
- consenrich-0.7.4b3.dist-info/entry_points.txt +2 -0
- consenrich-0.7.4b3.dist-info/licenses/LICENSE +21 -0
- consenrich-0.7.4b3.dist-info/top_level.txt +1 -0
consenrich/core.py
ADDED
|
@@ -0,0 +1,1441 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
r"""
|
|
3
|
+
Consenrich core functions and classes.
|
|
4
|
+
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
import logging
|
|
8
|
+
import os
|
|
9
|
+
from tempfile import NamedTemporaryFile
|
|
10
|
+
from typing import (
|
|
11
|
+
Callable,
|
|
12
|
+
List,
|
|
13
|
+
Optional,
|
|
14
|
+
Tuple,
|
|
15
|
+
DefaultDict,
|
|
16
|
+
Any,
|
|
17
|
+
NamedTuple,
|
|
18
|
+
)
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
import numpy.typing as npt
|
|
22
|
+
import pybedtools as bed
|
|
23
|
+
from scipy import signal, ndimage
|
|
24
|
+
|
|
25
|
+
from . import cconsenrich
|
|
26
|
+
|
|
27
|
+
logging.basicConfig(
|
|
28
|
+
level=logging.INFO,
|
|
29
|
+
format="%(asctime)s - %(module)s.%(funcName)s - %(levelname)s - %(message)s",
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
logger = logging.getLogger(__name__)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def resolveExtendBP(extendBP, bamFiles: List[str]) -> List[int]:
|
|
36
|
+
numFiles = len(bamFiles)
|
|
37
|
+
|
|
38
|
+
if isinstance(extendBP, str):
|
|
39
|
+
stringValue = extendBP.replace(" ", "")
|
|
40
|
+
try:
|
|
41
|
+
extendBP = (
|
|
42
|
+
[int(x) for x in stringValue.split(",")]
|
|
43
|
+
if stringValue
|
|
44
|
+
else []
|
|
45
|
+
)
|
|
46
|
+
except ValueError:
|
|
47
|
+
raise ValueError(
|
|
48
|
+
"`extendBP` string must be comma-separated values (castable to integers)"
|
|
49
|
+
)
|
|
50
|
+
if extendBP is None:
|
|
51
|
+
return [0] * numFiles
|
|
52
|
+
elif isinstance(extendBP, list):
|
|
53
|
+
valuesList = [int(x) for x in extendBP]
|
|
54
|
+
valuesLen = len(valuesList)
|
|
55
|
+
if valuesLen == 0:
|
|
56
|
+
return [0] * numFiles
|
|
57
|
+
if valuesLen == 1:
|
|
58
|
+
return [valuesList[0]] * numFiles
|
|
59
|
+
if valuesLen == numFiles:
|
|
60
|
+
return valuesList
|
|
61
|
+
raise ValueError(
|
|
62
|
+
f"extendBP length {valuesLen} does not match number of bamFiles {numFiles}; "
|
|
63
|
+
f"provide 0, 1, or {numFiles} values."
|
|
64
|
+
)
|
|
65
|
+
elif isinstance(extendBP, int) or isinstance(extendBP, float):
|
|
66
|
+
return [int(extendBP)] * numFiles
|
|
67
|
+
raise TypeError(
|
|
68
|
+
f"Invalid extendBP type: {type(extendBP).__name__}. "
|
|
69
|
+
"Expecting a single number (broadcast), a list of numbers matching `bamFiles`."
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
class processParams(NamedTuple):
|
|
74
|
+
r"""Parameters related to the process model of Consenrich.
|
|
75
|
+
|
|
76
|
+
The process model governs the signal and variance propagation
|
|
77
|
+
through the state transition :math:`\mathbf{F} \in \mathbb{R}^{2 \times 2}`
|
|
78
|
+
and process noise covariance :math:`\mathbf{Q}_{[i]} \in \mathbb{R}^{2 \times 2}`
|
|
79
|
+
matrices.
|
|
80
|
+
|
|
81
|
+
:param deltaF: Scales the signal and variance propagation between adjacent genomic intervals.
|
|
82
|
+
:param minQ: Minimum process noise level (diagonal in :math:`\mathbf{Q}_{[i]}`)
|
|
83
|
+
for each state variable.
|
|
84
|
+
:type minQ: float
|
|
85
|
+
:param dStatAlpha: Threshold on the deviation between the data and estimated signal -- used to determine whether the process noise is scaled up.
|
|
86
|
+
:type dStatAlpha: float
|
|
87
|
+
:param dStatd: Constant :math:`d` in the scaling expression :math:`\sqrt{d|D_{[i]} - \alpha_D| + c}`
|
|
88
|
+
that is used to up/down-scale the process noise covariance in the event of a model mismatch.
|
|
89
|
+
:type dStatd: float
|
|
90
|
+
:param dStatPC: Constant :math:`c` in the scaling expression :math:`\sqrt{d|D_{[i]} - \alpha_D| + c}`
|
|
91
|
+
that is used to up/down-scale the process noise covariance in the event of a model mismatch.
|
|
92
|
+
:type dStatPC: float
|
|
93
|
+
:param scaleResidualsByP11: If `True`, the primary state variances (posterior) :math:`\widetilde{P}_{[i], (11)}, i=1\ldots n` are included in the inverse-variance (precision) weighting of residuals :math:`\widetilde{\mathbf{y}}_{[i]}, i=1\ldots n`.
|
|
94
|
+
If `False`, only the per-sample *observation noise levels* will be used in the precision-weighting. Note that this does not affect `raw` residuals output (See :class:`outputParams`).
|
|
95
|
+
:type scaleResidualsByP11: Optional[bool]
|
|
96
|
+
|
|
97
|
+
"""
|
|
98
|
+
|
|
99
|
+
deltaF: float
|
|
100
|
+
minQ: float
|
|
101
|
+
maxQ: float
|
|
102
|
+
offDiagQ: float
|
|
103
|
+
dStatAlpha: float
|
|
104
|
+
dStatd: float
|
|
105
|
+
dStatPC: float
|
|
106
|
+
scaleResidualsByP11: Optional[bool] = True
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
class observationParams(NamedTuple):
|
|
110
|
+
r"""Parameters related to the observation model of Consenrich.
|
|
111
|
+
|
|
112
|
+
The observation model is used to integrate sequence alignment count
|
|
113
|
+
data from the multiple input samples and account for region-and-sample-specific
|
|
114
|
+
noise processes corrupting data. The observation model matrix
|
|
115
|
+
:math:`\mathbf{H} \in \mathbb{R}^{m \times 2}` maps from the state dimension (2)
|
|
116
|
+
to the dimension of measurements/data (:math:`m`).
|
|
117
|
+
|
|
118
|
+
:param minR: The minimum observation noise level for each sample
|
|
119
|
+
:math:`j=1\ldots m` in the observation noise covariance
|
|
120
|
+
matrix :math:`\mathbf{R}_{[i, (11:mm)]}`.
|
|
121
|
+
:type minR: float
|
|
122
|
+
:param numNearest: The number of nearest nearby 'sparse' features to use for local
|
|
123
|
+
variance calculation. Ignored if `useALV` is True.
|
|
124
|
+
:type numNearest: int
|
|
125
|
+
:param localWeight: The coefficient for the local noise level (based on the local surrounding window / `numNearest` features) used in the weighted sum measuring sample-specific noise level at the current interval.
|
|
126
|
+
:type localWeight: float
|
|
127
|
+
:param globalWeight: The coefficient for the global noise level (based on all genomic intervals :math:`i=1\ldots n`) used in the weighted sum measuring sample-specific noise level at the current interval.
|
|
128
|
+
:type globalWeight: float
|
|
129
|
+
:param approximationWindowLengthBP: The length of the local variance approximation window in base pairs (BP)
|
|
130
|
+
for the local variance calculation.
|
|
131
|
+
:type approximationWindowLengthBP: int
|
|
132
|
+
:param sparseBedFile: The path to a BED file of 'sparse' regions for the local variance calculation. For genomes with default resources in `src/consenrich/data`, this may be left as `None`,
|
|
133
|
+
and a default annotation that is devoid of putative regulatory elements (ENCODE cCREs) will be used. Users can instead supply a custom BED file or set `observationParams.useALV` to `True`
|
|
134
|
+
to avoid predefined annotations.
|
|
135
|
+
:type sparseBedFile: str, optional
|
|
136
|
+
:param noGlobal: If True, only the 'local' variances are used to approximate observation noise
|
|
137
|
+
covariance :math:`\mathbf{R}_{[:, (11:mm)]}`.
|
|
138
|
+
:type noGlobal: bool
|
|
139
|
+
:param useALV: Whether to use average local variance (ALV) heuristic *exclusively* to approximate observation noise
|
|
140
|
+
covariances per-sample, per-interval. Note that unrestricted ALV (i.e., without masking previously annotated high-signal regions) is comparatively vulnerable to inflated noise estimates in large enriched genomic domains.
|
|
141
|
+
:type useALV: bool
|
|
142
|
+
:param lowPassFilterType: The type of low-pass filter to use (e.g., 'median', 'mean') in the ALV calculation (:func:`consenrich.core.getAverageLocalVarianceTrack`).
|
|
143
|
+
:type lowPassFilterType: Optional[str]
|
|
144
|
+
"""
|
|
145
|
+
|
|
146
|
+
minR: float
|
|
147
|
+
maxR: float
|
|
148
|
+
useALV: bool
|
|
149
|
+
useConstantNoiseLevel: bool
|
|
150
|
+
noGlobal: bool
|
|
151
|
+
numNearest: int
|
|
152
|
+
localWeight: float
|
|
153
|
+
globalWeight: float
|
|
154
|
+
approximationWindowLengthBP: int
|
|
155
|
+
lowPassWindowLengthBP: int
|
|
156
|
+
lowPassFilterType: Optional[str]
|
|
157
|
+
returnCenter: bool
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
class stateParams(NamedTuple):
|
|
161
|
+
r"""Parameters related to state and uncertainty bounds and initialization.
|
|
162
|
+
|
|
163
|
+
:param stateInit: Initial value of the 'primary' state/signal at the first genomic interval: :math:`x_{[1]}`
|
|
164
|
+
:type stateInit: float
|
|
165
|
+
:param stateCovarInit: Initial state covariance (covariance) scale. Note, the *initial* state uncertainty :math:`\mathbf{P}_{[1]}` is a multiple of the identity matrix :math:`\mathbf{I}`. Final results are typically insensitive to this parameter, since the filter effectively 'forgets' its initialization after processing a moderate number of intervals and backward smoothing.
|
|
166
|
+
:type stateCovarInit: float
|
|
167
|
+
:param boundState: If True, the primary state estimate for :math:`x_{[i]}` is reported within `stateLowerBound` and `stateUpperBound`. Note that the internal filtering is unaffected.
|
|
168
|
+
:type boundState: bool
|
|
169
|
+
:param stateLowerBound: Lower bound for the state estimate.
|
|
170
|
+
:type stateLowerBound: float
|
|
171
|
+
:param stateUpperBound: Upper bound for the state estimate.
|
|
172
|
+
:type stateUpperBound: float
|
|
173
|
+
"""
|
|
174
|
+
|
|
175
|
+
stateInit: float
|
|
176
|
+
stateCovarInit: float
|
|
177
|
+
boundState: bool
|
|
178
|
+
stateLowerBound: float
|
|
179
|
+
stateUpperBound: float
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
class samParams(NamedTuple):
|
|
183
|
+
r"""Parameters related to reading BAM files
|
|
184
|
+
|
|
185
|
+
:param samThreads: The number of threads to use for reading BAM files.
|
|
186
|
+
:type samThreads: int
|
|
187
|
+
:param samFlagExclude: The SAM flag to exclude certain reads.
|
|
188
|
+
:type samFlagExclude: int
|
|
189
|
+
:param oneReadPerBin: If 1, only the interval with the greatest read overlap is incremented.
|
|
190
|
+
:type oneReadPerBin: int
|
|
191
|
+
:param chunkSize: maximum number of intervals' data to hold in memory before flushing to disk.
|
|
192
|
+
:type chunkSize: int
|
|
193
|
+
:param offsetStr: A string of two comma-separated integers -- first for the 5' shift on forward strand, second for the 5' shift on reverse strand.
|
|
194
|
+
:type offsetStr: str
|
|
195
|
+
:param extendBP: A list of integers specifying the number of base pairs to extend reads for each BAM file after shifting per `offsetStr`.
|
|
196
|
+
If all BAM files share the same expected frag. length, can supply a single numeric value to be broadcasted. Ignored for PE reads.
|
|
197
|
+
:type extendBP: List[int]
|
|
198
|
+
:param maxInsertSize: Maximum frag length/insert for paired-end reads.
|
|
199
|
+
:type maxInsertSize: int
|
|
200
|
+
:param pairedEndMode: If > 0, only proper pairs are counted subject to `maxInsertSize`.
|
|
201
|
+
:type pairedEndMode: int
|
|
202
|
+
:param inferFragmentLength: Intended for single-end data: if > 0, the maximum correlation lag
|
|
203
|
+
(avg.) between *strand-specific* read tracks is taken as the fragment length estimate and used to
|
|
204
|
+
extend reads from 5'. Ignored if `pairedEndMode > 0` or `extendBP` set. This parameter is particularly
|
|
205
|
+
important when targeting broader marks (e.g., ChIP-seq H3K27me3).
|
|
206
|
+
:type inferFragmentLength: int
|
|
207
|
+
:param countEndsOnly: If True, only the 5' ends of reads are counted. Overrides `inferFragmentLength` and `pairedEndMode`.
|
|
208
|
+
:type countEndsOnly: Optional[bool]
|
|
209
|
+
|
|
210
|
+
.. tip::
|
|
211
|
+
|
|
212
|
+
For an overview of SAM flags, see https://broadinstitute.github.io/picard/explain-flags.html
|
|
213
|
+
|
|
214
|
+
"""
|
|
215
|
+
|
|
216
|
+
samThreads: int
|
|
217
|
+
samFlagExclude: int
|
|
218
|
+
oneReadPerBin: int
|
|
219
|
+
chunkSize: int
|
|
220
|
+
offsetStr: Optional[str] = "0,0"
|
|
221
|
+
extendBP: Optional[List[int]] = []
|
|
222
|
+
maxInsertSize: Optional[int] = 1000
|
|
223
|
+
pairedEndMode: Optional[int] = 0
|
|
224
|
+
inferFragmentLength: Optional[int] = 0
|
|
225
|
+
countEndsOnly: Optional[bool] = False
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
class detrendParams(NamedTuple):
|
|
229
|
+
r"""Parameters related detrending and background-removal
|
|
230
|
+
|
|
231
|
+
:param useOrderStatFilter: Whether to use a local/moving order statistic (percentile filter) to model and remove trends in the read density data.
|
|
232
|
+
:type useOrderStatFilter: bool
|
|
233
|
+
:param usePolyFilter: Whether to use a low-degree polynomial fit to model and remove trends in the read density data.
|
|
234
|
+
:type usePolyFilter: bool
|
|
235
|
+
:param detrendSavitzkyGolayDegree: The polynomial degree of the Savitzky-Golay filter to use for detrending
|
|
236
|
+
:type detrendSavitzkyGolayDegree: int
|
|
237
|
+
:param detrendTrackPercentile: The percentile to use for the local/moving order-statistic filter.
|
|
238
|
+
Decrease for broad marks + sparse data if `useOrderStatFilter` is True.
|
|
239
|
+
:type detrendTrackPercentile: float
|
|
240
|
+
:param detrendWindowLengthBP: The length of the window in base pairs for detrending.
|
|
241
|
+
Increase for broader marks + sparse data.
|
|
242
|
+
:type detrendWindowLengthBP: int
|
|
243
|
+
"""
|
|
244
|
+
|
|
245
|
+
useOrderStatFilter: bool
|
|
246
|
+
usePolyFilter: bool
|
|
247
|
+
detrendTrackPercentile: float
|
|
248
|
+
detrendSavitzkyGolayDegree: int
|
|
249
|
+
detrendWindowLengthBP: int
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
class inputParams(NamedTuple):
|
|
253
|
+
r"""Parameters related to the input data for Consenrich.
|
|
254
|
+
|
|
255
|
+
:param bamFiles: A list of paths to distinct coordinate-sorted and indexed BAM files.
|
|
256
|
+
:type bamFiles: List[str]
|
|
257
|
+
|
|
258
|
+
:param bamFilesControl: A list of paths to distinct coordinate-sorted and
|
|
259
|
+
indexed control BAM files. e.g., IgG control inputs for ChIP-seq.
|
|
260
|
+
|
|
261
|
+
:type bamFilesControl: List[str], optional
|
|
262
|
+
|
|
263
|
+
"""
|
|
264
|
+
|
|
265
|
+
bamFiles: List[str]
|
|
266
|
+
bamFilesControl: Optional[List[str]]
|
|
267
|
+
pairedEnd: Optional[bool]
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
class genomeParams(NamedTuple):
|
|
271
|
+
r"""Specify assembly-specific resources, parameters.
|
|
272
|
+
|
|
273
|
+
:param genomeName: If supplied, default resources for the assembly (sizes file, blacklist, and 'sparse' regions) in `src/consenrich/data` are used.
|
|
274
|
+
``ce10, ce11, dm6, hg19, hg38, mm10, mm39`` have default resources available.
|
|
275
|
+
:type genomeName: str
|
|
276
|
+
:param chromSizesFile: A two-column TSV-like file with chromosome names and sizes (in base pairs).
|
|
277
|
+
:type chromSizesFile: str
|
|
278
|
+
:param blacklistFile: A BED file with regions to exclude.
|
|
279
|
+
:type blacklistFile: str, optional
|
|
280
|
+
:param sparseBedFile: A BED file with 'sparse regions' used to estimate noise levels -- ignored if `observationParams.useALV` is True. 'Sparse regions' broadly refers to genomic intervals devoid of the targeted signal, based on prior annotations.
|
|
281
|
+
Users may supply a custom BED file and/or set `observationParams.useALV` to `True` to avoid relying on predefined annotations.
|
|
282
|
+
:type sparseBedFile: str, optional
|
|
283
|
+
:param chromosomes: A list of chromosome names to analyze. If None, all chromosomes in `chromSizesFile` are used.
|
|
284
|
+
:type chromosomes: List[str]
|
|
285
|
+
"""
|
|
286
|
+
|
|
287
|
+
genomeName: str
|
|
288
|
+
chromSizesFile: str
|
|
289
|
+
blacklistFile: Optional[str]
|
|
290
|
+
sparseBedFile: Optional[str]
|
|
291
|
+
chromosomes: List[str]
|
|
292
|
+
excludeChroms: List[str]
|
|
293
|
+
excludeForNorm: List[str]
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
class countingParams(NamedTuple):
|
|
297
|
+
r"""Parameters related to counting reads in genomic intervals.
|
|
298
|
+
|
|
299
|
+
:param stepSize: Step size (bp) for the genomic intervals (AKA bin size, interval length, width, etc.)
|
|
300
|
+
:type stepSize: int
|
|
301
|
+
:param scaleDown: If using paired treatment and control BAM files, whether to
|
|
302
|
+
scale down the larger of the two before computing the difference/ratio
|
|
303
|
+
:type scaleDown: bool, optional
|
|
304
|
+
:param scaleFactors: Scale factors for the read counts.
|
|
305
|
+
:type scaleFactors: List[float], optional
|
|
306
|
+
:param scaleFactorsControl: Scale factors for the control read counts.
|
|
307
|
+
:type scaleFactorsControl: List[float], optional
|
|
308
|
+
:param numReads: Number of reads to sample.
|
|
309
|
+
:type numReads: int
|
|
310
|
+
:param applyAsinh: If true, :math:`\textsf{arsinh}(x)` applied to counts :math:`x` for each supplied BAM file (log-like for large values and linear near the origin).
|
|
311
|
+
:type applyAsinh: bool, optional
|
|
312
|
+
:param applyLog: If true, :math:`\textsf{log}(x + 1)` applied to counts :math:`x` for each supplied BAM file.
|
|
313
|
+
:type applyLog: bool, optional
|
|
314
|
+
"""
|
|
315
|
+
|
|
316
|
+
stepSize: int
|
|
317
|
+
scaleDown: Optional[bool]
|
|
318
|
+
scaleFactors: Optional[List[float]]
|
|
319
|
+
scaleFactorsControl: Optional[List[float]]
|
|
320
|
+
numReads: int
|
|
321
|
+
applyAsinh: Optional[bool]
|
|
322
|
+
applyLog: Optional[bool]
|
|
323
|
+
rescaleToTreatmentCoverage: Optional[bool] = False # deprecated
|
|
324
|
+
|
|
325
|
+
|
|
326
|
+
class matchingParams(NamedTuple):
|
|
327
|
+
r"""Parameters related to the matching algorithm.
|
|
328
|
+
|
|
329
|
+
See :ref:`matching` for an overview of the approach.
|
|
330
|
+
|
|
331
|
+
:param templateNames: A list of str values -- each entry references a mother wavelet (or its corresponding scaling function). e.g., `[haar, db2]`
|
|
332
|
+
:type templateNames: List[str]
|
|
333
|
+
:param cascadeLevels: Number of cascade iterations used to approximate each template (wavelet or scaling function).
|
|
334
|
+
Must have the same length as `templateNames`, with each entry aligned to the
|
|
335
|
+
corresponding template. e.g., given templateNames `[haar, db2]`, then `[2,2]` would use 2 cascade levels for both templates.
|
|
336
|
+
:type cascadeLevels: List[int]
|
|
337
|
+
:param iters: Number of random blocks to sample in the response sequence while building
|
|
338
|
+
an empirical null to test significance. See :func:`cconsenrich.csampleBlockStats`.
|
|
339
|
+
:type iters: int
|
|
340
|
+
:param alpha: Primary significance threshold on detected matches. Specifically, the
|
|
341
|
+
minimum corrected empirical p-value approximated from randomly sampled blocks in the
|
|
342
|
+
response sequence.
|
|
343
|
+
:type alpha: float
|
|
344
|
+
:param minMatchLengthBP: Within a window of `minMatchLengthBP` length (bp), relative maxima in
|
|
345
|
+
the signal-template convolution must be greater in value than others to qualify as matches.
|
|
346
|
+
If set to a value less than 1, the minimum length is determined via :func:`consenrich.matching.autoMinLengthIntervals`.
|
|
347
|
+
If set to `None`, defaults to 250 bp.
|
|
348
|
+
:param minSignalAtMaxima: Secondary significance threshold coupled with `alpha`. Requires the *signal value*
|
|
349
|
+
at relative maxima in the response sequence to be greater than this threshold. Comparisons are made in log-scale
|
|
350
|
+
to temper genome-wide dynamic range. If a `float` value is provided, the minimum signal value must be greater
|
|
351
|
+
than this (absolute) value. *Set to a negative value to disable the threshold*.
|
|
352
|
+
If a `str` value is provided, looks for 'q:quantileValue', e.g., 'q:0.90'. The
|
|
353
|
+
threshold is then set to the corresponding quantile of the non-zero signal estimates.
|
|
354
|
+
:type minSignalAtMaxima: Optional[str | float]
|
|
355
|
+
:param useScalingFunction: If True, use (only) the scaling function to build the matching template.
|
|
356
|
+
If False, use (only) the wavelet function.
|
|
357
|
+
:type useScalingFunction: bool
|
|
358
|
+
:param excludeRegionsBedFile: A BED file with regions to exclude from matching
|
|
359
|
+
:type excludeRegionsBedFile: Optional[str]
|
|
360
|
+
:param penalizeBy: Specify a positional metric to scale/weight signal values by when matching.
|
|
361
|
+
For example, 'absResiduals' divides signal values by :math:`|\widetilde{y}_i|` at each
|
|
362
|
+
position :math:`i`, thereby down-weighting positions where the signal estimate deviates from
|
|
363
|
+
the data after accounting for observation noise. 'stateUncertainty' divides signal values by
|
|
364
|
+
the square root of the primary state variance :math:`\sqrt{\widetilde{P}_{i,(11)}}` at each position :math:`i`,
|
|
365
|
+
thereby down-weighting positions where the posterior state uncertainty is high. 'muncTrace' divides signal values by
|
|
366
|
+
the square root of the average observation noise trace :math:`\sqrt{\frac{\textsf{Trace}\left(\mathbf{R}_{[i]}\right)}{m}}` at each position :math:`i`,
|
|
367
|
+
:type penalizeBy: Optional[str]
|
|
368
|
+
:param eps: Tolerance parameter for relative maxima detection in the response sequence. Set to zero to enforce strict
|
|
369
|
+
inequalities when identifying discrete relative maxima.
|
|
370
|
+
:type eps: float
|
|
371
|
+
:seealso: :func:`cconsenrich.csampleBlockStats`, :ref:`matching`, :class:`outputParams`.
|
|
372
|
+
"""
|
|
373
|
+
|
|
374
|
+
templateNames: List[str]
|
|
375
|
+
cascadeLevels: List[int]
|
|
376
|
+
iters: int
|
|
377
|
+
alpha: float
|
|
378
|
+
useScalingFunction: Optional[bool]
|
|
379
|
+
minMatchLengthBP: Optional[int]
|
|
380
|
+
maxNumMatches: Optional[int]
|
|
381
|
+
minSignalAtMaxima: Optional[str | float]
|
|
382
|
+
merge: Optional[bool]
|
|
383
|
+
mergeGapBP: Optional[int]
|
|
384
|
+
excludeRegionsBedFile: Optional[str]
|
|
385
|
+
penalizeBy: Optional[str]
|
|
386
|
+
randSeed: Optional[int] = 42
|
|
387
|
+
eps: Optional[float] = 1.0e-2
|
|
388
|
+
|
|
389
|
+
|
|
390
|
+
class outputParams(NamedTuple):
|
|
391
|
+
r"""Parameters related to output files.
|
|
392
|
+
|
|
393
|
+
:param convertToBigWig: If True, output bedGraph files are converted to bigWig format.
|
|
394
|
+
:type convertToBigWig: bool
|
|
395
|
+
:param roundDigits: Number of decimal places to round output values (bedGraph)
|
|
396
|
+
:type roundDigits: int
|
|
397
|
+
:param writeResiduals: If True, write to a separate bedGraph the mean of precision-weighted residuals at each interval. These may be interpreted as
|
|
398
|
+
a measure of model mismatch. Where these quantities are large (+-) the estimated signal and uncertainty do not explain the observed deviation from the data.
|
|
399
|
+
:type writeResiduals: bool
|
|
400
|
+
:param writeRawResiduals: If True, write to a separate bedGraph the pointwise avg. of post-fit residuals at each interval. These values are not 'precision-weighted'.
|
|
401
|
+
:type writeRawResiduals: bool
|
|
402
|
+
:param writeMuncTrace: If True, write to a separate bedGraph :math:`\sqrt{\frac{\textsf{Trace}\left(\mathbf{R}_{[i]}\right)}{m}}` -- that is, square root of the 'average' observation noise level at each interval :math:`i=1\ldots n`, where :math:`m` is the number of samples/tracks.
|
|
403
|
+
:type writeMuncTrace: bool
|
|
404
|
+
:param writeStateStd: If True, write to a separate bedGraph estimated 'standard deviation' of the primary state, :math:`\sqrt{\widetilde{P}_{i,(11)}}`, at each interval. Note that an absolute Gaussian interpretation of this metric depends on sample size, arguments in :class:`processParams` and :class:`observationParams`, etc.
|
|
405
|
+
In any case, this metric may be interpreted as a relative measure of uncertainty in the state estimate at each interval.
|
|
406
|
+
:type writeStateStd: bool
|
|
407
|
+
"""
|
|
408
|
+
|
|
409
|
+
convertToBigWig: bool
|
|
410
|
+
roundDigits: int
|
|
411
|
+
writeResiduals: bool
|
|
412
|
+
writeRawResiduals: bool
|
|
413
|
+
writeMuncTrace: bool
|
|
414
|
+
writeStateStd: bool
|
|
415
|
+
|
|
416
|
+
|
|
417
|
+
def _numIntervals(start: int, end: int, step: int) -> int:
|
|
418
|
+
# helper for consistency
|
|
419
|
+
length = max(0, end - start)
|
|
420
|
+
return (length + step) // step
|
|
421
|
+
|
|
422
|
+
|
|
423
|
+
def getChromRanges(
|
|
424
|
+
bamFile: str,
|
|
425
|
+
chromosome: str,
|
|
426
|
+
chromLength: int,
|
|
427
|
+
samThreads: int,
|
|
428
|
+
samFlagExclude: int,
|
|
429
|
+
) -> Tuple[int, int]:
|
|
430
|
+
r"""Get the start and end positions of reads in a chromosome from a BAM file.
|
|
431
|
+
|
|
432
|
+
:param bamFile: See :class:`inputParams`.
|
|
433
|
+
:type bamFile: str
|
|
434
|
+
:param chromosome: the chromosome to read in `bamFile`.
|
|
435
|
+
:type chromosome: str
|
|
436
|
+
:param chromLength: Base pair length of the chromosome.
|
|
437
|
+
:type chromLength: int
|
|
438
|
+
:param samThreads: See :class:`samParams`.
|
|
439
|
+
:type samThreads: int
|
|
440
|
+
:param samFlagExclude: See :class:`samParams`.
|
|
441
|
+
:type samFlagExclude: int
|
|
442
|
+
:return: Tuple of start and end positions (nucleotide coordinates) in the chromosome.
|
|
443
|
+
:rtype: Tuple[int, int]
|
|
444
|
+
|
|
445
|
+
:seealso: :func:`getChromRangesJoint`, :func:`cconsenrich.cgetFirstChromRead`, :func:`cconsenrich.cgetLastChromRead`
|
|
446
|
+
"""
|
|
447
|
+
start: int = cconsenrich.cgetFirstChromRead(
|
|
448
|
+
bamFile, chromosome, chromLength, samThreads, samFlagExclude
|
|
449
|
+
)
|
|
450
|
+
end: int = cconsenrich.cgetLastChromRead(
|
|
451
|
+
bamFile, chromosome, chromLength, samThreads, samFlagExclude
|
|
452
|
+
)
|
|
453
|
+
return start, end
|
|
454
|
+
|
|
455
|
+
|
|
456
|
+
def getChromRangesJoint(
|
|
457
|
+
bamFiles: List[str],
|
|
458
|
+
chromosome: str,
|
|
459
|
+
chromSize: int,
|
|
460
|
+
samThreads: int,
|
|
461
|
+
samFlagExclude: int,
|
|
462
|
+
) -> Tuple[int, int]:
|
|
463
|
+
r"""For multiple BAM files, reconcile a single start and end position over which to count reads,
|
|
464
|
+
where the start and end positions are defined by the first and last reads across all BAM files.
|
|
465
|
+
|
|
466
|
+
:param bamFiles: List of BAM files to read.
|
|
467
|
+
:type bamFiles: List[str]
|
|
468
|
+
:param chromosome: Chromosome to read.
|
|
469
|
+
:type chromosome: str
|
|
470
|
+
:param chromSize: Size of the chromosome.
|
|
471
|
+
:type chromSize: int
|
|
472
|
+
:param samThreads: Number of threads to use for reading the BAM files.
|
|
473
|
+
:type samThreads: int
|
|
474
|
+
:param samFlagExclude: SAM flag to exclude certain reads.
|
|
475
|
+
:type samFlagExclude: int
|
|
476
|
+
:return: Tuple of start and end positions.
|
|
477
|
+
:rtype: Tuple[int, int]
|
|
478
|
+
|
|
479
|
+
:seealso: :func:`getChromRanges`, :func:`cconsenrich.cgetFirstChromRead`, :func:`cconsenrich.cgetLastChromRead`
|
|
480
|
+
"""
|
|
481
|
+
starts = []
|
|
482
|
+
ends = []
|
|
483
|
+
for bam_ in bamFiles:
|
|
484
|
+
start, end = getChromRanges(
|
|
485
|
+
bam_,
|
|
486
|
+
chromosome,
|
|
487
|
+
chromLength=chromSize,
|
|
488
|
+
samThreads=samThreads,
|
|
489
|
+
samFlagExclude=samFlagExclude,
|
|
490
|
+
)
|
|
491
|
+
starts.append(start)
|
|
492
|
+
ends.append(end)
|
|
493
|
+
return min(starts), max(ends)
|
|
494
|
+
|
|
495
|
+
|
|
496
|
+
def getReadLength(
|
|
497
|
+
bamFile: str,
|
|
498
|
+
numReads: int,
|
|
499
|
+
maxIterations: int,
|
|
500
|
+
samThreads: int,
|
|
501
|
+
samFlagExclude: int,
|
|
502
|
+
) -> int:
|
|
503
|
+
r"""Infer read length from mapped reads in a BAM file.
|
|
504
|
+
|
|
505
|
+
Samples at least `numReads` reads passing criteria given by `samFlagExclude`
|
|
506
|
+
and returns the median read length.
|
|
507
|
+
|
|
508
|
+
:param bamFile: See :class:`inputParams`.
|
|
509
|
+
:type bamFile: str
|
|
510
|
+
:param numReads: Number of reads to sample.
|
|
511
|
+
:type numReads: int
|
|
512
|
+
:param maxIterations: Maximum number of iterations to perform.
|
|
513
|
+
:type maxIterations: int
|
|
514
|
+
:param samThreads: See :class:`samParams`.
|
|
515
|
+
:type samThreads: int
|
|
516
|
+
:param samFlagExclude: See :class:`samParams`.
|
|
517
|
+
:type samFlagExclude: int
|
|
518
|
+
:return: The median read length.
|
|
519
|
+
:rtype: int
|
|
520
|
+
|
|
521
|
+
:raises ValueError: If the read length cannot be determined after scanning `maxIterations` reads.
|
|
522
|
+
|
|
523
|
+
:seealso: :func:`cconsenrich.cgetReadLength`
|
|
524
|
+
"""
|
|
525
|
+
init_rlen = cconsenrich.cgetReadLength(
|
|
526
|
+
bamFile, numReads, samThreads, maxIterations, samFlagExclude
|
|
527
|
+
)
|
|
528
|
+
if init_rlen == 0:
|
|
529
|
+
raise ValueError(
|
|
530
|
+
f"Failed to determine read length in {bamFile}. Revise `numReads`, and/or `samFlagExclude` parameters?"
|
|
531
|
+
)
|
|
532
|
+
return init_rlen
|
|
533
|
+
|
|
534
|
+
|
|
535
|
+
def getReadLengths(
|
|
536
|
+
bamFiles: List[str],
|
|
537
|
+
numReads: int,
|
|
538
|
+
maxIterations: int,
|
|
539
|
+
samThreads: int,
|
|
540
|
+
samFlagExclude: int,
|
|
541
|
+
) -> List[int]:
|
|
542
|
+
r"""Get read lengths for a list of BAM files.
|
|
543
|
+
|
|
544
|
+
:seealso: :func:`getReadLength`
|
|
545
|
+
"""
|
|
546
|
+
return [
|
|
547
|
+
getReadLength(
|
|
548
|
+
bamFile,
|
|
549
|
+
numReads=numReads,
|
|
550
|
+
maxIterations=maxIterations,
|
|
551
|
+
samThreads=samThreads,
|
|
552
|
+
samFlagExclude=samFlagExclude,
|
|
553
|
+
)
|
|
554
|
+
for bamFile in bamFiles
|
|
555
|
+
]
|
|
556
|
+
|
|
557
|
+
|
|
558
|
+
def readBamSegments(
|
|
559
|
+
bamFiles: List[str],
|
|
560
|
+
chromosome: str,
|
|
561
|
+
start: int,
|
|
562
|
+
end: int,
|
|
563
|
+
stepSize: int,
|
|
564
|
+
readLengths: List[int],
|
|
565
|
+
scaleFactors: List[float],
|
|
566
|
+
oneReadPerBin: int,
|
|
567
|
+
samThreads: int,
|
|
568
|
+
samFlagExclude: int,
|
|
569
|
+
offsetStr: Optional[str] = "0,0",
|
|
570
|
+
applyAsinh: Optional[bool] = False,
|
|
571
|
+
applyLog: Optional[bool] = False,
|
|
572
|
+
extendBP: List[int] = [],
|
|
573
|
+
maxInsertSize: Optional[int] = 1000,
|
|
574
|
+
pairedEndMode: Optional[int] = 0,
|
|
575
|
+
inferFragmentLength: Optional[int] = 0,
|
|
576
|
+
countEndsOnly: Optional[bool] = False,
|
|
577
|
+
) -> npt.NDArray[np.float32]:
|
|
578
|
+
r"""Calculate tracks of read counts (or a function thereof) for each BAM file.
|
|
579
|
+
|
|
580
|
+
See :func:`cconsenrich.creadBamSegment` for the underlying implementation in Cython.
|
|
581
|
+
|
|
582
|
+
:param bamFiles: See :class:`inputParams`.
|
|
583
|
+
:type bamFiles: List[str]
|
|
584
|
+
:param chromosome: Chromosome to read.
|
|
585
|
+
:type chromosome: str
|
|
586
|
+
:param start: Start position of the genomic segment.
|
|
587
|
+
:type start: int
|
|
588
|
+
:param end: End position of the genomic segment.
|
|
589
|
+
:type end: int
|
|
590
|
+
:param readLengths: List of read lengths for each BAM file.
|
|
591
|
+
:type readLengths: List[int]
|
|
592
|
+
:param scaleFactors: List of scale factors for each BAM file.
|
|
593
|
+
:type scaleFactors: List[float]
|
|
594
|
+
:param stepSize: See :class:`countingParams`.
|
|
595
|
+
:type stepSize: int
|
|
596
|
+
:param oneReadPerBin: See :class:`samParams`.
|
|
597
|
+
:type oneReadPerBin: int
|
|
598
|
+
:param samThreads: See :class:`samParams`.
|
|
599
|
+
:type samThreads: int
|
|
600
|
+
:param samFlagExclude: See :class:`samParams`.
|
|
601
|
+
:type samFlagExclude: int
|
|
602
|
+
:param offsetStr: See :class:`samParams`.
|
|
603
|
+
:type offsetStr: str
|
|
604
|
+
:param extendBP: See :class:`samParams`.
|
|
605
|
+
:type extendBP: int
|
|
606
|
+
:param maxInsertSize: See :class:`samParams`.
|
|
607
|
+
:type maxInsertSize: int
|
|
608
|
+
:param pairedEndMode: See :class:`samParams`.
|
|
609
|
+
:type pairedEndMode: int
|
|
610
|
+
:param inferFragmentLength: See :class:`samParams`.
|
|
611
|
+
:type inferFragmentLength: int
|
|
612
|
+
:param countEndsOnly: If True, only the 5' ends of reads are counted. This overrides `inferFragmentLength` and `pairedEndMode`.
|
|
613
|
+
:type countEndsOnly: Optional[bool]
|
|
614
|
+
|
|
615
|
+
"""
|
|
616
|
+
|
|
617
|
+
if len(bamFiles) == 0:
|
|
618
|
+
raise ValueError("bamFiles list is empty")
|
|
619
|
+
|
|
620
|
+
if len(readLengths) != len(bamFiles) or len(scaleFactors) != len(
|
|
621
|
+
bamFiles
|
|
622
|
+
):
|
|
623
|
+
raise ValueError(
|
|
624
|
+
"readLengths and scaleFactors must match bamFiles length"
|
|
625
|
+
)
|
|
626
|
+
|
|
627
|
+
extendBP = resolveExtendBP(extendBP, bamFiles)
|
|
628
|
+
offsetStr = ((str(offsetStr) or "0,0").replace(" ", "")).split(
|
|
629
|
+
","
|
|
630
|
+
)
|
|
631
|
+
numIntervals = ((end - start) + stepSize - 1) // stepSize
|
|
632
|
+
counts = np.empty((len(bamFiles), numIntervals), dtype=np.float32)
|
|
633
|
+
|
|
634
|
+
if isinstance(countEndsOnly, bool) and countEndsOnly:
|
|
635
|
+
# note: setting this option ignores inferFragmentLength, pairedEndMode
|
|
636
|
+
inferFragmentLength = 0
|
|
637
|
+
pairedEndMode = 0
|
|
638
|
+
|
|
639
|
+
for j, bam in enumerate(bamFiles):
|
|
640
|
+
logger.info(f"Reading {chromosome}: {bam}")
|
|
641
|
+
arr = cconsenrich.creadBamSegment(
|
|
642
|
+
bam,
|
|
643
|
+
chromosome,
|
|
644
|
+
start,
|
|
645
|
+
end,
|
|
646
|
+
stepSize,
|
|
647
|
+
readLengths[j],
|
|
648
|
+
oneReadPerBin,
|
|
649
|
+
samThreads,
|
|
650
|
+
samFlagExclude,
|
|
651
|
+
int(offsetStr[0]),
|
|
652
|
+
int(offsetStr[1]),
|
|
653
|
+
extendBP[j],
|
|
654
|
+
maxInsertSize,
|
|
655
|
+
pairedEndMode,
|
|
656
|
+
inferFragmentLength,
|
|
657
|
+
)
|
|
658
|
+
# FFR: use ufuncs?
|
|
659
|
+
counts[j, :] = arr
|
|
660
|
+
counts[j, :] *= np.float32(scaleFactors[j])
|
|
661
|
+
if applyAsinh:
|
|
662
|
+
counts[j, :] = np.arcsinh(counts[j, :])
|
|
663
|
+
elif applyLog:
|
|
664
|
+
counts[j, :] = np.log1p(counts[j, :])
|
|
665
|
+
return counts
|
|
666
|
+
|
|
667
|
+
|
|
668
|
+
|
|
669
|
+
def getAverageLocalVarianceTrack(
|
|
670
|
+
values: np.ndarray,
|
|
671
|
+
stepSize: int,
|
|
672
|
+
approximationWindowLengthBP: int,
|
|
673
|
+
lowPassWindowLengthBP: int,
|
|
674
|
+
minR: float,
|
|
675
|
+
maxR: float,
|
|
676
|
+
lowPassFilterType: Optional[str] = "median",
|
|
677
|
+
) -> npt.NDArray[np.float32]:
|
|
678
|
+
r"""Generate positional noise-level tracks with first and second moments approximated from local windows
|
|
679
|
+
|
|
680
|
+
First, computes a moving average of ``values`` using a bp-length window
|
|
681
|
+
``approximationWindowLengthBP`` and a moving average of ``values**2`` over the
|
|
682
|
+
same window. Their difference is used to approximate the local variance. A low-pass filter
|
|
683
|
+
(median or mean) with window ``lowPassWindowLengthBP`` then smooths the variance track.
|
|
684
|
+
Finally, the track is clipped to ``[minR, maxR]`` to yield the local noise level track.
|
|
685
|
+
|
|
686
|
+
:param values: 1D array of read-density-based values for a single sample.
|
|
687
|
+
:type values: np.ndarray
|
|
688
|
+
:param stepSize: Bin size (bp).
|
|
689
|
+
:type stepSize: int
|
|
690
|
+
:param approximationWindowLengthBP: Window (bp) for local mean and second-moment. See :class:`observationParams`.
|
|
691
|
+
:type approximationWindowLengthBP: int
|
|
692
|
+
:param lowPassWindowLengthBP: Window (bp) for the low-pass filter on the variance track. See :class:`observationParams`.
|
|
693
|
+
:type lowPassWindowLengthBP: int
|
|
694
|
+
:param minR: Lower clip for the returned noise level. See :class:`observationParams`.
|
|
695
|
+
:type minR: float
|
|
696
|
+
:param maxR: Upper clip for the returned noise level. See :class:`observationParams`.
|
|
697
|
+
:type maxR: float
|
|
698
|
+
:param lowPassFilterType: ``"median"`` (default) or ``"mean"``. Type of low-pass filter to use for smoothing the local variance track. See :class:`observationParams`.
|
|
699
|
+
:type lowPassFilterType: Optional[str]
|
|
700
|
+
:return: Local noise level per interval.
|
|
701
|
+
:rtype: npt.NDArray[np.float32]
|
|
702
|
+
|
|
703
|
+
:seealso: :class:`observationParams`
|
|
704
|
+
"""
|
|
705
|
+
values = np.asarray(values, dtype=np.float32)
|
|
706
|
+
windowLength = int(approximationWindowLengthBP / stepSize)
|
|
707
|
+
if windowLength % 2 == 0:
|
|
708
|
+
windowLength += 1
|
|
709
|
+
if len(values) < 3:
|
|
710
|
+
constVar = np.var(values)
|
|
711
|
+
if constVar < minR:
|
|
712
|
+
return np.full_like(values, minR, dtype=np.float32)
|
|
713
|
+
return np.full_like(values, constVar, dtype=np.float32)
|
|
714
|
+
|
|
715
|
+
# first get a simple moving average of the values
|
|
716
|
+
localMeanTrack: npt.NDArray[np.float32] = ndimage.uniform_filter(
|
|
717
|
+
values, size=windowLength, mode="nearest"
|
|
718
|
+
)
|
|
719
|
+
|
|
720
|
+
# ~ E[X_i^2] - E[X_i]^2 ~
|
|
721
|
+
localVarTrack: npt.NDArray[np.float32] = (
|
|
722
|
+
ndimage.uniform_filter(
|
|
723
|
+
values**2, size=windowLength, mode="nearest"
|
|
724
|
+
)
|
|
725
|
+
- localMeanTrack**2
|
|
726
|
+
)
|
|
727
|
+
|
|
728
|
+
# safe-guard: difference of convolutions returns negative values.
|
|
729
|
+
# shouldn't actually happen, but just in case there are some
|
|
730
|
+
# ...potential artifacts i'm unaware of edge effects, etc.
|
|
731
|
+
localVarTrack = np.maximum(localVarTrack, 0.0)
|
|
732
|
+
|
|
733
|
+
# low-pass filter on the local variance track: positional 'noise level' track
|
|
734
|
+
lpassWindowLength = int(lowPassWindowLengthBP / stepSize)
|
|
735
|
+
if lpassWindowLength % 2 == 0:
|
|
736
|
+
lpassWindowLength += 1
|
|
737
|
+
|
|
738
|
+
noiseLevel: npt.NDArray[np.float32] = np.zeros_like(
|
|
739
|
+
localVarTrack, dtype=np.float32
|
|
740
|
+
)
|
|
741
|
+
if lowPassFilterType is None or (
|
|
742
|
+
isinstance(lowPassFilterType, str)
|
|
743
|
+
and lowPassFilterType.lower() == "median"
|
|
744
|
+
):
|
|
745
|
+
noiseLevel = ndimage.median_filter(
|
|
746
|
+
localVarTrack, size=lpassWindowLength
|
|
747
|
+
)
|
|
748
|
+
elif (
|
|
749
|
+
isinstance(lowPassFilterType, str)
|
|
750
|
+
and lowPassFilterType.lower() == "mean"
|
|
751
|
+
):
|
|
752
|
+
noiseLevel = ndimage.uniform_filter(
|
|
753
|
+
localVarTrack, size=lpassWindowLength
|
|
754
|
+
)
|
|
755
|
+
|
|
756
|
+
return np.clip(noiseLevel, minR, maxR).astype(np.float32)
|
|
757
|
+
|
|
758
|
+
|
|
759
|
+
def constructMatrixF(deltaF: float) -> npt.NDArray[np.float32]:
|
|
760
|
+
r"""Build the state transition matrix for the process model
|
|
761
|
+
|
|
762
|
+
:param deltaF: See :class:`processParams`.
|
|
763
|
+
:type deltaF: float
|
|
764
|
+
:return: The state transition matrix :math:`\mathbf{F}`
|
|
765
|
+
:rtype: npt.NDArray[np.float32]
|
|
766
|
+
|
|
767
|
+
:seealso: :class:`processParams`
|
|
768
|
+
"""
|
|
769
|
+
initMatrixF: npt.NDArray[np.float32] = np.eye(2, dtype=np.float32)
|
|
770
|
+
initMatrixF[0, 1] = np.float32(deltaF)
|
|
771
|
+
return initMatrixF
|
|
772
|
+
|
|
773
|
+
|
|
774
|
+
def constructMatrixQ(
|
|
775
|
+
minDiagQ: float, offDiagQ: float = 0.0
|
|
776
|
+
) -> npt.NDArray[np.float32]:
|
|
777
|
+
r"""Build the initial process noise covariance matrix :math:`\mathbf{Q}_{[1]}`.
|
|
778
|
+
|
|
779
|
+
:param minDiagQ: See :class:`processParams`.
|
|
780
|
+
:type minDiagQ: float
|
|
781
|
+
:param offDiagQ: See :class:`processParams`.
|
|
782
|
+
:type offDiagQ: float
|
|
783
|
+
:return: The initial process noise covariance matrix :math:`\mathbf{Q}_{[1]}`.
|
|
784
|
+
:rtype: npt.NDArray[np.float32]
|
|
785
|
+
|
|
786
|
+
:seealso: :class:`processParams`
|
|
787
|
+
"""
|
|
788
|
+
minDiagQ = np.float32(minDiagQ)
|
|
789
|
+
offDiagQ = np.float32(offDiagQ)
|
|
790
|
+
initMatrixQ: npt.NDArray[np.float32] = np.zeros(
|
|
791
|
+
(2, 2), dtype=np.float32
|
|
792
|
+
)
|
|
793
|
+
initMatrixQ[0, 0] = minDiagQ
|
|
794
|
+
initMatrixQ[1, 1] = minDiagQ
|
|
795
|
+
initMatrixQ[0, 1] = offDiagQ
|
|
796
|
+
initMatrixQ[1, 0] = offDiagQ
|
|
797
|
+
return initMatrixQ
|
|
798
|
+
|
|
799
|
+
|
|
800
|
+
def constructMatrixH(
|
|
801
|
+
m: int, coefficients: Optional[np.ndarray] = None
|
|
802
|
+
) -> npt.NDArray[np.float32]:
|
|
803
|
+
r"""Build the observation model matrix :math:`\mathbf{H}`.
|
|
804
|
+
|
|
805
|
+
:param m: Number of observations.
|
|
806
|
+
:type m: int
|
|
807
|
+
:param coefficients: Optional coefficients for the observation model,
|
|
808
|
+
which can be used to weight the observations manually.
|
|
809
|
+
:type coefficients: Optional[np.ndarray]
|
|
810
|
+
:return: The observation model matrix :math:`\mathbf{H}`.
|
|
811
|
+
:rtype: npt.NDArray[np.float32]
|
|
812
|
+
|
|
813
|
+
:seealso: :class:`observationParams`, class:`inputParams`
|
|
814
|
+
"""
|
|
815
|
+
if coefficients is None:
|
|
816
|
+
coefficients = np.ones(m, dtype=np.float32)
|
|
817
|
+
elif isinstance(coefficients, list):
|
|
818
|
+
coefficients = np.array(coefficients, dtype=np.float32)
|
|
819
|
+
initMatrixH = np.empty((m, 2), dtype=np.float32)
|
|
820
|
+
initMatrixH[:, 0] = coefficients.astype(np.float32)
|
|
821
|
+
initMatrixH[:, 1] = np.zeros(m, dtype=np.float32)
|
|
822
|
+
return initMatrixH
|
|
823
|
+
|
|
824
|
+
|
|
825
|
+
def runConsenrich(
|
|
826
|
+
matrixData: np.ndarray,
|
|
827
|
+
matrixMunc: np.ndarray,
|
|
828
|
+
deltaF: float,
|
|
829
|
+
minQ: float,
|
|
830
|
+
maxQ: float,
|
|
831
|
+
offDiagQ: float,
|
|
832
|
+
dStatAlpha: float,
|
|
833
|
+
dStatd: float,
|
|
834
|
+
dStatPC: float,
|
|
835
|
+
stateInit: float,
|
|
836
|
+
stateCovarInit: float,
|
|
837
|
+
boundState: bool,
|
|
838
|
+
stateLowerBound: float,
|
|
839
|
+
stateUpperBound: float,
|
|
840
|
+
chunkSize: int,
|
|
841
|
+
progressIter: int,
|
|
842
|
+
coefficientsH: Optional[np.ndarray] = None,
|
|
843
|
+
residualCovarInversionFunc: Optional[Callable] = None,
|
|
844
|
+
adjustProcessNoiseFunc: Optional[Callable] = None,
|
|
845
|
+
) -> Tuple[
|
|
846
|
+
npt.NDArray[np.float32],
|
|
847
|
+
npt.NDArray[np.float32],
|
|
848
|
+
npt.NDArray[np.float32],
|
|
849
|
+
]:
|
|
850
|
+
r"""Run consenrich on a contiguous segment (e.g. a chromosome) of read-density-based data.
|
|
851
|
+
Completes the forward and backward passes given data and approximated observation noise
|
|
852
|
+
covariance matrices :math:`\mathbf{R}_{[1:n, (11:mm)]}`.
|
|
853
|
+
|
|
854
|
+
This is the primary function implementing the core Consenrich algorithm. Users requiring specialized
|
|
855
|
+
preprocessing may prefer to call this function programmatically on their own preprocessed data rather
|
|
856
|
+
than using the command-line interface.
|
|
857
|
+
|
|
858
|
+
|
|
859
|
+
:param matrixData: Read density data for a single chromosome or general contiguous segment,
|
|
860
|
+
possibly preprocessed. Two-dimensional array of shape :math:`m \times n` where :math:`m`
|
|
861
|
+
is the number of samples/tracks and :math:`n` the number of genomic intervals.
|
|
862
|
+
:type matrixData: np.ndarray
|
|
863
|
+
:param matrixMunc: Uncertainty estimates for the read coverage data.
|
|
864
|
+
Two-dimensional array of shape :math:`m \times n` where :math:`m` is the number of samples/tracks
|
|
865
|
+
and :math:`n` the number of genomic intervals. See :func:`getMuncTrack`.
|
|
866
|
+
:type matrixMunc: np.ndarray
|
|
867
|
+
:param deltaF: See :class:`processParams`.
|
|
868
|
+
:type deltaF: float
|
|
869
|
+
:param minQ: See :class:`processParams`.
|
|
870
|
+
:type minQ: float
|
|
871
|
+
:param maxQ: See :class:`processParams`.
|
|
872
|
+
:type maxQ: float
|
|
873
|
+
:param offDiagQ: See :class:`processParams`.
|
|
874
|
+
:type offDiagQ: float
|
|
875
|
+
:param dStatAlpha: See :class:`processParams`.
|
|
876
|
+
:type dStatAlpha: float
|
|
877
|
+
:param dStatd: See :class:`processParams`.
|
|
878
|
+
:type dStatd: float
|
|
879
|
+
:param dStatPC: See :class:`processParams`.
|
|
880
|
+
:type dStatPC: float
|
|
881
|
+
:param stateInit: See :class:`stateParams`.
|
|
882
|
+
:type stateInit: float
|
|
883
|
+
:param stateCovarInit: See :class:`stateParams`.
|
|
884
|
+
:type stateCovarInit: float
|
|
885
|
+
:param chunkSize: Number of genomic intervals' data to keep in memory before flushing to disk.
|
|
886
|
+
:type chunkSize: int
|
|
887
|
+
:param progressIter: The number of iterations after which to log progress.
|
|
888
|
+
:type progressIter: int
|
|
889
|
+
:param coefficientsH: Optional coefficients for the observation model matrix :math:`\mathbf{H}`.
|
|
890
|
+
If None, the coefficients are set to 1.0 for all samples.
|
|
891
|
+
:type coefficientsH: Optional[np.ndarray]
|
|
892
|
+
:param residualCovarInversionFunc: Callable function to invert the observation covariance matrix :math:`\mathbf{E}_{[i]}`.
|
|
893
|
+
If None, defaults to :func:`cconsenrich.cinvertMatrixE`.
|
|
894
|
+
:type residualCovarInversionFunc: Optional[Callable]
|
|
895
|
+
:param adjustProcessNoiseFunc: Function to adjust the process noise covariance matrix :math:`\mathbf{Q}_{[i]}`.
|
|
896
|
+
If None, defaults to :func:`cconsenrich.updateProcessNoiseCovariance`.
|
|
897
|
+
:type adjustProcessNoiseFunc: Optional[Callable]
|
|
898
|
+
:return: Tuple of three numpy arrays:
|
|
899
|
+
- state estimates :math:`\widetilde{\mathbf{x}}_{[i]}` of shape :math:`n \times 2`
|
|
900
|
+
- state covariance estimates :math:`\widetilde{\mathbf{P}}_{[i]}` of shape :math:`n \times 2 \times 2`
|
|
901
|
+
- post-fit residuals :math:`\widetilde{\mathbf{y}}_{[i]}` of shape :math:`n \times m`
|
|
902
|
+
:rtype: Tuple[np.ndarray, np.ndarray, np.ndarray]
|
|
903
|
+
|
|
904
|
+
:raises ValueError: If the number of samples in `matrixData` is not equal to the number of samples in `matrixMunc`.
|
|
905
|
+
:seealso: :class:`observationParams`, :class:`processParams`, :class:`stateParams`
|
|
906
|
+
"""
|
|
907
|
+
matrixData = np.ascontiguousarray(matrixData, dtype=np.float32)
|
|
908
|
+
matrixMunc = np.ascontiguousarray(matrixMunc, dtype=np.float32)
|
|
909
|
+
m: int = 1 if matrixData.ndim == 1 else matrixData.shape[0]
|
|
910
|
+
n: int = 1 if matrixData.ndim == 1 else matrixData.shape[1]
|
|
911
|
+
inflatedQ: bool = False
|
|
912
|
+
dStat: float = np.float32(0.0)
|
|
913
|
+
countAdjustments: int = 0
|
|
914
|
+
|
|
915
|
+
IKH: np.ndarray = np.zeros(shape=(2, 2), dtype=np.float32)
|
|
916
|
+
matrixEInverse: np.ndarray = np.zeros(
|
|
917
|
+
shape=(m, m), dtype=np.float32
|
|
918
|
+
)
|
|
919
|
+
matrixF: np.ndarray = constructMatrixF(deltaF)
|
|
920
|
+
matrixQ: np.ndarray = constructMatrixQ(minQ, offDiagQ=offDiagQ)
|
|
921
|
+
matrixQCopy: np.ndarray = matrixQ.copy()
|
|
922
|
+
matrixP: np.ndarray = np.eye(2, dtype=np.float32) * np.float32(
|
|
923
|
+
stateCovarInit
|
|
924
|
+
)
|
|
925
|
+
matrixH: np.ndarray = constructMatrixH(
|
|
926
|
+
m, coefficients=coefficientsH
|
|
927
|
+
)
|
|
928
|
+
matrixK: np.ndarray = np.zeros((2, m), dtype=np.float32)
|
|
929
|
+
vectorX: np.ndarray = np.array([stateInit, 0.0], dtype=np.float32)
|
|
930
|
+
vectorY: np.ndarray = np.zeros(m, dtype=np.float32)
|
|
931
|
+
matrixI2: np.ndarray = np.eye(2, dtype=np.float32)
|
|
932
|
+
|
|
933
|
+
if residualCovarInversionFunc is None:
|
|
934
|
+
residualCovarInversionFunc = cconsenrich.cinvertMatrixE
|
|
935
|
+
if adjustProcessNoiseFunc is None:
|
|
936
|
+
adjustProcessNoiseFunc = (
|
|
937
|
+
cconsenrich.updateProcessNoiseCovariance
|
|
938
|
+
)
|
|
939
|
+
|
|
940
|
+
# ==========================
|
|
941
|
+
# forward: 0,1,2,...,n-1
|
|
942
|
+
# ==========================
|
|
943
|
+
stateForward = np.memmap(
|
|
944
|
+
NamedTemporaryFile(delete=True),
|
|
945
|
+
dtype=np.float32,
|
|
946
|
+
mode="w+",
|
|
947
|
+
shape=(n, 2),
|
|
948
|
+
)
|
|
949
|
+
stateCovarForward = np.memmap(
|
|
950
|
+
NamedTemporaryFile(delete=True),
|
|
951
|
+
dtype=np.float32,
|
|
952
|
+
mode="w+",
|
|
953
|
+
shape=(n, 2, 2),
|
|
954
|
+
)
|
|
955
|
+
pNoiseForward = np.memmap(
|
|
956
|
+
NamedTemporaryFile(delete=True),
|
|
957
|
+
dtype=np.float32,
|
|
958
|
+
mode="w+",
|
|
959
|
+
shape=(n, 2, 2),
|
|
960
|
+
)
|
|
961
|
+
progressIter = max(1, progressIter)
|
|
962
|
+
for i in range(n):
|
|
963
|
+
if i % progressIter == 0:
|
|
964
|
+
logger.info(f"Forward pass interval: {i + 1}/{n}")
|
|
965
|
+
vectorZ = matrixData[:, i]
|
|
966
|
+
vectorX = matrixF @ vectorX
|
|
967
|
+
matrixP = matrixF @ matrixP @ matrixF.T + matrixQ
|
|
968
|
+
vectorY = vectorZ - (matrixH @ vectorX)
|
|
969
|
+
matrixEInverse = residualCovarInversionFunc(
|
|
970
|
+
matrixMunc[:, i], np.float32(matrixP[0, 0])
|
|
971
|
+
)
|
|
972
|
+
Einv_diag = np.diag(matrixEInverse)
|
|
973
|
+
dStat = np.median((vectorY**2) * Einv_diag)
|
|
974
|
+
countAdjustments = countAdjustments + int(dStat > dStatAlpha)
|
|
975
|
+
matrixQ, inflatedQ = adjustProcessNoiseFunc(
|
|
976
|
+
matrixQ,
|
|
977
|
+
matrixQCopy,
|
|
978
|
+
dStat,
|
|
979
|
+
dStatAlpha,
|
|
980
|
+
dStatd,
|
|
981
|
+
dStatPC,
|
|
982
|
+
inflatedQ,
|
|
983
|
+
maxQ,
|
|
984
|
+
minQ,
|
|
985
|
+
)
|
|
986
|
+
matrixK = (matrixP @ matrixH.T) @ matrixEInverse
|
|
987
|
+
IKH = matrixI2 - (matrixK @ matrixH)
|
|
988
|
+
|
|
989
|
+
vectorX = vectorX + (matrixK @ vectorY)
|
|
990
|
+
matrixP = (IKH) @ matrixP @ (IKH).T + (
|
|
991
|
+
matrixK * matrixMunc[:, i]
|
|
992
|
+
) @ matrixK.T
|
|
993
|
+
stateForward[i] = vectorX.astype(np.float32)
|
|
994
|
+
stateCovarForward[i] = matrixP.astype(np.float32)
|
|
995
|
+
pNoiseForward[i] = matrixQ.astype(np.float32)
|
|
996
|
+
|
|
997
|
+
if i % chunkSize == 0 and i > 0:
|
|
998
|
+
stateForward.flush()
|
|
999
|
+
stateCovarForward.flush()
|
|
1000
|
+
pNoiseForward.flush()
|
|
1001
|
+
|
|
1002
|
+
stateForward.flush()
|
|
1003
|
+
stateCovarForward.flush()
|
|
1004
|
+
pNoiseForward.flush()
|
|
1005
|
+
stateForwardArr = stateForward
|
|
1006
|
+
stateCovarForwardArr = stateCovarForward
|
|
1007
|
+
pNoiseForwardArr = pNoiseForward
|
|
1008
|
+
|
|
1009
|
+
# log num. times process noise was adjusted
|
|
1010
|
+
logger.info(
|
|
1011
|
+
f"`Median(normedInnovations) > α_D` triggered the adaptive procedure at [{round(((1.0 * countAdjustments) / n) * 100.0, 4)}%] of intervals"
|
|
1012
|
+
)
|
|
1013
|
+
|
|
1014
|
+
|
|
1015
|
+
# ==========================
|
|
1016
|
+
# backward: n,n-1,n-2,...,0
|
|
1017
|
+
# ==========================
|
|
1018
|
+
stateSmoothed = np.memmap(
|
|
1019
|
+
NamedTemporaryFile(delete=True),
|
|
1020
|
+
dtype=np.float32,
|
|
1021
|
+
mode="w+",
|
|
1022
|
+
shape=(n, 2),
|
|
1023
|
+
)
|
|
1024
|
+
stateCovarSmoothed = np.memmap(
|
|
1025
|
+
NamedTemporaryFile(delete=True),
|
|
1026
|
+
dtype=np.float32,
|
|
1027
|
+
mode="w+",
|
|
1028
|
+
shape=(n, 2, 2),
|
|
1029
|
+
)
|
|
1030
|
+
postFitResiduals = np.memmap(
|
|
1031
|
+
NamedTemporaryFile(delete=True),
|
|
1032
|
+
dtype=np.float32,
|
|
1033
|
+
mode="w+",
|
|
1034
|
+
shape=(n, m),
|
|
1035
|
+
)
|
|
1036
|
+
|
|
1037
|
+
stateSmoothed[-1] = np.float32(stateForwardArr[-1])
|
|
1038
|
+
stateCovarSmoothed[-1] = np.float32(stateCovarForwardArr[-1])
|
|
1039
|
+
postFitResiduals[-1] = np.float32(
|
|
1040
|
+
matrixData[:, -1] - (matrixH @ stateSmoothed[-1])
|
|
1041
|
+
)
|
|
1042
|
+
|
|
1043
|
+
for k in range(n - 2, -1, -1):
|
|
1044
|
+
if k % progressIter == 0:
|
|
1045
|
+
logger.info(f"Backward pass interval: {k + 1}/{n}")
|
|
1046
|
+
forwardStatePosterior = stateForwardArr[k]
|
|
1047
|
+
forwardCovariancePosterior = stateCovarForwardArr[k]
|
|
1048
|
+
backwardInitialState = matrixF @ forwardStatePosterior
|
|
1049
|
+
backwardInitialCovariance = (
|
|
1050
|
+
matrixF @ forwardCovariancePosterior @ matrixF.T
|
|
1051
|
+
+ pNoiseForwardArr[k + 1]
|
|
1052
|
+
)
|
|
1053
|
+
|
|
1054
|
+
smootherGain = np.linalg.solve(
|
|
1055
|
+
backwardInitialCovariance.T,
|
|
1056
|
+
(forwardCovariancePosterior @ matrixF.T).T,
|
|
1057
|
+
).T
|
|
1058
|
+
stateSmoothed[k] = (
|
|
1059
|
+
forwardStatePosterior
|
|
1060
|
+
+ smootherGain
|
|
1061
|
+
@ (stateSmoothed[k + 1] - backwardInitialState)
|
|
1062
|
+
).astype(np.float32)
|
|
1063
|
+
|
|
1064
|
+
stateCovarSmoothed[k] = (
|
|
1065
|
+
forwardCovariancePosterior
|
|
1066
|
+
+ smootherGain
|
|
1067
|
+
@ (stateCovarSmoothed[k + 1] - backwardInitialCovariance)
|
|
1068
|
+
@ smootherGain.T
|
|
1069
|
+
).astype(np.float32)
|
|
1070
|
+
postFitResiduals[k] = np.float32(
|
|
1071
|
+
matrixData[:, k] - matrixH @ stateSmoothed[k]
|
|
1072
|
+
)
|
|
1073
|
+
|
|
1074
|
+
if k % chunkSize == 0 and k > 0:
|
|
1075
|
+
stateSmoothed.flush()
|
|
1076
|
+
stateCovarSmoothed.flush()
|
|
1077
|
+
postFitResiduals.flush()
|
|
1078
|
+
|
|
1079
|
+
stateSmoothed.flush()
|
|
1080
|
+
stateCovarSmoothed.flush()
|
|
1081
|
+
postFitResiduals.flush()
|
|
1082
|
+
if boundState:
|
|
1083
|
+
stateSmoothed[:, 0] = np.clip(
|
|
1084
|
+
stateSmoothed[:, 0], stateLowerBound, stateUpperBound
|
|
1085
|
+
).astype(np.float32)
|
|
1086
|
+
|
|
1087
|
+
return (
|
|
1088
|
+
stateSmoothed[:],
|
|
1089
|
+
stateCovarSmoothed[:],
|
|
1090
|
+
postFitResiduals[:],
|
|
1091
|
+
)
|
|
1092
|
+
|
|
1093
|
+
|
|
1094
|
+
def getPrimaryState(
|
|
1095
|
+
stateVectors: np.ndarray, roundPrecision: int = 3
|
|
1096
|
+
) -> npt.NDArray[np.float32]:
|
|
1097
|
+
r"""Get the primary state estimate from each vector after running Consenrich.
|
|
1098
|
+
|
|
1099
|
+
:param stateVectors: State vectors from :func:`runConsenrich`.
|
|
1100
|
+
:type stateVectors: npt.NDArray[np.float32]
|
|
1101
|
+
:return: A one-dimensional numpy array of the primary state estimates.
|
|
1102
|
+
:rtype: npt.NDArray[np.float32]
|
|
1103
|
+
"""
|
|
1104
|
+
out_ = np.ascontiguousarray(stateVectors[:, 0], dtype=np.float32)
|
|
1105
|
+
np.round(out_, decimals=roundPrecision, out=out_)
|
|
1106
|
+
return out_
|
|
1107
|
+
|
|
1108
|
+
|
|
1109
|
+
def getStateCovarTrace(
|
|
1110
|
+
stateCovarMatrices: np.ndarray, roundPrecision: int = 3
|
|
1111
|
+
) -> npt.NDArray[np.float32]:
|
|
1112
|
+
r"""Get a one-dimensional array of state covariance traces after running Consenrich
|
|
1113
|
+
|
|
1114
|
+
:param stateCovarMatrices: Estimated state covariance matrices :math:`\widetilde{\mathbf{P}}_{[i]}`
|
|
1115
|
+
:type stateCovarMatrices: np.ndarray
|
|
1116
|
+
:return: A one-dimensional numpy array of the traces of the state covariance matrices.
|
|
1117
|
+
:rtype: npt.NDArray[np.float32]
|
|
1118
|
+
"""
|
|
1119
|
+
stateCovarMatrices = np.ascontiguousarray(
|
|
1120
|
+
stateCovarMatrices, dtype=np.float32
|
|
1121
|
+
)
|
|
1122
|
+
out_ = cconsenrich.cgetStateCovarTrace(stateCovarMatrices)
|
|
1123
|
+
np.round(out_, decimals=roundPrecision, out=out_)
|
|
1124
|
+
return out_
|
|
1125
|
+
|
|
1126
|
+
|
|
1127
|
+
def getPrecisionWeightedResidual(
|
|
1128
|
+
postFitResiduals: np.ndarray,
|
|
1129
|
+
matrixMunc: np.ndarray,
|
|
1130
|
+
roundPrecision: int = 3,
|
|
1131
|
+
stateCovarSmoothed: Optional[np.ndarray] = None,
|
|
1132
|
+
) -> npt.NDArray[np.float32]:
|
|
1133
|
+
r"""Get a one-dimensional precision-weighted array residuals after running Consenrich.
|
|
1134
|
+
|
|
1135
|
+
Applies an inverse-variance weighting of the post-fit residuals :math:`\widetilde{\mathbf{y}}_{[i]}` and
|
|
1136
|
+
returns a one-dimensional array of "precision-weighted residuals". The state-level uncertainty can also be
|
|
1137
|
+
incorporated given `stateCovarSmoothed`.
|
|
1138
|
+
|
|
1139
|
+
:param postFitResiduals: Post-fit residuals :math:`\widetilde{\mathbf{y}}_{[i]}` from :func:`runConsenrich`.
|
|
1140
|
+
:type postFitResiduals: np.ndarray
|
|
1141
|
+
:param matrixMunc: An :math:`m \times n` sample-by-interval matrix -- At genomic intervals :math:`i = 1,2,\ldots,n`, the respective length-:math:`m` column is :math:`\mathbf{R}_{[i,11:mm]}`.
|
|
1142
|
+
That is, the observation noise levels for each sample :math:`j=1,2,\ldots,m` at interval :math:`i`. To keep memory usage minimal `matrixMunc` is not returned in full or computed in
|
|
1143
|
+
in :func:`runConsenrich`. If using Consenrich programmatically, run :func:`consenrich.core.getMuncTrack` for each sample's count data (rows in the matrix output of :func:`readBamSegments`).
|
|
1144
|
+
:type matrixMunc: np.ndarray
|
|
1145
|
+
:param stateCovarSmoothed: Smoothed state covariance matrices :math:`\widetilde{\mathbf{P}}_{[i]}` from :func:`runConsenrich`.
|
|
1146
|
+
:type stateCovarSmoothed: Optional[np.ndarray]
|
|
1147
|
+
:return: A one-dimensional array of "precision-weighted residuals"
|
|
1148
|
+
:rtype: npt.NDArray[np.float32]
|
|
1149
|
+
"""
|
|
1150
|
+
|
|
1151
|
+
n, m = postFitResiduals.shape
|
|
1152
|
+
if matrixMunc.shape != (m, n):
|
|
1153
|
+
raise ValueError(
|
|
1154
|
+
f"matrixMunc should be (m,n)=({m}, {n}): observed {matrixMunc.shape}"
|
|
1155
|
+
)
|
|
1156
|
+
if stateCovarSmoothed is not None and (
|
|
1157
|
+
stateCovarSmoothed.ndim < 3 or len(stateCovarSmoothed) != n
|
|
1158
|
+
):
|
|
1159
|
+
raise ValueError(
|
|
1160
|
+
"stateCovarSmoothed must be shape (n) x (2,2) (if provided)"
|
|
1161
|
+
)
|
|
1162
|
+
|
|
1163
|
+
postFitResiduals_CContig = np.ascontiguousarray(
|
|
1164
|
+
postFitResiduals, dtype=np.float32
|
|
1165
|
+
)
|
|
1166
|
+
|
|
1167
|
+
needsCopy = (
|
|
1168
|
+
(stateCovarSmoothed is not None)
|
|
1169
|
+
and len(stateCovarSmoothed) == n
|
|
1170
|
+
) or (not matrixMunc.flags.writeable)
|
|
1171
|
+
|
|
1172
|
+
matrixMunc_CContig = np.array(
|
|
1173
|
+
matrixMunc, dtype=np.float32, order="C", copy=needsCopy
|
|
1174
|
+
)
|
|
1175
|
+
|
|
1176
|
+
if needsCopy:
|
|
1177
|
+
# adds the 'primary' state uncertainty to observation noise covariance :math:`\mathbf{R}_{[i,:]}`
|
|
1178
|
+
# primary state uncertainty (0,0) :math:`\mathbf{P}_{[i]} \in \mathbb{R}^{2 \times 2}`
|
|
1179
|
+
stateCovarArr00 = np.asarray(
|
|
1180
|
+
stateCovarSmoothed[:, 0, 0], dtype=np.float32
|
|
1181
|
+
)
|
|
1182
|
+
matrixMunc_CContig += stateCovarArr00
|
|
1183
|
+
|
|
1184
|
+
np.maximum(
|
|
1185
|
+
matrixMunc_CContig, np.float32(1e-8), out=matrixMunc_CContig
|
|
1186
|
+
)
|
|
1187
|
+
out = cconsenrich.cgetPrecisionWeightedResidual(
|
|
1188
|
+
postFitResiduals_CContig, matrixMunc_CContig
|
|
1189
|
+
)
|
|
1190
|
+
np.round(out, decimals=roundPrecision, out=out)
|
|
1191
|
+
return out
|
|
1192
|
+
|
|
1193
|
+
|
|
1194
|
+
def getMuncTrack(
|
|
1195
|
+
chromosome: str,
|
|
1196
|
+
intervals: np.ndarray,
|
|
1197
|
+
stepSize: int,
|
|
1198
|
+
rowValues: np.ndarray,
|
|
1199
|
+
minR: float,
|
|
1200
|
+
maxR: float,
|
|
1201
|
+
useALV: bool,
|
|
1202
|
+
useConstantNoiseLevel: bool,
|
|
1203
|
+
noGlobal: bool,
|
|
1204
|
+
localWeight: float,
|
|
1205
|
+
globalWeight: float,
|
|
1206
|
+
approximationWindowLengthBP: int,
|
|
1207
|
+
lowPassWindowLengthBP: int,
|
|
1208
|
+
returnCenter: bool,
|
|
1209
|
+
sparseMap: Optional[dict[int, int]] = None,
|
|
1210
|
+
lowPassFilterType: Optional[str] = "median",
|
|
1211
|
+
) -> npt.NDArray[np.float32]:
|
|
1212
|
+
r"""Get observation noise variance :math:`R_{[:,jj]}` for the sample :math:`j`.
|
|
1213
|
+
|
|
1214
|
+
Combines a local ALV estimate (see :func:`getAverageLocalVarianceTrack`) with an
|
|
1215
|
+
optional global component. If ``useALV`` is True, *only* the ALV is used. If
|
|
1216
|
+
``useConstantNoiseLevel`` is True, a constant track set to the global mean is used.
|
|
1217
|
+
When a ``sparseMap`` is provided, local values are aggregated over nearby 'sparse'
|
|
1218
|
+
regions before mixing with the global component.
|
|
1219
|
+
|
|
1220
|
+
For heterochromatic or repressive marks (H3K9me3, H3K27me3, MNase-seq, etc.), consider setting
|
|
1221
|
+
`useALV=True` to prevent inflated sample-level noise estimates.
|
|
1222
|
+
|
|
1223
|
+
:param chromosome: Tracks are approximated for this chromosome.
|
|
1224
|
+
:type chromosome: str
|
|
1225
|
+
:param intervals: Genomic intervals for which to compute the noise track.
|
|
1226
|
+
:param stepSize: See :class:`countingParams`.
|
|
1227
|
+
:type stepSize: int
|
|
1228
|
+
:param rowValues: Read-density-based values for the sample :math:`j` at the genomic intervals :math:`i=1,2,\ldots,n`.
|
|
1229
|
+
:type rowValues: np.ndarray
|
|
1230
|
+
:param minR: See :class:`observationParams`.
|
|
1231
|
+
:type minR: float
|
|
1232
|
+
:param maxR: See :class:`observationParams`.
|
|
1233
|
+
:type maxR: float
|
|
1234
|
+
:param useALV: See :class:`observationParams`.
|
|
1235
|
+
:type useALV: bool
|
|
1236
|
+
:param useConstantNoiseLevel: See :class:`observationParams`.
|
|
1237
|
+
:type useConstantNoiseLevel: bool
|
|
1238
|
+
:param noGlobal: See :class:`observationParams`.
|
|
1239
|
+
:type noGlobal: bool
|
|
1240
|
+
:param localWeight: See :class:`observationParams`.
|
|
1241
|
+
:type localWeight: float
|
|
1242
|
+
:param globalWeight: See :class:`observationParams`.
|
|
1243
|
+
:type globalWeight: float
|
|
1244
|
+
:param approximationWindowLengthBP: See :class:`observationParams` and/or :func:`getAverageLocalVarianceTrack`.
|
|
1245
|
+
:type approximationWindowLengthBP: int
|
|
1246
|
+
:param lowPassWindowLengthBP: See :class:`observationParams` and/or :func:`getAverageLocalVarianceTrack`.
|
|
1247
|
+
:type lowPassWindowLengthBP: int
|
|
1248
|
+
:param sparseMap: Optional mapping (dictionary) of interval indices to the nearest sparse regions. See :func:`getSparseMap`.
|
|
1249
|
+
:type sparseMap: Optional[dict[int, int]]
|
|
1250
|
+
:param lowPassFilterType: The type of low-pass filter to use in average local variance track (e.g., 'median', 'mean').
|
|
1251
|
+
:type lowPassFilterType: Optional[str]
|
|
1252
|
+
:return: A one-dimensional numpy array of the observation noise track for the sample :math:`j`.
|
|
1253
|
+
:rtype: npt.NDArray[np.float32]
|
|
1254
|
+
|
|
1255
|
+
"""
|
|
1256
|
+
trackALV = getAverageLocalVarianceTrack(
|
|
1257
|
+
rowValues,
|
|
1258
|
+
stepSize,
|
|
1259
|
+
approximationWindowLengthBP,
|
|
1260
|
+
lowPassWindowLengthBP,
|
|
1261
|
+
minR,
|
|
1262
|
+
maxR,
|
|
1263
|
+
lowPassFilterType,
|
|
1264
|
+
).astype(np.float32)
|
|
1265
|
+
|
|
1266
|
+
globalNoise: float = np.float32(np.mean(trackALV))
|
|
1267
|
+
if noGlobal or globalWeight == 0 or useALV:
|
|
1268
|
+
return np.clip(trackALV, minR, maxR).astype(np.float32)
|
|
1269
|
+
|
|
1270
|
+
if (
|
|
1271
|
+
useConstantNoiseLevel
|
|
1272
|
+
or localWeight == 0
|
|
1273
|
+
and sparseMap is None
|
|
1274
|
+
):
|
|
1275
|
+
return np.clip(
|
|
1276
|
+
globalNoise * np.ones_like(rowValues), minR, maxR
|
|
1277
|
+
).astype(np.float32)
|
|
1278
|
+
|
|
1279
|
+
if sparseMap is not None:
|
|
1280
|
+
trackALV = cconsenrich.cSparseAvg(trackALV, sparseMap)
|
|
1281
|
+
|
|
1282
|
+
return np.clip(
|
|
1283
|
+
trackALV * localWeight + np.mean(trackALV) * globalWeight,
|
|
1284
|
+
minR,
|
|
1285
|
+
maxR,
|
|
1286
|
+
).astype(np.float32)
|
|
1287
|
+
|
|
1288
|
+
|
|
1289
|
+
def sparseIntersection(
|
|
1290
|
+
chromosome: str, intervals: np.ndarray, sparseBedFile: str
|
|
1291
|
+
) -> npt.NDArray[np.int64]:
|
|
1292
|
+
r"""Returns intervals in the chromosome that overlap with the sparse features.
|
|
1293
|
+
|
|
1294
|
+
Not relevant if `observationParams.useALV` is True.
|
|
1295
|
+
|
|
1296
|
+
:param chromosome: The chromosome name.
|
|
1297
|
+
:type chromosome: str
|
|
1298
|
+
:param intervals: The genomic intervals to consider.
|
|
1299
|
+
:type intervals: np.ndarray
|
|
1300
|
+
:param sparseBedFile: Path to the sparse BED file.
|
|
1301
|
+
:type sparseBedFile: str
|
|
1302
|
+
:return: A numpy array of start positions of the sparse features that overlap with the intervals
|
|
1303
|
+
:rtype: np.ndarray[Tuple[Any], np.dtype[Any]]
|
|
1304
|
+
"""
|
|
1305
|
+
|
|
1306
|
+
stepSize: int = intervals[1] - intervals[0]
|
|
1307
|
+
chromFeatures: bed.BedTool = (
|
|
1308
|
+
bed.BedTool(sparseBedFile)
|
|
1309
|
+
.sort()
|
|
1310
|
+
.merge()
|
|
1311
|
+
.filter(
|
|
1312
|
+
lambda b: (
|
|
1313
|
+
b.chrom == chromosome
|
|
1314
|
+
and b.start > intervals[0]
|
|
1315
|
+
and b.end < intervals[-1]
|
|
1316
|
+
and (b.end - b.start) >= stepSize
|
|
1317
|
+
)
|
|
1318
|
+
)
|
|
1319
|
+
)
|
|
1320
|
+
centeredFeatures: bed.BedTool = chromFeatures.each(
|
|
1321
|
+
adjustFeatureBounds, stepSize=stepSize
|
|
1322
|
+
)
|
|
1323
|
+
|
|
1324
|
+
start0: int = int(intervals[0])
|
|
1325
|
+
last: int = int(intervals[-1])
|
|
1326
|
+
chromFeatures: bed.BedTool = (
|
|
1327
|
+
bed.BedTool(sparseBedFile)
|
|
1328
|
+
.sort()
|
|
1329
|
+
.merge()
|
|
1330
|
+
.filter(
|
|
1331
|
+
lambda b: (
|
|
1332
|
+
b.chrom == chromosome
|
|
1333
|
+
and b.start > start0
|
|
1334
|
+
and b.end < last
|
|
1335
|
+
and (b.end - b.start) >= stepSize
|
|
1336
|
+
)
|
|
1337
|
+
)
|
|
1338
|
+
)
|
|
1339
|
+
centeredFeatures: bed.BedTool = chromFeatures.each(
|
|
1340
|
+
adjustFeatureBounds, stepSize=stepSize
|
|
1341
|
+
)
|
|
1342
|
+
centeredStarts = []
|
|
1343
|
+
for f in centeredFeatures:
|
|
1344
|
+
s = int(f.start)
|
|
1345
|
+
if start0 <= s <= last and (s - start0) % stepSize == 0:
|
|
1346
|
+
centeredStarts.append(s)
|
|
1347
|
+
return np.asarray(centeredStarts, dtype=np.int64)
|
|
1348
|
+
|
|
1349
|
+
|
|
1350
|
+
def adjustFeatureBounds(
|
|
1351
|
+
feature: bed.Interval, stepSize: int
|
|
1352
|
+
) -> bed.Interval:
|
|
1353
|
+
r"""Adjust the start and end positions of a BED feature to be centered around a step."""
|
|
1354
|
+
feature.start = cconsenrich.stepAdjustment(
|
|
1355
|
+
(feature.start + feature.end) // 2, stepSize
|
|
1356
|
+
)
|
|
1357
|
+
feature.end = feature.start + stepSize
|
|
1358
|
+
return feature
|
|
1359
|
+
|
|
1360
|
+
|
|
1361
|
+
def getSparseMap(
|
|
1362
|
+
chromosome: str,
|
|
1363
|
+
intervals: np.ndarray,
|
|
1364
|
+
numNearest: int,
|
|
1365
|
+
sparseBedFile: str,
|
|
1366
|
+
) -> dict:
|
|
1367
|
+
r"""Build a map between each genomic interval and numNearest sparse features
|
|
1368
|
+
|
|
1369
|
+
:param chromosome: The chromosome name. Note, this function only needs to be run once per chromosome.
|
|
1370
|
+
:type chromosome: str
|
|
1371
|
+
:param intervals: The genomic intervals to map.
|
|
1372
|
+
:type intervals: np.ndarray
|
|
1373
|
+
:param numNearest: The number of nearest sparse features to consider
|
|
1374
|
+
:type numNearest: int
|
|
1375
|
+
:param sparseBedFile: path to the sparse BED file.
|
|
1376
|
+
:type sparseBedFile: str
|
|
1377
|
+
:return: A dictionary mapping each interval index to the indices of the nearest sparse regions.
|
|
1378
|
+
:rtype: dict[int, np.ndarray]
|
|
1379
|
+
|
|
1380
|
+
"""
|
|
1381
|
+
numNearest = numNearest
|
|
1382
|
+
sparseStarts = sparseIntersection(
|
|
1383
|
+
chromosome, intervals, sparseBedFile
|
|
1384
|
+
)
|
|
1385
|
+
idxSparseInIntervals = np.searchsorted(
|
|
1386
|
+
intervals, sparseStarts, side="left"
|
|
1387
|
+
)
|
|
1388
|
+
centers = np.searchsorted(sparseStarts, intervals, side="left")
|
|
1389
|
+
sparseMap: dict = {}
|
|
1390
|
+
for i, (interval, center) in enumerate(zip(intervals, centers)):
|
|
1391
|
+
left = max(0, center - numNearest)
|
|
1392
|
+
right = min(len(sparseStarts), center + numNearest)
|
|
1393
|
+
candidates = np.arange(left, right)
|
|
1394
|
+
dists = np.abs(sparseStarts[candidates] - interval)
|
|
1395
|
+
take = np.argsort(dists)[:numNearest]
|
|
1396
|
+
sparseMap[i] = idxSparseInIntervals[candidates[take]]
|
|
1397
|
+
return sparseMap
|
|
1398
|
+
|
|
1399
|
+
|
|
1400
|
+
def getBedMask(
|
|
1401
|
+
chromosome: str,
|
|
1402
|
+
bedFile: str,
|
|
1403
|
+
intervals: np.ndarray,
|
|
1404
|
+
) -> np.ndarray:
|
|
1405
|
+
r"""Return a 1/0 mask for intervals overlapping a sorted and merged BED file.
|
|
1406
|
+
|
|
1407
|
+
This function is a wrapper for :func:`cconsenrich.cbedMask`.
|
|
1408
|
+
|
|
1409
|
+
:param chromosome: The chromosome name.
|
|
1410
|
+
:type chromosome: str
|
|
1411
|
+
:param intervals: chromosome-specific, sorted, non-overlapping start positions of genomic intervals.
|
|
1412
|
+
Each interval is assumed `stepSize`.
|
|
1413
|
+
:type intervals: np.ndarray
|
|
1414
|
+
:param bedFile: Path to a sorted and merged BED file
|
|
1415
|
+
:type bedFile: str
|
|
1416
|
+
:return: An `intervals`-length mask s.t. True indicates the interval overlaps a feature in the BED file.
|
|
1417
|
+
:rtype: np.ndarray
|
|
1418
|
+
"""
|
|
1419
|
+
if not os.path.exists(bedFile):
|
|
1420
|
+
raise ValueError(f"Could not find {bedFile}")
|
|
1421
|
+
if len(intervals) < 2:
|
|
1422
|
+
raise ValueError(
|
|
1423
|
+
"intervals must contain at least two positions"
|
|
1424
|
+
)
|
|
1425
|
+
bedFile_ = str(bedFile)
|
|
1426
|
+
|
|
1427
|
+
# (possibly redundant) creation of uint32 version
|
|
1428
|
+
# + quick check for constant steps
|
|
1429
|
+
intervals_ = np.asarray(intervals, dtype=np.uint32)
|
|
1430
|
+
if (intervals_[1] - intervals_[0]) != (
|
|
1431
|
+
intervals_[-1] - intervals_[-2]
|
|
1432
|
+
):
|
|
1433
|
+
raise ValueError("Intervals are not fixed in size")
|
|
1434
|
+
|
|
1435
|
+
stepSize_: int = intervals[1] - intervals[0]
|
|
1436
|
+
return cconsenrich.cbedMask(
|
|
1437
|
+
chromosome,
|
|
1438
|
+
bedFile_,
|
|
1439
|
+
intervals_,
|
|
1440
|
+
stepSize_,
|
|
1441
|
+
).astype(np.bool_)
|