congrads 1.1.1__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,506 @@
1
+ """This module holds utility functions and classes for the congrads package."""
2
+
3
+ import inspect
4
+ import os
5
+ import random
6
+ from collections.abc import Callable
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+ import torch
11
+ import torch.nn as nn
12
+ from torch import Generator, Tensor, argsort, cat, int32, unique
13
+ from torch.nn.modules.loss import _Loss
14
+ from torch.utils.data import DataLoader, Dataset, random_split
15
+
16
+
17
+ class CSVLogger:
18
+ """A utility class for logging key-value pairs to a CSV file, organized by epochs.
19
+
20
+ Supports merging with existing logs or overwriting them.
21
+
22
+ Args:
23
+ file_path (str): The path to the CSV file for logging.
24
+ overwrite (bool): If True, overwrites any existing file at the file_path.
25
+ merge (bool): If True, merges new values with existing data in the file.
26
+
27
+ Raises:
28
+ ValueError: If both overwrite and merge are True.
29
+ FileExistsError: If the file already exists and neither overwrite nor merge is True.
30
+ """
31
+
32
+ def __init__(self, file_path: str, overwrite: bool = False, merge: bool = True):
33
+ """Initializes the CSVLogger.
34
+
35
+ Supports merging with existing logs or overwriting them.
36
+
37
+ Args:
38
+ file_path (str): The path to the CSV file for logging.
39
+ overwrite (optional, bool): If True, overwrites any existing file at the file_path. Defaults to False.
40
+ merge (optional, bool): If True, merges new values with existing data in the file. Defaults to True.
41
+
42
+ Raises:
43
+ ValueError: If both overwrite and merge are True.
44
+ FileExistsError: If the file already exists and neither overwrite nor merge is True.
45
+ """
46
+ self.file_path = file_path
47
+ self.values: dict[tuple[int, str], float] = {}
48
+
49
+ if merge and overwrite:
50
+ raise ValueError(
51
+ "The attributes overwrite and merge cannot be True at the "
52
+ "same time. Either specify overwrite=True or merge=True."
53
+ )
54
+
55
+ if not os.path.exists(file_path):
56
+ pass
57
+ elif merge:
58
+ self.load()
59
+ elif overwrite:
60
+ pass
61
+ else:
62
+ raise FileExistsError(
63
+ f"A CSV file already exists at {file_path}. Specify "
64
+ "CSVLogger(..., overwrite=True) to overwrite the file."
65
+ )
66
+
67
+ def add_value(self, name: str, value: float, epoch: int):
68
+ """Adds a value to the logger for a specific epoch and name.
69
+
70
+ Args:
71
+ name (str): The name of the metric or value to log.
72
+ value (float): The value to log.
73
+ epoch (int): The epoch associated with the value.
74
+ """
75
+ self.values[epoch, name] = value
76
+
77
+ def save(self):
78
+ """Saves the logged values to the specified CSV file.
79
+
80
+ If the file exists and merge is enabled, merges the current data
81
+ with the existing file.
82
+ """
83
+ data = self.to_dataframe(self.values)
84
+ data.to_csv(self.file_path, index=False)
85
+
86
+ def load(self):
87
+ """Loads data from the CSV file into the logger.
88
+
89
+ Converts the CSV data into the internal dictionary format for
90
+ further updates or operations.
91
+ """
92
+ df = pd.read_csv(self.file_path)
93
+ self.values = self.to_dict(df)
94
+
95
+ @staticmethod
96
+ def to_dataframe(values: dict[tuple[int, str], float]) -> pd.DataFrame:
97
+ """Converts a dictionary of values into a DataFrame.
98
+
99
+ Args:
100
+ values (dict[tuple[int, str], float]): A dictionary of values keyed by (epoch, name).
101
+
102
+ Returns:
103
+ pd.DataFrame: A DataFrame where epochs are rows, names are columns, and values are the cell data.
104
+ """
105
+ # Convert to a DataFrame
106
+ df = pd.DataFrame.from_dict(values, orient="index", columns=["value"])
107
+
108
+ # Reset the index to separate epoch and name into columns
109
+ df.index = pd.MultiIndex.from_tuples(df.index, names=["epoch", "name"])
110
+ df = df.reset_index()
111
+
112
+ # Pivot the DataFrame so epochs are rows and names are columns
113
+ result = df.pivot(index="epoch", columns="name", values="value")
114
+
115
+ # Optional: Reset the column names for a cleaner look
116
+ result = result.reset_index().rename_axis(columns=None)
117
+
118
+ return result
119
+
120
+ @staticmethod
121
+ def to_dict(df: pd.DataFrame) -> dict[tuple[int, str], float]:
122
+ """Converts a CSVLogger DataFrame to a dictionary the format {(epoch, name): value}."""
123
+ # Set the epoch column as the index (if not already)
124
+ df = df.set_index("epoch")
125
+
126
+ # Stack the DataFrame to create a multi-index series
127
+ stacked = df.stack()
128
+
129
+ # Convert the multi-index series to a dictionary
130
+ result = stacked.to_dict()
131
+
132
+ return result
133
+
134
+
135
+ def split_data_loaders(
136
+ data: Dataset,
137
+ loader_args: dict = None,
138
+ train_loader_args: dict = None,
139
+ valid_loader_args: dict = None,
140
+ test_loader_args: dict = None,
141
+ train_size: float = 0.8,
142
+ valid_size: float = 0.1,
143
+ test_size: float = 0.1,
144
+ split_generator: Generator = None,
145
+ ) -> tuple[DataLoader, DataLoader, DataLoader]:
146
+ """Splits a dataset into training, validation, and test sets, and returns corresponding DataLoader objects.
147
+
148
+ Args:
149
+ data (Dataset): The dataset to be split.
150
+ loader_args (dict, optional): Default DataLoader arguments, merges
151
+ with loader-specific arguments, overlapping keys from
152
+ loader-specific arguments are superseded.
153
+ train_loader_args (dict, optional): Training DataLoader arguments,
154
+ merges with `loader_args`, overriding overlapping keys.
155
+ valid_loader_args (dict, optional): Validation DataLoader arguments,
156
+ merges with `loader_args`, overriding overlapping keys.
157
+ test_loader_args (dict, optional): Test DataLoader arguments,
158
+ merges with `loader_args`, overriding overlapping keys.
159
+ train_size (float, optional): Proportion of data to be used for
160
+ training. Defaults to 0.8.
161
+ valid_size (float, optional): Proportion of data to be used for
162
+ validation. Defaults to 0.1.
163
+ test_size (float, optional): Proportion of data to be used for
164
+ testing. Defaults to 0.1.
165
+ split_generator (Generator, optional): Optional random seed generator
166
+ to control the splitting of the dataset.
167
+
168
+ Returns:
169
+ tuple: A tuple containing three DataLoader objects: one for the
170
+ training, validation and test set.
171
+
172
+ Raises:
173
+ ValueError: If the train_size, valid_size, and test_size are not
174
+ between 0 and 1, or if their sum does not equal 1.
175
+ """
176
+ # Validate split sizes
177
+ if not (0 < train_size < 1 and 0 < valid_size < 1 and 0 < test_size < 1):
178
+ raise ValueError("train_size, valid_size, and test_size must be between 0 and 1.")
179
+ if not abs(train_size + valid_size + test_size - 1.0) < 1e-6:
180
+ raise ValueError("train_size, valid_size, and test_size must sum to 1.")
181
+
182
+ # Perform the splits
183
+ train_val_data, test_data = random_split(
184
+ data, [1 - test_size, test_size], generator=split_generator
185
+ )
186
+ train_data, valid_data = random_split(
187
+ train_val_data,
188
+ [
189
+ train_size / (1 - test_size),
190
+ valid_size / (1 - test_size),
191
+ ],
192
+ generator=split_generator,
193
+ )
194
+
195
+ # Set default arguments for each loader
196
+ train_loader_args = dict(loader_args or {}, **(train_loader_args or {}))
197
+ valid_loader_args = dict(loader_args or {}, **(valid_loader_args or {}))
198
+ test_loader_args = dict(loader_args or {}, **(test_loader_args or {}))
199
+
200
+ # Create the DataLoaders
201
+ train_generator = DataLoader(train_data, **train_loader_args)
202
+ valid_generator = DataLoader(valid_data, **valid_loader_args)
203
+ test_generator = DataLoader(test_data, **test_loader_args)
204
+
205
+ return train_generator, valid_generator, test_generator
206
+
207
+
208
+ class ZeroLoss(_Loss):
209
+ """A loss function that always returns zero.
210
+
211
+ This custom loss function ignores the input and target tensors
212
+ and returns a constant zero loss, which can be useful for debugging
213
+ or when no meaningful loss computation is required.
214
+
215
+ Args:
216
+ reduction (str, optional): Specifies the reduction to apply to
217
+ the output. Defaults to "mean". Although specified, it has
218
+ no effect as the loss is always zero.
219
+ """
220
+
221
+ def __init__(self, reduction: str = "mean"):
222
+ """Initialize ZeroLoss with a specified reduction method.
223
+
224
+ Args:
225
+ reduction (str): Specifies the reduction to apply to the output. Defaults to "mean".
226
+ """
227
+ super().__init__(reduction=reduction)
228
+
229
+ def forward(self, predictions: Tensor, target: Tensor, **kwargs) -> torch.Tensor:
230
+ """Return a dummy loss of zero regardless of input and target."""
231
+ return (predictions * 0).sum()
232
+
233
+
234
+ class LossWrapper:
235
+ """Wraps a loss function to optionally accept batch-level data.
236
+
237
+ This adapter allows both standard PyTorch loss functions (e.g.
238
+ ``nn.MSELoss``) and custom loss functions that accept an additional
239
+ ``data`` keyword argument to be used interchangeably.
240
+
241
+ The wrapped loss can always be called with the same signature:
242
+
243
+ loss(output, target, data=batch)
244
+
245
+ If the underlying loss function does not accept ``data``, the
246
+ argument is silently ignored.
247
+ """
248
+
249
+ def __init__(self, loss_fn: Callable):
250
+ """Initializes the LossWrapper.
251
+
252
+ Args:
253
+ loss_fn (Callable): The underlying loss function or callable
254
+ (e.g. a ``torch.nn.Module`` or a custom function).
255
+ """
256
+ self.loss_fn = loss_fn
257
+ self.accepts_data = self._accepts_data()
258
+
259
+ def _accepts_data(self) -> bool:
260
+ """Checks whether the wrapped loss function accepts a ``data`` argument.
261
+
262
+ The check returns ``True`` if either:
263
+ - The function explicitly defines a ``data`` parameter, or
264
+ - The function accepts arbitrary keyword arguments (``**kwargs``).
265
+
266
+ Returns:
267
+ bool: ``True`` if the loss function can accept ``data``,
268
+ ``False`` otherwise.
269
+ """
270
+ # For nn.Module, inspect forward(), not __call__()
271
+ if isinstance(self.loss_fn, nn.Module):
272
+ fn = self.loss_fn.forward
273
+ else:
274
+ fn = self.loss_fn
275
+
276
+ sig = inspect.signature(fn)
277
+
278
+ return "data" in sig.parameters or any(
279
+ p.kind == inspect.Parameter.VAR_KEYWORD for p in sig.parameters.values()
280
+ )
281
+
282
+ def __call__(self, output: Tensor, target: Tensor, *, data: dict | None = None) -> Tensor:
283
+ """Computes the loss.
284
+
285
+ Args:
286
+ output (torch.Tensor): Model predictions.
287
+ target (torch.Tensor): Ground-truth targets.
288
+ data (dict, optional): Full batch data passed to custom loss
289
+ functions that require additional context.
290
+
291
+ Returns:
292
+ torch.Tensor: Computed loss value.
293
+ """
294
+ if self.accepts_data:
295
+ return self.loss_fn(output, target, data=data)
296
+ return self.loss_fn(output, target)
297
+
298
+
299
+ def process_data_monotonicity_constraint(data: Tensor, ordering: Tensor, identifiers: Tensor):
300
+ """Reorders input samples to support monotonicity checking.
301
+
302
+ Reorders input samples such that:
303
+ 1. Samples from the same run are grouped together.
304
+ 2. Within each run, samples are sorted chronologically.
305
+
306
+ Args:
307
+ data (Tensor): The input data.
308
+ ordering (Tensor): On what to order the data.
309
+ identifiers (Tensor): Identifiers specifying different runs.
310
+
311
+ Returns:
312
+ Tuple[Tensor, Tensor, Tensor]: Sorted data, ordering, and
313
+ identifiers.
314
+ """
315
+ # Step 1: Sort by run identifiers
316
+ sorted_indices = argsort(identifiers, stable=True, dim=0).reshape(-1)
317
+ data_sorted, ordering_sorted, identifiers_sorted = (
318
+ data[sorted_indices],
319
+ ordering[sorted_indices],
320
+ identifiers[sorted_indices],
321
+ )
322
+
323
+ # Step 2: Get unique runs and their counts
324
+ _, counts = unique(identifiers, sorted=False, return_counts=True)
325
+ counts = counts.to(int32) # Avoid repeated conversions
326
+
327
+ sorted_data, sorted_ordering, sorted_identifiers = [], [], []
328
+ index = 0 # Tracks the current batch element index
329
+
330
+ # Step 3: Process each run independently
331
+ for count in counts:
332
+ end = index + count
333
+ run_data, run_ordering, run_identifiers = (
334
+ data_sorted[index:end],
335
+ ordering_sorted[index:end],
336
+ identifiers_sorted[index:end],
337
+ )
338
+
339
+ # Step 4: Sort within each run by time
340
+ time_sorted_indices = argsort(run_ordering, stable=True, dim=0).reshape(-1)
341
+ sorted_data.append(run_data[time_sorted_indices])
342
+ sorted_ordering.append(run_ordering[time_sorted_indices])
343
+ sorted_identifiers.append(run_identifiers[time_sorted_indices])
344
+
345
+ index = end # Move to next run
346
+
347
+ # Step 5: Concatenate results and return
348
+ return (
349
+ cat(sorted_data, dim=0),
350
+ cat(sorted_ordering, dim=0),
351
+ cat(sorted_identifiers, dim=0),
352
+ )
353
+
354
+
355
+ class DictDatasetWrapper(Dataset):
356
+ """A wrapper for PyTorch datasets that converts each sample into a dictionary.
357
+
358
+ This class takes any PyTorch dataset and returns its samples as dictionaries,
359
+ where each element of the original sample is mapped to a key. This is useful
360
+ for integration with the Congrads toolbox or other frameworks that expect
361
+ dictionary-formatted data.
362
+
363
+ Attributes:
364
+ base_dataset (Dataset): The underlying PyTorch dataset being wrapped.
365
+ field_names (list[str] | None): Names assigned to each field of a sample.
366
+ If None, default names like 'field0', 'field1', ... are generated.
367
+
368
+ Args:
369
+ base_dataset (Dataset): The PyTorch dataset to wrap.
370
+ field_names (list[str] | None, optional): Custom names for each field.
371
+ If provided, the list is truncated or extended to match the number
372
+ of elements in a sample. Defaults to None.
373
+
374
+ Example:
375
+ Wrapping a TensorDataset with custom field names:
376
+
377
+ >>> from torch.utils.data import TensorDataset
378
+ >>> import torch
379
+ >>> dataset = TensorDataset(torch.randn(5, 3), torch.randint(0, 2, (5,)))
380
+ >>> wrapped = DictDatasetWrapper(dataset, field_names=["features", "label"])
381
+ >>> wrapped[0]
382
+ {'features': tensor([...]), 'label': tensor(1)}
383
+
384
+ Wrapping a built-in dataset like CIFAR10:
385
+
386
+ >>> from torchvision.datasets import CIFAR10
387
+ >>> from torchvision import transforms
388
+ >>> cifar = CIFAR10(
389
+ ... root="./data", train=True, download=True, transform=transforms.ToTensor()
390
+ ... )
391
+ >>> wrapped_cifar = DictDatasetWrapper(cifar, field_names=["input", "output"])
392
+ >>> wrapped_cifar[0]
393
+ {'input': tensor([...]), 'output': tensor(6)}
394
+ """
395
+
396
+ def __init__(self, base_dataset: Dataset, field_names: list[str] | None = None):
397
+ """Initialize the DictDatasetWrapper.
398
+
399
+ Args:
400
+ base_dataset (Dataset): The PyTorch dataset to wrap.
401
+ field_names (list[str] | None, optional): Optional list of field names
402
+ for the dictionary output. Defaults to None, in which case
403
+ automatic names 'field0', 'field1', ... are generated.
404
+ """
405
+ self.base_dataset = base_dataset
406
+ self.field_names = field_names
407
+
408
+ def __getitem__(self, idx: int):
409
+ """Retrieve a sample from the dataset as a dictionary.
410
+
411
+ Each element in the original sample is mapped to a key in the dictionary.
412
+ If the sample is not a tuple or list, it is converted into a single-element
413
+ tuple. Numerical values (int or float) are automatically converted to tensors.
414
+
415
+ Args:
416
+ idx (int): Index of the sample to retrieve.
417
+
418
+ Returns:
419
+ dict: A dictionary mapping field names to sample values.
420
+ """
421
+ sample = self.base_dataset[idx]
422
+
423
+ # Ensure sample is always a tuple
424
+ if not isinstance(sample, (tuple, list)):
425
+ sample = (sample,)
426
+
427
+ n_fields = len(sample)
428
+
429
+ # Generate default field names if none are provided
430
+ if self.field_names is None:
431
+ names = [f"field{i}" for i in range(n_fields)]
432
+ else:
433
+ names = list(self.field_names)
434
+ if len(names) < n_fields:
435
+ names.extend([f"field{i}" for i in range(len(names), n_fields)])
436
+ names = names[:n_fields] # truncate if too long
437
+
438
+ # Build dictionary
439
+ out = {}
440
+ for name, value in zip(names, sample, strict=False):
441
+ if isinstance(value, (int, float)):
442
+ value = torch.tensor(value)
443
+ out[name] = value
444
+
445
+ return out
446
+
447
+ def __len__(self):
448
+ """Return the number of samples in the dataset.
449
+
450
+ Returns:
451
+ int: Length of the underlying dataset.
452
+ """
453
+ return len(self.base_dataset)
454
+
455
+
456
+ class Seeder:
457
+ """A deterministic seed manager for reproducible experiments.
458
+
459
+ This class provides a way to consistently generate pseudo-random
460
+ seeds derived from a fixed base seed. It ensures that different
461
+ libraries (Python's `random`, NumPy, and PyTorch) are initialized
462
+ with reproducible seeds, making experiments deterministic across runs.
463
+ """
464
+
465
+ def __init__(self, base_seed: int):
466
+ """Initialize the Seeder with a base seed.
467
+
468
+ Args:
469
+ base_seed (int): The initial seed from which all subsequent
470
+ pseudo-random seeds are deterministically derived.
471
+ """
472
+ self._rng = random.Random(base_seed)
473
+
474
+ def roll_seed(self) -> int:
475
+ """Generate a new deterministic pseudo-random seed.
476
+
477
+ Each call returns an integer seed derived from the internal
478
+ pseudo-random generator, which itself is initialized by the
479
+ base seed.
480
+
481
+ Returns:
482
+ int: A pseudo-random integer seed in the range [0, 2**31 - 1].
483
+ """
484
+ return self._rng.randint(0, 2**31 - 1)
485
+
486
+ def set_reproducible(self) -> None:
487
+ """Configure global random states for reproducibility.
488
+
489
+ Seeds the following libraries with deterministically generated
490
+ seeds based on the base seed:
491
+ - Python's built-in `random`
492
+ - NumPy's random number generator
493
+ - PyTorch (CPU and GPU)
494
+
495
+ Also enforces deterministic behavior in PyTorch by:
496
+ - Seeding all CUDA devices
497
+ - Disabling CuDNN benchmarking
498
+ - Enabling CuDNN deterministic mode
499
+ """
500
+ random.seed(self.roll_seed())
501
+ np.random.seed(self.roll_seed())
502
+ torch.manual_seed(self.roll_seed())
503
+ torch.cuda.manual_seed_all(self.roll_seed())
504
+
505
+ torch.backends.cudnn.deterministic = True
506
+ torch.backends.cudnn.benchmark = False
@@ -0,0 +1,194 @@
1
+ """Validation utilities for type checking and argument validation.
2
+
3
+ This module provides utility functions for validating function arguments,
4
+ including type validation, callable validation, and PyTorch-specific
5
+ validation functions.
6
+ """
7
+
8
+ import torch
9
+ from torch.utils.data import DataLoader
10
+
11
+
12
+ def validate_type(name, value, expected_types, allow_none=False):
13
+ """Validate that a value is of the specified type(s).
14
+
15
+ Args:
16
+ name (str): Name of the argument for error messages.
17
+ value: Value to validate.
18
+ expected_types (type or tuple of types): Expected type(s) for the value.
19
+ allow_none (bool): Whether to allow the value to be None.
20
+ Defaults to False.
21
+
22
+ Raises:
23
+ TypeError: If the value is not of the expected type(s).
24
+ """
25
+ if value is None:
26
+ if not allow_none:
27
+ raise TypeError(f"Argument {name} cannot be None.")
28
+ return
29
+
30
+ if not isinstance(value, expected_types):
31
+ raise TypeError(
32
+ f"Argument {name} '{str(value)}' is not supported. "
33
+ f"Only values of type {str(expected_types)} are allowed."
34
+ )
35
+
36
+
37
+ def validate_iterable(
38
+ name,
39
+ value,
40
+ expected_element_types,
41
+ allowed_iterables=(list, set, tuple),
42
+ allow_empty=False,
43
+ allow_none=False,
44
+ ):
45
+ """Validate that a value is an iterable (e.g., list, set) with elements of the specified type(s).
46
+
47
+ Args:
48
+ name (str): Name of the argument for error messages.
49
+ value: Value to validate.
50
+ expected_element_types (type or tuple of types): Expected type(s)
51
+ for the elements.
52
+ allowed_iterables (tuple of types): Iterable types that are
53
+ allowed (default: list and set).
54
+ allow_empty (bool): Whether to allow empty iterables. Defaults to False.
55
+ allow_none (bool): Whether to allow the value to be None.
56
+ Defaults to False.
57
+
58
+ Raises:
59
+ TypeError: If the value is not an allowed iterable type or if
60
+ any element is not of the expected type(s).
61
+ """
62
+ if value is None:
63
+ if not allow_none:
64
+ raise TypeError(f"Argument {name} cannot be None.")
65
+ return
66
+
67
+ if len(value) == 0:
68
+ if not allow_empty:
69
+ raise TypeError(f"Argument {name} cannot be an empty iterable.")
70
+ return
71
+
72
+ if not isinstance(value, allowed_iterables):
73
+ raise TypeError(
74
+ f"Argument {name} '{str(value)}' is not supported. "
75
+ f"Only values of type {str(allowed_iterables)} are allowed."
76
+ )
77
+ if not all(isinstance(element, expected_element_types) for element in value):
78
+ raise TypeError(
79
+ f"Invalid elements in {name} '{str(value)}'. "
80
+ f"Only elements of type {str(expected_element_types)} are allowed."
81
+ )
82
+
83
+
84
+ def validate_comparator_pytorch(name, value):
85
+ """Validate that a value is a callable PyTorch comparator function.
86
+
87
+ Args:
88
+ name (str): Name of the argument for error messages.
89
+ value: Value to validate.
90
+
91
+ Raises:
92
+ TypeError: If the value is not callable or not a PyTorch comparator.
93
+ """
94
+ # List of valid PyTorch comparator functions
95
+ pytorch_comparators = {torch.gt, torch.lt, torch.ge, torch.le}
96
+
97
+ # Check if value is callable and if it's one of
98
+ # the PyTorch comparator functions
99
+ if not callable(value):
100
+ raise TypeError(
101
+ f"Argument {name} '{str(value)}' is not supported. Only callable functions are allowed."
102
+ )
103
+
104
+ if value not in pytorch_comparators:
105
+ raise TypeError(
106
+ f"Argument {name} '{str(value)}' is not a valid PyTorch comparator "
107
+ "function. Only PyTorch functions like torch.gt, torch.lt, "
108
+ "torch.ge, torch.le are allowed."
109
+ )
110
+
111
+
112
+ def validate_callable(name, value, allow_none=False):
113
+ """Validate that a value is callable function.
114
+
115
+ Args:
116
+ name (str): Name of the argument for error messages.
117
+ value: Value to validate.
118
+ allow_none (bool): Whether to allow the value to be None.
119
+ Defaults to False.
120
+
121
+ Raises:
122
+ TypeError: If the value is not callable.
123
+ """
124
+ if value is None:
125
+ if not allow_none:
126
+ raise TypeError(f"Argument {name} cannot be None.")
127
+ return
128
+
129
+ if not callable(value):
130
+ raise TypeError(
131
+ f"Argument {name} '{str(value)}' is not supported. Only callable functions are allowed."
132
+ )
133
+
134
+
135
+ def validate_callable_iterable(
136
+ name,
137
+ value,
138
+ allowed_iterables=(list, set, tuple),
139
+ allow_none=False,
140
+ ):
141
+ """Validate that a value is an iterable containing only callable elements.
142
+
143
+ This function ensures that the given value is an iterable
144
+ (e.g., list or set and that all its elements are callable functions.
145
+
146
+ Args:
147
+ name (str): Name of the argument for error messages.
148
+ value: The value to validate.
149
+ allowed_iterables (tuple of types, optional): Iterable types that are
150
+ allowed. Defaults to (list, set).
151
+ allow_none (bool, optional): Whether to allow the value to be None.
152
+ Defaults to False.
153
+
154
+ Raises:
155
+ TypeError: If the value is not an allowed iterable type or if any
156
+ element is not callable.
157
+ """
158
+ if value is None:
159
+ if not allow_none:
160
+ raise TypeError(f"Argument {name} cannot be None.")
161
+ return
162
+
163
+ if not isinstance(value, allowed_iterables):
164
+ raise TypeError(
165
+ f"Argument {name} '{str(value)}' is not supported. "
166
+ f"Only values of type {str(allowed_iterables)} are allowed."
167
+ )
168
+
169
+ if not all(callable(element) for element in value):
170
+ raise TypeError(
171
+ f"Invalid elements in {name} '{str(value)}'. Only callable functions are allowed."
172
+ )
173
+
174
+
175
+ def validate_loaders(name: str, loaders: tuple[DataLoader, DataLoader, DataLoader]):
176
+ """Validates that `loaders` is a tuple of three DataLoader instances.
177
+
178
+ Args:
179
+ name (str): The name of the parameter being validated.
180
+ loaders (tuple[DataLoader, DataLoader, DataLoader]): A tuple of
181
+ three DataLoader instances.
182
+
183
+ Raises:
184
+ TypeError: If `loaders` is not a tuple of three DataLoader
185
+ instances or contains invalid types.
186
+ """
187
+ if not isinstance(loaders, tuple) or len(loaders) != 3:
188
+ raise TypeError(f"{name} must be a tuple of three DataLoader instances.")
189
+
190
+ for i, loader in enumerate(loaders):
191
+ if not isinstance(loader, DataLoader):
192
+ raise TypeError(
193
+ f"{name}[{i}] must be an instance of DataLoader, got {type(loader).__name__}."
194
+ )