congrads 1.0.7__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,44 +1,45 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.3
2
2
  Name: congrads
3
- Version: 1.0.7
3
+ Version: 1.1.0
4
4
  Summary: A toolbox for using Constraint Guided Gradient Descent when training neural networks.
5
+ Author: Wout Rombouts, Quinten Van Baelen, Peter Karsmakers
5
6
  Author-email: Wout Rombouts <wout.rombouts@kuleuven.be>, Quinten Van Baelen <quinten.vanbaelen@kuleuven.be>, Peter Karsmakers <peter.karsmakers@kuleuven.be>
6
7
  License: Copyright 2024 DTAI - KU Leuven
7
-
8
- Redistribution and use in source and binary forms, with or without modification,
9
- are permitted provided that the following conditions are met:
10
-
11
- 1. Redistributions of source code must retain the above copyright notice,
12
- this list of conditions and the following disclaimer.
13
-
14
- 2. Redistributions in binary form must reproduce the above copyright notice,
15
- this list of conditions and the following disclaimer in the documentation
16
- and/or other materials provided with the distribution.
17
-
18
- 3. Neither the name of the copyright holder nor the names of its
19
- contributors may be used to endorse or promote products derived from
20
- this software without specific prior written permission.
21
-
22
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
23
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
26
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
-
33
- Requires-Python: >=3.9
8
+
9
+ Redistribution and use in source and binary forms, with or without modification,
10
+ are permitted provided that the following conditions are met:
11
+
12
+ 1. Redistributions of source code must retain the above copyright notice,
13
+ this list of conditions and the following disclaimer.
14
+
15
+ 2. Redistributions in binary form must reproduce the above copyright notice,
16
+ this list of conditions and the following disclaimer in the documentation
17
+ and/or other materials provided with the distribution.
18
+
19
+ 3. Neither the name of the copyright holder nor the names of its
20
+ contributors may be used to endorse or promote products derived from
21
+ this software without specific prior written permission.
22
+
23
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
24
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
27
+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
+ Requires-Dist: numpy>=1.24.0
34
+ Requires-Dist: pandas>=1.5.0
35
+ Requires-Dist: torch>=2.0.0
36
+ Requires-Dist: torchvision>=0.15.1
37
+ Requires-Dist: tqdm>=4.65.0
38
+ Requires-Dist: matplotlib>=3.7.0 ; extra == 'examples'
39
+ Requires-Dist: tensorboard>=2.12.0 ; extra == 'examples'
40
+ Requires-Python: >=3.11
41
+ Provides-Extra: examples
34
42
  Description-Content-Type: text/markdown
35
- License-File: LICENSE
36
- Requires-Dist: numpy>=1.26.4
37
- Requires-Dist: pandas>=2.2.2
38
- Requires-Dist: torch>=2.5.0
39
- Requires-Dist: torchvision>=0.20.0
40
- Requires-Dist: tensorboard>=2.18.0
41
- Requires-Dist: tqdm>=4.66.5
42
43
 
43
44
  <div align="center">
44
45
  <img src="https://github.com/ML-KULeuven/congrads/blob/main/docs/_static/congrads_export.png?raw=true" height="200">
@@ -49,7 +50,7 @@ Requires-Dist: tqdm>=4.66.5
49
50
 
50
51
  [![PyPi](https://img.shields.io/pypi/v/congrads.svg)](https://pypi.org/project/congrads)
51
52
  [![Read the Docs](https://img.shields.io/readthedocs/congrads/latest.svg?label=Read%20the%20Docs)](https://congrads.readthedocs.io)
52
- [![Python Version: 3.9+](https://img.shields.io/badge/Python-3.9+-blue.svg)](https://pypi.org/project/congrads)
53
+ [![Python Version: 3.11+](https://img.shields.io/badge/Python-3.11+-blue.svg)](https://pypi.org/project/congrads)
53
54
  [![Downloads](https://img.shields.io/pypi/dm/congrads.svg)](https://pypistats.org/packages/congrads)
54
55
  [![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)
55
56
 
@@ -80,15 +81,21 @@ Next, install the Congrads toolbox. The recommended way to install it is to use
80
81
  pip install congrads
81
82
  ```
82
83
 
84
+ You can also install Congrads together with extra packages required to run the examples:
85
+
86
+ ```bash
87
+ pip install congrads[examples]
88
+ ```
89
+
83
90
  This should automatically install all required dependencies for you. If you would like to install dependencies manually, Congrads depends on the following:
84
91
 
85
- - Python 3.9 - 3.12
92
+ - Python 3.11 - 3.13
86
93
  - **PyTorch** (install with CUDA support for GPU training, refer to [PyTorch's getting started guide](https://pytorch.org/get-started/locally/))
87
94
  - **NumPy** (install with `pip install numpy`, or refer to [NumPy's install guide](https://numpy.org/install/).)
88
95
  - **Pandas** (install with `pip install pandas`, or refer to [Panda's install guide](https://pandas.pydata.org/docs/getting_started/install.html).)
89
96
  - **Tqdm** (install with `pip install tqdm`)
90
97
  - **Torchvision** (install with `pip install torchvision`)
91
- - **Tensorboard** (install with `pip install tensorboard`)
98
+ - Optional: **Tensorboard** (install with `pip install tensorboard`)
92
99
 
93
100
  ### 2. **Core concepts**
94
101
 
@@ -182,11 +189,11 @@ core.fit(max_epochs=50)
182
189
  - **Improve Training Process**: Inject domain knowledge in the training stage, increasing learning efficiency.
183
190
  - **Physics-Informed Neural Networks (PINNs)**: Coming soon, Enforce physical laws as constraints in your models.
184
191
 
185
- ## Roadmap
192
+ ## Planned changes / Roadmap
186
193
 
187
194
  - [ ] Add ODE/PDE constraints to support PINNs
195
+ - [ ] Rework callback system
188
196
  - [ ] Add support for constraint parser that can interpret equations
189
- - [ ] Determine if it is feasible to add unit and or functional tests
190
197
 
191
198
  ## Research
192
199
 
@@ -0,0 +1,14 @@
1
+ congrads/__init__.py,sha256=cLJCFxZTxZ_Eyv8T58YSbqFmFEBdUWpFVP-HiUityg4,775
2
+ congrads/checkpoints.py,sha256=VKSl8gOtp_VPF4SVMDdj34WuAJqsv5zVtf2YlSDVOqE,7217
3
+ congrads/constraints.py,sha256=vtYt1rpmYCekWWES_85L8hgQAkJROP-R5asuizpBQqE,52336
4
+ congrads/core.py,sha256=_Ah2EE9WxJL7laUBcoMcgGWuZj3Hnuby4Mu4HOfkT9c,36161
5
+ congrads/datasets.py,sha256=RfffRiA7Qijc69cJTBJhItTZ8x9B-p1kXMjvcfEC_nA,31102
6
+ congrads/descriptor.py,sha256=Z_qGtNMQ3BKYjQpUNJxlsmEWBDwYk98ozig7nwm7RkI,6681
7
+ congrads/metrics.py,sha256=QxQiLIVaCV1yyryXsKOb1HKtfYFnHNIJMG8fUDG_1JE,4614
8
+ congrads/networks.py,sha256=UPzPDU0wI2zoOEvi697QBSDOtaa3Rc0rgCb-tCxbjak,2252
9
+ congrads/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ congrads/transformations.py,sha256=57xXmf87eUHmmLUqzt0bQZdDlAc0SFxShXK6Bku1z34,3327
11
+ congrads/utils.py,sha256=Bqf5gdioBNot8IhQR298n6WHpQZO8W_Ex_VwB96tlmc,41508
12
+ congrads-1.1.0.dist-info/WHEEL,sha256=Pi5uDq5Fdo_Rr-HD5h9BiPn9Et29Y9Sh8NhcJNnFU1c,79
13
+ congrads-1.1.0.dist-info/METADATA,sha256=336e2CyqdhojvWovJaHrBuN1OekXA5GqU28_91GMvVY,10534
14
+ congrads-1.1.0.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: uv 0.8.17
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
@@ -1,26 +0,0 @@
1
- Copyright 2024 DTAI - KU Leuven
2
-
3
- Redistribution and use in source and binary forms, with or without modification,
4
- are permitted provided that the following conditions are met:
5
-
6
- 1. Redistributions of source code must retain the above copyright notice,
7
- this list of conditions and the following disclaimer.
8
-
9
- 2. Redistributions in binary form must reproduce the above copyright notice,
10
- this list of conditions and the following disclaimer in the documentation
11
- and/or other materials provided with the distribution.
12
-
13
- 3. Neither the name of the copyright holder nor the names of its
14
- contributors may be used to endorse or promote products derived from
15
- this software without specific prior written permission.
16
-
17
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
18
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
21
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
23
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
24
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@@ -1,15 +0,0 @@
1
- congrads/__init__.py,sha256=uj36sGjM_ldPgD-0aaWh1b-HspZxqUsC2St97sg_6jg,759
2
- congrads/checkpoints.py,sha256=AnP5lMT94BiOpT2e0b8QvxhW8bacy_U_eGInBGND6tU,7897
3
- congrads/constraints.py,sha256=0NtV6OPMafsOV_Yt2t4sKJvvmbBbF_vIC15QSoa3kNY,32848
4
- congrads/core.py,sha256=qcoK_P95j-TY17PWlR0zYbExwe19e391LIMbxZiq5Ek,21061
5
- congrads/datasets.py,sha256=mfpMKfiJjc6tmeez6EPuyd94O54qZt5KFI4Gs5RAhlc,15855
6
- congrads/descriptor.py,sha256=ml4IRiEcnRoRYiFgIV2BKpfKjWcLpPsTf0f4l0fTt38,4829
7
- congrads/metrics.py,sha256=nQuOOVVUeWbxmiFHni9hHFeUd58Gm-Lo0875KG5bHgk,6774
8
- congrads/networks.py,sha256=fW-1YuscWGSDQwjRItcD8-6R37k1-Do6E2g0HsghB4s,3914
9
- congrads/transformations.py,sha256=0mbEGdanF7_nFh0lnuBVdImtj3wwIGBMsbg8mkFZ-kw,4485
10
- congrads/utils.py,sha256=uKOxudT0VgOQ1KCa4uXDADt7KIQISLxzwCipdlfchwo,26252
11
- congrads-1.0.7.dist-info/LICENSE,sha256=hDkSuSj1L5IpO9uhrag5zd29HicibbYX8tUbY3RXF40,1480
12
- congrads-1.0.7.dist-info/METADATA,sha256=fC5J9-jOOPEgE5xbboEeVIol_fBuHvBufibdJbqJmzo,10253
13
- congrads-1.0.7.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
14
- congrads-1.0.7.dist-info/top_level.txt,sha256=B8M9NmtHbmzp-3APHe4C0oo7aRIWRHWoba9FIy9XeYM,9
15
- congrads-1.0.7.dist-info/RECORD,,
@@ -1,5 +0,0 @@
1
- Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
3
- Root-Is-Purelib: true
4
- Tag: py3-none-any
5
-
@@ -1 +0,0 @@
1
- congrads