congrads 1.0.7__py3-none-any.whl → 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- congrads/__init__.py +2 -3
- congrads/checkpoints.py +73 -127
- congrads/constraints.py +804 -454
- congrads/core.py +521 -345
- congrads/datasets.py +491 -191
- congrads/descriptor.py +118 -82
- congrads/metrics.py +55 -127
- congrads/networks.py +35 -81
- congrads/py.typed +0 -0
- congrads/transformations.py +65 -88
- congrads/utils.py +499 -131
- {congrads-1.0.7.dist-info → congrads-1.1.0.dist-info}/METADATA +48 -41
- congrads-1.1.0.dist-info/RECORD +14 -0
- congrads-1.1.0.dist-info/WHEEL +4 -0
- congrads-1.0.7.dist-info/LICENSE +0 -26
- congrads-1.0.7.dist-info/RECORD +0 -15
- congrads-1.0.7.dist-info/WHEEL +0 -5
- congrads-1.0.7.dist-info/top_level.txt +0 -1
|
@@ -1,44 +1,45 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.3
|
|
2
2
|
Name: congrads
|
|
3
|
-
Version: 1.0
|
|
3
|
+
Version: 1.1.0
|
|
4
4
|
Summary: A toolbox for using Constraint Guided Gradient Descent when training neural networks.
|
|
5
|
+
Author: Wout Rombouts, Quinten Van Baelen, Peter Karsmakers
|
|
5
6
|
Author-email: Wout Rombouts <wout.rombouts@kuleuven.be>, Quinten Van Baelen <quinten.vanbaelen@kuleuven.be>, Peter Karsmakers <peter.karsmakers@kuleuven.be>
|
|
6
7
|
License: Copyright 2024 DTAI - KU Leuven
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
Requires-
|
|
8
|
+
|
|
9
|
+
Redistribution and use in source and binary forms, with or without modification,
|
|
10
|
+
are permitted provided that the following conditions are met:
|
|
11
|
+
|
|
12
|
+
1. Redistributions of source code must retain the above copyright notice,
|
|
13
|
+
this list of conditions and the following disclaimer.
|
|
14
|
+
|
|
15
|
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
|
16
|
+
this list of conditions and the following disclaimer in the documentation
|
|
17
|
+
and/or other materials provided with the distribution.
|
|
18
|
+
|
|
19
|
+
3. Neither the name of the copyright holder nor the names of its
|
|
20
|
+
contributors may be used to endorse or promote products derived from
|
|
21
|
+
this software without specific prior written permission.
|
|
22
|
+
|
|
23
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
|
|
24
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
25
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
26
|
+
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
27
|
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
28
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
29
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
30
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
31
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
32
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
33
|
+
Requires-Dist: numpy>=1.24.0
|
|
34
|
+
Requires-Dist: pandas>=1.5.0
|
|
35
|
+
Requires-Dist: torch>=2.0.0
|
|
36
|
+
Requires-Dist: torchvision>=0.15.1
|
|
37
|
+
Requires-Dist: tqdm>=4.65.0
|
|
38
|
+
Requires-Dist: matplotlib>=3.7.0 ; extra == 'examples'
|
|
39
|
+
Requires-Dist: tensorboard>=2.12.0 ; extra == 'examples'
|
|
40
|
+
Requires-Python: >=3.11
|
|
41
|
+
Provides-Extra: examples
|
|
34
42
|
Description-Content-Type: text/markdown
|
|
35
|
-
License-File: LICENSE
|
|
36
|
-
Requires-Dist: numpy>=1.26.4
|
|
37
|
-
Requires-Dist: pandas>=2.2.2
|
|
38
|
-
Requires-Dist: torch>=2.5.0
|
|
39
|
-
Requires-Dist: torchvision>=0.20.0
|
|
40
|
-
Requires-Dist: tensorboard>=2.18.0
|
|
41
|
-
Requires-Dist: tqdm>=4.66.5
|
|
42
43
|
|
|
43
44
|
<div align="center">
|
|
44
45
|
<img src="https://github.com/ML-KULeuven/congrads/blob/main/docs/_static/congrads_export.png?raw=true" height="200">
|
|
@@ -49,7 +50,7 @@ Requires-Dist: tqdm>=4.66.5
|
|
|
49
50
|
|
|
50
51
|
[](https://pypi.org/project/congrads)
|
|
51
52
|
[](https://congrads.readthedocs.io)
|
|
52
|
-
[](https://pypi.org/project/congrads)
|
|
53
54
|
[](https://pypistats.org/packages/congrads)
|
|
54
55
|
[](https://opensource.org/licenses/BSD-3-Clause)
|
|
55
56
|
|
|
@@ -80,15 +81,21 @@ Next, install the Congrads toolbox. The recommended way to install it is to use
|
|
|
80
81
|
pip install congrads
|
|
81
82
|
```
|
|
82
83
|
|
|
84
|
+
You can also install Congrads together with extra packages required to run the examples:
|
|
85
|
+
|
|
86
|
+
```bash
|
|
87
|
+
pip install congrads[examples]
|
|
88
|
+
```
|
|
89
|
+
|
|
83
90
|
This should automatically install all required dependencies for you. If you would like to install dependencies manually, Congrads depends on the following:
|
|
84
91
|
|
|
85
|
-
- Python 3.
|
|
92
|
+
- Python 3.11 - 3.13
|
|
86
93
|
- **PyTorch** (install with CUDA support for GPU training, refer to [PyTorch's getting started guide](https://pytorch.org/get-started/locally/))
|
|
87
94
|
- **NumPy** (install with `pip install numpy`, or refer to [NumPy's install guide](https://numpy.org/install/).)
|
|
88
95
|
- **Pandas** (install with `pip install pandas`, or refer to [Panda's install guide](https://pandas.pydata.org/docs/getting_started/install.html).)
|
|
89
96
|
- **Tqdm** (install with `pip install tqdm`)
|
|
90
97
|
- **Torchvision** (install with `pip install torchvision`)
|
|
91
|
-
- **Tensorboard** (install with `pip install tensorboard`)
|
|
98
|
+
- Optional: **Tensorboard** (install with `pip install tensorboard`)
|
|
92
99
|
|
|
93
100
|
### 2. **Core concepts**
|
|
94
101
|
|
|
@@ -182,11 +189,11 @@ core.fit(max_epochs=50)
|
|
|
182
189
|
- **Improve Training Process**: Inject domain knowledge in the training stage, increasing learning efficiency.
|
|
183
190
|
- **Physics-Informed Neural Networks (PINNs)**: Coming soon, Enforce physical laws as constraints in your models.
|
|
184
191
|
|
|
185
|
-
## Roadmap
|
|
192
|
+
## Planned changes / Roadmap
|
|
186
193
|
|
|
187
194
|
- [ ] Add ODE/PDE constraints to support PINNs
|
|
195
|
+
- [ ] Rework callback system
|
|
188
196
|
- [ ] Add support for constraint parser that can interpret equations
|
|
189
|
-
- [ ] Determine if it is feasible to add unit and or functional tests
|
|
190
197
|
|
|
191
198
|
## Research
|
|
192
199
|
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
congrads/__init__.py,sha256=cLJCFxZTxZ_Eyv8T58YSbqFmFEBdUWpFVP-HiUityg4,775
|
|
2
|
+
congrads/checkpoints.py,sha256=VKSl8gOtp_VPF4SVMDdj34WuAJqsv5zVtf2YlSDVOqE,7217
|
|
3
|
+
congrads/constraints.py,sha256=vtYt1rpmYCekWWES_85L8hgQAkJROP-R5asuizpBQqE,52336
|
|
4
|
+
congrads/core.py,sha256=_Ah2EE9WxJL7laUBcoMcgGWuZj3Hnuby4Mu4HOfkT9c,36161
|
|
5
|
+
congrads/datasets.py,sha256=RfffRiA7Qijc69cJTBJhItTZ8x9B-p1kXMjvcfEC_nA,31102
|
|
6
|
+
congrads/descriptor.py,sha256=Z_qGtNMQ3BKYjQpUNJxlsmEWBDwYk98ozig7nwm7RkI,6681
|
|
7
|
+
congrads/metrics.py,sha256=QxQiLIVaCV1yyryXsKOb1HKtfYFnHNIJMG8fUDG_1JE,4614
|
|
8
|
+
congrads/networks.py,sha256=UPzPDU0wI2zoOEvi697QBSDOtaa3Rc0rgCb-tCxbjak,2252
|
|
9
|
+
congrads/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
|
+
congrads/transformations.py,sha256=57xXmf87eUHmmLUqzt0bQZdDlAc0SFxShXK6Bku1z34,3327
|
|
11
|
+
congrads/utils.py,sha256=Bqf5gdioBNot8IhQR298n6WHpQZO8W_Ex_VwB96tlmc,41508
|
|
12
|
+
congrads-1.1.0.dist-info/WHEEL,sha256=Pi5uDq5Fdo_Rr-HD5h9BiPn9Et29Y9Sh8NhcJNnFU1c,79
|
|
13
|
+
congrads-1.1.0.dist-info/METADATA,sha256=336e2CyqdhojvWovJaHrBuN1OekXA5GqU28_91GMvVY,10534
|
|
14
|
+
congrads-1.1.0.dist-info/RECORD,,
|
congrads-1.0.7.dist-info/LICENSE
DELETED
|
@@ -1,26 +0,0 @@
|
|
|
1
|
-
Copyright 2024 DTAI - KU Leuven
|
|
2
|
-
|
|
3
|
-
Redistribution and use in source and binary forms, with or without modification,
|
|
4
|
-
are permitted provided that the following conditions are met:
|
|
5
|
-
|
|
6
|
-
1. Redistributions of source code must retain the above copyright notice,
|
|
7
|
-
this list of conditions and the following disclaimer.
|
|
8
|
-
|
|
9
|
-
2. Redistributions in binary form must reproduce the above copyright notice,
|
|
10
|
-
this list of conditions and the following disclaimer in the documentation
|
|
11
|
-
and/or other materials provided with the distribution.
|
|
12
|
-
|
|
13
|
-
3. Neither the name of the copyright holder nor the names of its
|
|
14
|
-
contributors may be used to endorse or promote products derived from
|
|
15
|
-
this software without specific prior written permission.
|
|
16
|
-
|
|
17
|
-
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
|
|
18
|
-
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
19
|
-
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
20
|
-
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
21
|
-
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
22
|
-
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
23
|
-
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
24
|
-
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
25
|
-
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
26
|
-
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
congrads-1.0.7.dist-info/RECORD
DELETED
|
@@ -1,15 +0,0 @@
|
|
|
1
|
-
congrads/__init__.py,sha256=uj36sGjM_ldPgD-0aaWh1b-HspZxqUsC2St97sg_6jg,759
|
|
2
|
-
congrads/checkpoints.py,sha256=AnP5lMT94BiOpT2e0b8QvxhW8bacy_U_eGInBGND6tU,7897
|
|
3
|
-
congrads/constraints.py,sha256=0NtV6OPMafsOV_Yt2t4sKJvvmbBbF_vIC15QSoa3kNY,32848
|
|
4
|
-
congrads/core.py,sha256=qcoK_P95j-TY17PWlR0zYbExwe19e391LIMbxZiq5Ek,21061
|
|
5
|
-
congrads/datasets.py,sha256=mfpMKfiJjc6tmeez6EPuyd94O54qZt5KFI4Gs5RAhlc,15855
|
|
6
|
-
congrads/descriptor.py,sha256=ml4IRiEcnRoRYiFgIV2BKpfKjWcLpPsTf0f4l0fTt38,4829
|
|
7
|
-
congrads/metrics.py,sha256=nQuOOVVUeWbxmiFHni9hHFeUd58Gm-Lo0875KG5bHgk,6774
|
|
8
|
-
congrads/networks.py,sha256=fW-1YuscWGSDQwjRItcD8-6R37k1-Do6E2g0HsghB4s,3914
|
|
9
|
-
congrads/transformations.py,sha256=0mbEGdanF7_nFh0lnuBVdImtj3wwIGBMsbg8mkFZ-kw,4485
|
|
10
|
-
congrads/utils.py,sha256=uKOxudT0VgOQ1KCa4uXDADt7KIQISLxzwCipdlfchwo,26252
|
|
11
|
-
congrads-1.0.7.dist-info/LICENSE,sha256=hDkSuSj1L5IpO9uhrag5zd29HicibbYX8tUbY3RXF40,1480
|
|
12
|
-
congrads-1.0.7.dist-info/METADATA,sha256=fC5J9-jOOPEgE5xbboEeVIol_fBuHvBufibdJbqJmzo,10253
|
|
13
|
-
congrads-1.0.7.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
14
|
-
congrads-1.0.7.dist-info/top_level.txt,sha256=B8M9NmtHbmzp-3APHe4C0oo7aRIWRHWoba9FIy9XeYM,9
|
|
15
|
-
congrads-1.0.7.dist-info/RECORD,,
|
congrads-1.0.7.dist-info/WHEEL
DELETED
|
@@ -1 +0,0 @@
|
|
|
1
|
-
congrads
|