congrads 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: congrads
3
- Version: 1.0.1
3
+ Version: 1.0.3
4
4
  Summary: A toolbox for using Constraint Guided Gradient Descent when training neural networks.
5
5
  Author-email: Wout Rombouts <wout.rombouts@kuleuven.be>, Quinten Van Baelen <quinten.vanbaelen@kuleuven.be>, Peter Karsmakers <peter.karsmakers@kuleuven.be>
6
6
  License: Copyright 2024 DTAI - KU Leuven
@@ -41,7 +41,7 @@ Requires-Dist: tensorboard>=2.18.0
41
41
  Requires-Dist: tqdm>=4.66.5
42
42
 
43
43
  <div align="center">
44
- <img src="docs/_static/congrads_export.png" height="200">
44
+ <img src="https://github.com/ML-KULeuven/congrads/blob/main/docs/_static/congrads_export.png?raw=true" height="200">
45
45
  <p>
46
46
  <b>Incorporate constraints into neural network training for more reliable and robust models.</b>
47
47
  </p>
@@ -98,7 +98,7 @@ Please read the documentation at https://congrads.readthedocs.io/en/latest/ to g
98
98
  ### 3. **Basic Usage**
99
99
 
100
100
  Below, a basic example can be found that illustrates how to work with the Congrads toolbox.
101
- For additional examples, refer to the [examples](https://github.com/ML-KULeuven/congrads/examples) and [notebooks](https://github.com/ML-KULeuven/congrads/notebooks) folders in the repository.
101
+ For additional examples, refer to the [examples](https://github.com/ML-KULeuven/congrads/tree/main/examples) and [notebooks](https://github.com/ML-KULeuven/congrads/tree/main/notebooks) folders in the repository.
102
102
 
103
103
  #### 1. First, select the device to run your code on with.
104
104
 
@@ -6,11 +6,10 @@ congrads/datasets.py,sha256=mfpMKfiJjc6tmeez6EPuyd94O54qZt5KFI4Gs5RAhlc,15855
6
6
  congrads/descriptor.py,sha256=ml4IRiEcnRoRYiFgIV2BKpfKjWcLpPsTf0f4l0fTt38,4829
7
7
  congrads/metrics.py,sha256=nQuOOVVUeWbxmiFHni9hHFeUd58Gm-Lo0875KG5bHgk,6774
8
8
  congrads/networks.py,sha256=fW-1YuscWGSDQwjRItcD8-6R37k1-Do6E2g0HsghB4s,3914
9
- congrads/requirements.txt,sha256=Cvw0YgcvHcIBeXDzopjuARE3_xEvV6rwajGO9jWOjcE,92
10
9
  congrads/transformations.py,sha256=0mbEGdanF7_nFh0lnuBVdImtj3wwIGBMsbg8mkFZ-kw,4485
11
10
  congrads/utils.py,sha256=uKOxudT0VgOQ1KCa4uXDADt7KIQISLxzwCipdlfchwo,26252
12
- congrads-1.0.1.dist-info/LICENSE,sha256=hDkSuSj1L5IpO9uhrag5zd29HicibbYX8tUbY3RXF40,1480
13
- congrads-1.0.1.dist-info/METADATA,sha256=w-_eel-hPXFmqBBdpL6ksaUTwFGm21Y3bkkxvBQSlgs,9243
14
- congrads-1.0.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
15
- congrads-1.0.1.dist-info/top_level.txt,sha256=B8M9NmtHbmzp-3APHe4C0oo7aRIWRHWoba9FIy9XeYM,9
16
- congrads-1.0.1.dist-info/RECORD,,
11
+ congrads-1.0.3.dist-info/LICENSE,sha256=hDkSuSj1L5IpO9uhrag5zd29HicibbYX8tUbY3RXF40,1480
12
+ congrads-1.0.3.dist-info/METADATA,sha256=OPK2GLJkYKO_MndL7pewxc64p82b9D4S56zU4ZonB70,9322
13
+ congrads-1.0.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
14
+ congrads-1.0.3.dist-info/top_level.txt,sha256=B8M9NmtHbmzp-3APHe4C0oo7aRIWRHWoba9FIy9XeYM,9
15
+ congrads-1.0.3.dist-info/RECORD,,
congrads/requirements.txt DELETED
@@ -1,6 +0,0 @@
1
- numpy==2.2.2
2
- pandas==2.2.3
3
- setuptools==75.6.0
4
- torch==2.5.0
5
- torchvision==0.20.0
6
- tqdm==4.66.5