congrads 0.2.0__py3-none-any.whl → 0.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- congrads/__init__.py +10 -21
- congrads/callbacks/base.py +360 -0
- congrads/callbacks/registry.py +165 -0
- congrads/checkpoints.py +180 -0
- congrads/constraints/base.py +244 -0
- congrads/constraints/registry.py +1278 -0
- congrads/core/batch_runner.py +202 -0
- congrads/core/congradscore.py +273 -0
- congrads/core/constraint_engine.py +211 -0
- congrads/core/epoch_runner.py +121 -0
- congrads/datasets/registry.py +809 -0
- congrads/descriptor.py +150 -29
- congrads/metrics.py +111 -19
- congrads/networks/registry.py +70 -0
- congrads/py.typed +0 -0
- congrads/transformations/base.py +39 -0
- congrads/transformations/registry.py +88 -0
- congrads/{utils.py → utils/preprocessors.py} +203 -72
- congrads/utils/utility.py +515 -0
- congrads/utils/validation.py +191 -0
- congrads-0.3.1.dist-info/METADATA +234 -0
- congrads-0.3.1.dist-info/RECORD +23 -0
- congrads-0.3.1.dist-info/WHEEL +4 -0
- congrads/constraints.py +0 -389
- congrads/core.py +0 -225
- congrads/datasets.py +0 -195
- congrads/networks.py +0 -90
- congrads-0.2.0.dist-info/LICENSE +0 -26
- congrads-0.2.0.dist-info/METADATA +0 -222
- congrads-0.2.0.dist-info/RECORD +0 -13
- congrads-0.2.0.dist-info/WHEEL +0 -5
- congrads-0.2.0.dist-info/top_level.txt +0 -1
congrads/__init__.py
CHANGED
|
@@ -1,22 +1,11 @@
|
|
|
1
|
-
#
|
|
2
|
-
version
|
|
1
|
+
try: # noqa: D104
|
|
2
|
+
from importlib.metadata import version as get_version # Python 3.8+
|
|
3
|
+
except ImportError:
|
|
4
|
+
from pkg_resources import (
|
|
5
|
+
get_distribution as get_version,
|
|
6
|
+
) # Fallback for older versions
|
|
3
7
|
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
from . import descriptor
|
|
9
|
-
from . import metrics
|
|
10
|
-
from . import networks
|
|
11
|
-
from . import utils
|
|
12
|
-
|
|
13
|
-
# Define __all__ to specify that the submodules are accessible, but not classes directly.
|
|
14
|
-
__all__ = [
|
|
15
|
-
"constraints",
|
|
16
|
-
"core",
|
|
17
|
-
"datasets",
|
|
18
|
-
"descriptor",
|
|
19
|
-
"metrics",
|
|
20
|
-
"networks",
|
|
21
|
-
"utils",
|
|
22
|
-
]
|
|
8
|
+
try:
|
|
9
|
+
version = get_version("congrads") # Replace with your package name
|
|
10
|
+
except Exception:
|
|
11
|
+
version = "0.0.0" # Fallback if the package isn't installed
|
|
@@ -0,0 +1,360 @@
|
|
|
1
|
+
"""Callback and Operation Framework for Modular Training Pipelines.
|
|
2
|
+
|
|
3
|
+
This module provides a structured system for defining and executing
|
|
4
|
+
callbacks and operations at different stages of a training lifecycle.
|
|
5
|
+
It is designed to support:
|
|
6
|
+
|
|
7
|
+
- Stateless, reusable operations that produce outputs merged into
|
|
8
|
+
the event-local data.
|
|
9
|
+
- Callbacks that group operations and/or custom logic for specific
|
|
10
|
+
stages of training, epochs, batches, and steps.
|
|
11
|
+
- A central CallbackManager to orchestrate multiple callbacks,
|
|
12
|
+
maintain shared context, and execute stage-specific pipelines
|
|
13
|
+
in deterministic order.
|
|
14
|
+
|
|
15
|
+
Stages supported:
|
|
16
|
+
- on_train_start
|
|
17
|
+
- on_train_end
|
|
18
|
+
- on_epoch_start
|
|
19
|
+
- on_epoch_end
|
|
20
|
+
- on_batch_start
|
|
21
|
+
- on_batch_end
|
|
22
|
+
- on_test_start
|
|
23
|
+
- on_test_end
|
|
24
|
+
- on_train_batch_start
|
|
25
|
+
- on_train_batch_end
|
|
26
|
+
- on_valid_batch_start
|
|
27
|
+
- on_valid_batch_end
|
|
28
|
+
- on_test_batch_start
|
|
29
|
+
- on_test_batch_end
|
|
30
|
+
- after_train_forward
|
|
31
|
+
- after_valid_forward
|
|
32
|
+
- after_test_forward
|
|
33
|
+
|
|
34
|
+
Usage:
|
|
35
|
+
1. Define Operations by subclassing `Operation` and implementing
|
|
36
|
+
the `compute` method.
|
|
37
|
+
2. Create a Callback subclass or instance and register Operations
|
|
38
|
+
to stages via `add(stage, operation)`.
|
|
39
|
+
3. Register callbacks with `CallbackManager`.
|
|
40
|
+
4. Invoke `CallbackManager.run(stage, data)` at appropriate points
|
|
41
|
+
in the training loop, passing in event-local data.
|
|
42
|
+
"""
|
|
43
|
+
|
|
44
|
+
from abc import ABC, abstractmethod
|
|
45
|
+
from collections.abc import Iterable
|
|
46
|
+
from typing import Any, Literal, Self
|
|
47
|
+
|
|
48
|
+
__all__ = ["Callback", "CallbackManager", "Operation"]
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
Stage = Literal[
|
|
52
|
+
"on_train_start",
|
|
53
|
+
"on_train_end",
|
|
54
|
+
"on_epoch_start",
|
|
55
|
+
"on_epoch_end",
|
|
56
|
+
"on_test_start",
|
|
57
|
+
"on_test_end",
|
|
58
|
+
"on_batch_start",
|
|
59
|
+
"on_batch_end",
|
|
60
|
+
"on_train_batch_start",
|
|
61
|
+
"on_train_batch_end",
|
|
62
|
+
"on_valid_batch_start",
|
|
63
|
+
"on_valid_batch_end",
|
|
64
|
+
"on_test_batch_start",
|
|
65
|
+
"on_test_batch_end",
|
|
66
|
+
"after_train_forward",
|
|
67
|
+
"after_valid_forward",
|
|
68
|
+
"after_test_forward",
|
|
69
|
+
]
|
|
70
|
+
|
|
71
|
+
STAGES: tuple[Stage, ...] = (
|
|
72
|
+
"on_train_start",
|
|
73
|
+
"on_train_end",
|
|
74
|
+
"on_epoch_start",
|
|
75
|
+
"on_epoch_end",
|
|
76
|
+
"on_test_start",
|
|
77
|
+
"on_test_end",
|
|
78
|
+
"on_batch_start",
|
|
79
|
+
"on_batch_end",
|
|
80
|
+
"on_train_batch_start",
|
|
81
|
+
"on_train_batch_end",
|
|
82
|
+
"on_valid_batch_start",
|
|
83
|
+
"on_valid_batch_end",
|
|
84
|
+
"on_test_batch_start",
|
|
85
|
+
"on_test_batch_end",
|
|
86
|
+
"after_train_forward",
|
|
87
|
+
"after_valid_forward",
|
|
88
|
+
"after_test_forward",
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
class Operation(ABC):
|
|
93
|
+
"""Abstract base class representing a stateless unit of work executed inside a callback stage.
|
|
94
|
+
|
|
95
|
+
Subclasses should implement the `compute` method which returns
|
|
96
|
+
a dictionary of outputs to merge into the running event data.
|
|
97
|
+
"""
|
|
98
|
+
|
|
99
|
+
def __repr__(self) -> str:
|
|
100
|
+
"""Return a concise string representation of the operation."""
|
|
101
|
+
return f"<{self.__class__.__name__}>"
|
|
102
|
+
|
|
103
|
+
def __call__(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
104
|
+
"""Execute the operation with the given event-local data and shared context.
|
|
105
|
+
|
|
106
|
+
Args:
|
|
107
|
+
data (dict[str, Any]): Event-local dictionary containing data for this stage.
|
|
108
|
+
ctx (dict[str, Any]): Shared context dictionary accessible by all operations and callbacks.
|
|
109
|
+
|
|
110
|
+
Returns:
|
|
111
|
+
dict[str, Any]: Outputs produced by the operation to merge into the running data.
|
|
112
|
+
Returns an empty dict if `compute` returns None.
|
|
113
|
+
"""
|
|
114
|
+
out = self.compute(data, ctx)
|
|
115
|
+
if out is None:
|
|
116
|
+
return {}
|
|
117
|
+
if not isinstance(out, dict):
|
|
118
|
+
raise TypeError(f"{self.__class__.__name__}.compute must return dict or None")
|
|
119
|
+
return out
|
|
120
|
+
|
|
121
|
+
@abstractmethod
|
|
122
|
+
def compute(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any] | None:
|
|
123
|
+
"""Perform the operation's computation.
|
|
124
|
+
|
|
125
|
+
Args:
|
|
126
|
+
data (dict[str, Any]): Event-local dictionary containing the current data.
|
|
127
|
+
ctx (dict[str, Any]): Shared context dictionary.
|
|
128
|
+
|
|
129
|
+
Returns:
|
|
130
|
+
dict[str, Any] or None: Outputs to merge into the running data.
|
|
131
|
+
Returning None is equivalent to {}.
|
|
132
|
+
"""
|
|
133
|
+
raise NotImplementedError
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
class Callback(ABC): # noqa: B024
|
|
137
|
+
"""Abstract base class representing a callback that can have multiple operations registered to different stages of the training lifecycle.
|
|
138
|
+
|
|
139
|
+
Each stage method executes all operations registered for that stage
|
|
140
|
+
in insertion order. Operations can modify the event-local data dictionary.
|
|
141
|
+
"""
|
|
142
|
+
|
|
143
|
+
def __init__(self):
|
|
144
|
+
"""Initialize the callback with empty operation lists for all stages."""
|
|
145
|
+
self._ops_by_stage: dict[Stage, list[Operation]] = {s: [] for s in STAGES}
|
|
146
|
+
|
|
147
|
+
def __repr__(self) -> str:
|
|
148
|
+
"""Return a concise string showing number of operations per stage."""
|
|
149
|
+
ops_summary = {stage: len(ops) for stage, ops in self._ops_by_stage.items() if ops}
|
|
150
|
+
return f"<{self.__class__.__name__} ops={ops_summary}>"
|
|
151
|
+
|
|
152
|
+
def add(self, stage: Stage, op: Operation) -> Self:
|
|
153
|
+
"""Register an operation to execute at the given stage.
|
|
154
|
+
|
|
155
|
+
Args:
|
|
156
|
+
stage (Stage): Lifecycle stage at which to run the operation.
|
|
157
|
+
op (Operation): Operation instance to add.
|
|
158
|
+
|
|
159
|
+
Returns:
|
|
160
|
+
Self: Returns self for method chaining.
|
|
161
|
+
"""
|
|
162
|
+
self._ops_by_stage[stage].append(op)
|
|
163
|
+
return self
|
|
164
|
+
|
|
165
|
+
def _run_ops(self, stage: Stage, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
166
|
+
"""Execute all operations registered for a specific stage.
|
|
167
|
+
|
|
168
|
+
Args:
|
|
169
|
+
stage (Stage): Lifecycle stage to execute.
|
|
170
|
+
data (dict[str, Any]): Event-local data to pass to operations.
|
|
171
|
+
ctx (dict[str, Any]): Shared context across callbacks and operations.
|
|
172
|
+
|
|
173
|
+
Returns:
|
|
174
|
+
dict[str, Any]: Merged data dictionary after executing all operations.
|
|
175
|
+
|
|
176
|
+
Notes:
|
|
177
|
+
- Operations are executed in insertion order.
|
|
178
|
+
- If an operation overwrites existing keys, a warning is issued.
|
|
179
|
+
"""
|
|
180
|
+
out = dict(data)
|
|
181
|
+
|
|
182
|
+
for operation in self._ops_by_stage[stage]:
|
|
183
|
+
try:
|
|
184
|
+
produced = operation(out, ctx) or {}
|
|
185
|
+
except Exception as e:
|
|
186
|
+
raise RuntimeError(f"Error in operation {operation} at stage {stage}") from e
|
|
187
|
+
|
|
188
|
+
collisions = set(produced.keys()) & set(out.keys())
|
|
189
|
+
if collisions:
|
|
190
|
+
import warnings
|
|
191
|
+
|
|
192
|
+
warnings.warn(
|
|
193
|
+
f"Operation {operation} at stage '{stage}' is overwriting keys: {collisions}",
|
|
194
|
+
stacklevel=2,
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
out.update(produced)
|
|
198
|
+
|
|
199
|
+
return out
|
|
200
|
+
|
|
201
|
+
# --- training ---
|
|
202
|
+
def on_train_start(self, data: dict[str, Any], ctx: dict[str, Any]):
|
|
203
|
+
"""Execute operations registered for the 'on_train_start' stage."""
|
|
204
|
+
self._run_ops("on_train_start", data, ctx)
|
|
205
|
+
|
|
206
|
+
def on_train_end(self, data: dict[str, Any], ctx: dict[str, Any]):
|
|
207
|
+
"""Execute operations registered for the 'on_train_end' stage."""
|
|
208
|
+
self._run_ops("on_train_end", data, ctx)
|
|
209
|
+
|
|
210
|
+
# --- epoch ---
|
|
211
|
+
def on_epoch_start(self, data: dict[str, Any], ctx: dict[str, Any]):
|
|
212
|
+
"""Execute operations registered for the 'on_epoch_start' stage."""
|
|
213
|
+
self._run_ops("on_epoch_start", data, ctx)
|
|
214
|
+
|
|
215
|
+
def on_epoch_end(self, data: dict[str, Any], ctx: dict[str, Any]):
|
|
216
|
+
"""Execute operations registered for the 'on_epoch_end' stage."""
|
|
217
|
+
self._run_ops("on_epoch_end", data, ctx)
|
|
218
|
+
|
|
219
|
+
# --- test ---
|
|
220
|
+
def on_test_start(self, data: dict[str, Any], ctx: dict[str, Any]):
|
|
221
|
+
"""Execute operations registered for the 'on_test_start' stage."""
|
|
222
|
+
self._run_ops("on_test_start", data, ctx)
|
|
223
|
+
|
|
224
|
+
def on_test_end(self, data: dict[str, Any], ctx: dict[str, Any]):
|
|
225
|
+
"""Execute operations registered for the 'on_test_end' stage."""
|
|
226
|
+
self._run_ops("on_test_end", data, ctx)
|
|
227
|
+
|
|
228
|
+
# --- batch ---
|
|
229
|
+
def on_batch_start(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
230
|
+
"""Execute operations registered for the 'on_batch_start' stage."""
|
|
231
|
+
return self._run_ops("on_batch_start", data, ctx)
|
|
232
|
+
|
|
233
|
+
def on_batch_end(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
234
|
+
"""Execute operations registered for the 'on_batch_end' stage."""
|
|
235
|
+
return self._run_ops("on_batch_end", data, ctx)
|
|
236
|
+
|
|
237
|
+
def on_train_batch_start(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
238
|
+
"""Execute operations registered for the 'on_train_batch_start' stage."""
|
|
239
|
+
return self._run_ops("on_train_batch_start", data, ctx)
|
|
240
|
+
|
|
241
|
+
def on_train_batch_end(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
242
|
+
"""Execute operations registered for the 'on_train_batch_end' stage."""
|
|
243
|
+
return self._run_ops("on_train_batch_end", data, ctx)
|
|
244
|
+
|
|
245
|
+
def on_valid_batch_start(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
246
|
+
"""Execute operations registered for the 'on_valid_batch_start' stage."""
|
|
247
|
+
return self._run_ops("on_valid_batch_start", data, ctx)
|
|
248
|
+
|
|
249
|
+
def on_valid_batch_end(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
250
|
+
"""Execute operations registered for the 'on_valid_batch_end' stage."""
|
|
251
|
+
return self._run_ops("on_valid_batch_end", data, ctx)
|
|
252
|
+
|
|
253
|
+
def on_test_batch_start(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
254
|
+
"""Execute operations registered for the 'on_test_batch_start' stage."""
|
|
255
|
+
return self._run_ops("on_test_batch_start", data, ctx)
|
|
256
|
+
|
|
257
|
+
def on_test_batch_end(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
258
|
+
"""Execute operations registered for the 'on_test_batch_end' stage."""
|
|
259
|
+
return self._run_ops("on_test_batch_end", data, ctx)
|
|
260
|
+
|
|
261
|
+
def after_train_forward(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
262
|
+
"""Execute operations registered for the 'after_train_forward' stage."""
|
|
263
|
+
return self._run_ops("after_train_forward", data, ctx)
|
|
264
|
+
|
|
265
|
+
def after_valid_forward(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
266
|
+
"""Execute operations registered for the 'after_valid_forward' stage."""
|
|
267
|
+
return self._run_ops("after_valid_forward", data, ctx)
|
|
268
|
+
|
|
269
|
+
def after_test_forward(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
|
|
270
|
+
"""Execute operations registered for the 'after_test_forward' stage."""
|
|
271
|
+
return self._run_ops("after_test_forward", data, ctx)
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
class CallbackManager:
|
|
275
|
+
"""Orchestrates multiple callbacks and executes them at specific lifecycle stages.
|
|
276
|
+
|
|
277
|
+
- Callbacks are executed in registration order.
|
|
278
|
+
- Event-local data flows through all callbacks.
|
|
279
|
+
- Shared context is available for cross-callback communication.
|
|
280
|
+
"""
|
|
281
|
+
|
|
282
|
+
def __init__(self, callbacks: Iterable[Callback] | None = None):
|
|
283
|
+
"""Initialize a CallbackManager instance.
|
|
284
|
+
|
|
285
|
+
Args:
|
|
286
|
+
callbacks (Iterable[Callback] | None): Optional initial callbacks to register.
|
|
287
|
+
If None, starts with an empty callback list.
|
|
288
|
+
|
|
289
|
+
Attributes:
|
|
290
|
+
_callbacks (list[Callback]): Internal list of registered callbacks.
|
|
291
|
+
ctx (dict[str, Any]): Shared context dictionary accessible to all callbacks
|
|
292
|
+
and operations for cross-event communication.
|
|
293
|
+
"""
|
|
294
|
+
self._callbacks: list[Callback] = list(callbacks) if callbacks else []
|
|
295
|
+
self.ctx: dict[str, Any] = {}
|
|
296
|
+
|
|
297
|
+
def __repr__(self) -> str:
|
|
298
|
+
"""Return a concise representation showing registered callbacks and ctx keys."""
|
|
299
|
+
names = [cb.__class__.__name__ for cb in self._callbacks]
|
|
300
|
+
return f"<CallbackManager callbacks={names} ctx_keys={list(self.ctx.keys())}>"
|
|
301
|
+
|
|
302
|
+
def add(self, callback: Callback) -> Self:
|
|
303
|
+
"""Register a single callback.
|
|
304
|
+
|
|
305
|
+
Args:
|
|
306
|
+
callback (Callback): Callback instance to add.
|
|
307
|
+
|
|
308
|
+
Returns:
|
|
309
|
+
Self: Returns self for fluent chaining.
|
|
310
|
+
"""
|
|
311
|
+
self._callbacks.append(callback)
|
|
312
|
+
return self
|
|
313
|
+
|
|
314
|
+
def extend(self, callbacks: Iterable[Callback]) -> None:
|
|
315
|
+
"""Register multiple callbacks at once.
|
|
316
|
+
|
|
317
|
+
Args:
|
|
318
|
+
callbacks (Iterable[Callback]): Iterable of callbacks to add.
|
|
319
|
+
"""
|
|
320
|
+
self._callbacks.extend(callbacks)
|
|
321
|
+
|
|
322
|
+
def run(self, stage: Stage, data: dict[str, Any]) -> dict[str, Any]:
|
|
323
|
+
"""Execute all registered callbacks for a specific stage.
|
|
324
|
+
|
|
325
|
+
Args:
|
|
326
|
+
stage (Stage): Lifecycle stage to run (e.g., "on_batch_start").
|
|
327
|
+
data (dict[str, Any]): Event-local data dictionary to pass through callbacks.
|
|
328
|
+
|
|
329
|
+
Returns:
|
|
330
|
+
dict[str, Any]: The final merged data dictionary after executing all callbacks.
|
|
331
|
+
|
|
332
|
+
Raises:
|
|
333
|
+
ValueError: If a callback does not implement the requested stage.
|
|
334
|
+
RuntimeError: If any callback raises an exception during execution.
|
|
335
|
+
"""
|
|
336
|
+
for cb in self._callbacks:
|
|
337
|
+
if not hasattr(cb, stage):
|
|
338
|
+
raise ValueError(
|
|
339
|
+
f"Callback {cb.__class__.__name__} has no handler for stage {stage}"
|
|
340
|
+
)
|
|
341
|
+
handler = getattr(cb, stage)
|
|
342
|
+
|
|
343
|
+
try:
|
|
344
|
+
new_data = handler(data, self.ctx)
|
|
345
|
+
if new_data is not None:
|
|
346
|
+
data = new_data
|
|
347
|
+
|
|
348
|
+
except Exception as e:
|
|
349
|
+
raise RuntimeError(f"Error in callback {cb.__class__.__name__}.{stage}") from e
|
|
350
|
+
|
|
351
|
+
return data
|
|
352
|
+
|
|
353
|
+
@property
|
|
354
|
+
def callbacks(self) -> tuple[Callback, ...]:
|
|
355
|
+
"""Return a read-only tuple of registered callbacks.
|
|
356
|
+
|
|
357
|
+
Returns:
|
|
358
|
+
tuple[Callback, ...]: Registered callbacks.
|
|
359
|
+
"""
|
|
360
|
+
return tuple(self._callbacks)
|
|
@@ -0,0 +1,165 @@
|
|
|
1
|
+
"""Holds all callback implementations for use in the training workflow.
|
|
2
|
+
|
|
3
|
+
This module acts as a central registry for defining and storing different
|
|
4
|
+
callback classes, such as logging, checkpointing, or custom behaviors
|
|
5
|
+
triggered during training, validation, or testing. It is intended to
|
|
6
|
+
collect all callback implementations in one place for easy reference
|
|
7
|
+
and import, and can be extended as new callbacks are added.
|
|
8
|
+
"""
|
|
9
|
+
|
|
10
|
+
from torch import Tensor
|
|
11
|
+
from torch.utils.tensorboard import SummaryWriter
|
|
12
|
+
|
|
13
|
+
from ..callbacks.base import Callback
|
|
14
|
+
from ..metrics import MetricManager
|
|
15
|
+
from ..utils.utility import CSVLogger
|
|
16
|
+
|
|
17
|
+
__all__ = ["LoggerCallback"]
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class LoggerCallback(Callback):
|
|
21
|
+
"""Callback to periodically aggregate and store metrics during training and testing.
|
|
22
|
+
|
|
23
|
+
This callback works in conjunction with a MetricManager that accumulates metrics
|
|
24
|
+
internally (e.g. per batch). Metrics are:
|
|
25
|
+
|
|
26
|
+
- Aggregated at a configurable epoch interval (`aggregate_interval`)
|
|
27
|
+
- Cached in memory (GPU-resident tensors)
|
|
28
|
+
- Written to TensorBoard and CSV at a separate interval (`store_interval`)
|
|
29
|
+
|
|
30
|
+
Aggregation and storage are decoupled to avoid unnecessary GPU-to-CPU
|
|
31
|
+
synchronization. Any remaining cached metrics are flushed at the end of training.
|
|
32
|
+
|
|
33
|
+
Methods implemented:
|
|
34
|
+
- on_epoch_end: Periodically aggregates and stores training metrics.
|
|
35
|
+
- on_train_end: Flushes any remaining cached training metrics.
|
|
36
|
+
- on_test_end: Aggregates and stores test metrics immediately.
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
def __init__(
|
|
40
|
+
self,
|
|
41
|
+
metric_manager: MetricManager,
|
|
42
|
+
tensorboard_logger: SummaryWriter,
|
|
43
|
+
csv_logger: CSVLogger,
|
|
44
|
+
*,
|
|
45
|
+
aggregate_interval: int = 1,
|
|
46
|
+
store_interval: int = 1,
|
|
47
|
+
):
|
|
48
|
+
"""Initialize the LoggerCallback.
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
metric_manager: Instance of MetricManager used to collect metrics.
|
|
52
|
+
tensorboard_logger: TensorBoard SummaryWriter instance for logging scalars.
|
|
53
|
+
csv_logger: CSVLogger instance for logging metrics to CSV files.
|
|
54
|
+
aggregate_interval: Number of epochs between metric aggregation.
|
|
55
|
+
store_interval: Number of epochs between metric storage.
|
|
56
|
+
"""
|
|
57
|
+
super().__init__()
|
|
58
|
+
|
|
59
|
+
# Input validation
|
|
60
|
+
if aggregate_interval <= 0 or store_interval <= 0:
|
|
61
|
+
raise ValueError("Intervals must be positive integers")
|
|
62
|
+
|
|
63
|
+
if store_interval % aggregate_interval != 0:
|
|
64
|
+
raise ValueError("store_interval must be a multiple of aggregate_interval")
|
|
65
|
+
|
|
66
|
+
# Store references
|
|
67
|
+
self.metric_manager = metric_manager
|
|
68
|
+
self.tensorboard_logger = tensorboard_logger
|
|
69
|
+
self.csv_logger = csv_logger
|
|
70
|
+
self.aggregate_interval = aggregate_interval
|
|
71
|
+
self.store_interval = store_interval
|
|
72
|
+
|
|
73
|
+
# Cached metrics on GPU by epoch
|
|
74
|
+
self._accumulated_metrics: dict[int, dict[str, Tensor]] = {}
|
|
75
|
+
|
|
76
|
+
def on_epoch_end(self, data: dict[str, any], ctx: dict[str, any]):
|
|
77
|
+
"""Handle end-of-epoch training logic.
|
|
78
|
+
|
|
79
|
+
At the end of each epoch, this method may:
|
|
80
|
+
- Aggregate training metrics from the MetricManager (every `aggregate_interval` epochs)
|
|
81
|
+
- Cache aggregated metrics keyed by epoch
|
|
82
|
+
- Store cached metrics to disk (every `store_interval` epochs)
|
|
83
|
+
|
|
84
|
+
Metric aggregation resets the MetricManager accumulation state.
|
|
85
|
+
Metric storage triggers GPU-to-CPU synchronization and writes to loggers.
|
|
86
|
+
|
|
87
|
+
Args:
|
|
88
|
+
data: Dictionary containing epoch context (must include 'epoch').
|
|
89
|
+
ctx: Additional context dictionary (unused).
|
|
90
|
+
|
|
91
|
+
Returns:
|
|
92
|
+
data: The same input dictionary, unmodified.
|
|
93
|
+
"""
|
|
94
|
+
epoch = data["epoch"]
|
|
95
|
+
|
|
96
|
+
# Cache training metrics
|
|
97
|
+
if epoch % self.aggregate_interval == 0:
|
|
98
|
+
metrics = self.metric_manager.aggregate("during_training")
|
|
99
|
+
self._accumulated_metrics[epoch] = metrics
|
|
100
|
+
self.metric_manager.reset("during_training")
|
|
101
|
+
|
|
102
|
+
# Store metrics to disk
|
|
103
|
+
if epoch % self.store_interval == 0:
|
|
104
|
+
self._save(self._accumulated_metrics)
|
|
105
|
+
self._accumulated_metrics.clear()
|
|
106
|
+
|
|
107
|
+
return data
|
|
108
|
+
|
|
109
|
+
def on_train_end(self, data, ctx):
|
|
110
|
+
"""Flush any remaining cached training metrics at the end of training.
|
|
111
|
+
|
|
112
|
+
This ensures that aggregated metrics that were not yet written due to
|
|
113
|
+
`store_interval` alignment are persisted before training terminates.
|
|
114
|
+
|
|
115
|
+
Args:
|
|
116
|
+
data: Dictionary containing training context (unused).
|
|
117
|
+
ctx: Additional context dictionary (unused).
|
|
118
|
+
|
|
119
|
+
Returns:
|
|
120
|
+
data: The same input dictionary, unmodified.
|
|
121
|
+
"""
|
|
122
|
+
if self._accumulated_metrics:
|
|
123
|
+
self._save(self._accumulated_metrics)
|
|
124
|
+
self._accumulated_metrics.clear()
|
|
125
|
+
|
|
126
|
+
return data
|
|
127
|
+
|
|
128
|
+
def on_test_end(self, data: dict[str, any], ctx: dict[str, any]):
|
|
129
|
+
"""Aggregate and store test metrics at the end of testing.
|
|
130
|
+
|
|
131
|
+
Test metrics are aggregated once and written immediately to disk.
|
|
132
|
+
Interval-based aggregation and caching are not applied to testing.
|
|
133
|
+
|
|
134
|
+
Args:
|
|
135
|
+
data: Dictionary containing test context (must include 'epoch').
|
|
136
|
+
ctx: Additional context dictionary (unused).
|
|
137
|
+
|
|
138
|
+
Returns:
|
|
139
|
+
data: The same input dictionary, unmodified.
|
|
140
|
+
"""
|
|
141
|
+
epoch = data["epoch"]
|
|
142
|
+
|
|
143
|
+
# Save test metrics
|
|
144
|
+
metrics = self.metric_manager.aggregate("after_training")
|
|
145
|
+
self._save({epoch: metrics})
|
|
146
|
+
self.metric_manager.reset("after_training")
|
|
147
|
+
|
|
148
|
+
return data
|
|
149
|
+
|
|
150
|
+
def _save(self, metrics: dict[int, dict[str, Tensor]]):
|
|
151
|
+
"""Write aggregated metrics to TensorBoard and CSV loggers.
|
|
152
|
+
|
|
153
|
+
Args:
|
|
154
|
+
metrics: Mapping from epoch to a dictionary of metric name to scalar tensor.
|
|
155
|
+
Tensors are expected to be detached and graph-free.
|
|
156
|
+
"""
|
|
157
|
+
for epoch, metrics_by_name in metrics.items():
|
|
158
|
+
for name, value in metrics_by_name.items():
|
|
159
|
+
cpu_value = value.item()
|
|
160
|
+
self.tensorboard_logger.add_scalar(name, cpu_value, epoch)
|
|
161
|
+
self.csv_logger.add_value(name, cpu_value, epoch)
|
|
162
|
+
|
|
163
|
+
# Flush/save
|
|
164
|
+
self.tensorboard_logger.flush()
|
|
165
|
+
self.csv_logger.save()
|