congrads 0.1.0__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
congrads/__init__.py CHANGED
@@ -1,21 +1,11 @@
1
- # __init__.py
1
+ try: # noqa: D104
2
+ from importlib.metadata import version as get_version # Python 3.8+
3
+ except ImportError:
4
+ from pkg_resources import (
5
+ get_distribution as get_version,
6
+ ) # Fallback for older versions
2
7
 
3
- # Only expose the submodules, not individual classes
4
- from . import core
5
- from . import constraints
6
- from . import datasets
7
- from . import descriptor
8
- from . import learners
9
- from . import metrics
10
- from . import networks
11
-
12
- # Define __all__ to specify that the submodules are accessible, but not classes directly.
13
- __all__ = [
14
- "core",
15
- "constraints",
16
- "datasets",
17
- "descriptor",
18
- "learners",
19
- "metrics",
20
- "networks"
21
- ]
8
+ try:
9
+ version = get_version("congrads") # Replace with your package name
10
+ except Exception:
11
+ version = "0.0.0" # Fallback if the package isn't installed
@@ -0,0 +1,357 @@
1
+ """Callback and Operation Framework for Modular Training Pipelines.
2
+
3
+ This module provides a structured system for defining and executing
4
+ callbacks and operations at different stages of a training lifecycle.
5
+ It is designed to support:
6
+
7
+ - Stateless, reusable operations that produce outputs merged into
8
+ the event-local data.
9
+ - Callbacks that group operations and/or custom logic for specific
10
+ stages of training, epochs, batches, and steps.
11
+ - A central CallbackManager to orchestrate multiple callbacks,
12
+ maintain shared context, and execute stage-specific pipelines
13
+ in deterministic order.
14
+
15
+ Stages supported:
16
+ - on_train_start
17
+ - on_train_end
18
+ - on_epoch_start
19
+ - on_epoch_end
20
+ - on_batch_start
21
+ - on_batch_end
22
+ - on_test_start
23
+ - on_test_end
24
+ - on_train_batch_start
25
+ - on_train_batch_end
26
+ - on_valid_batch_start
27
+ - on_valid_batch_end
28
+ - on_test_batch_start
29
+ - on_test_batch_end
30
+ - after_train_forward
31
+ - after_valid_forward
32
+ - after_test_forward
33
+
34
+ Usage:
35
+ 1. Define Operations by subclassing `Operation` and implementing
36
+ the `compute` method.
37
+ 2. Create a Callback subclass or instance and register Operations
38
+ to stages via `add(stage, operation)`.
39
+ 3. Register callbacks with `CallbackManager`.
40
+ 4. Invoke `CallbackManager.run(stage, data)` at appropriate points
41
+ in the training loop, passing in event-local data.
42
+ """
43
+
44
+ from abc import ABC, abstractmethod
45
+ from collections.abc import Iterable
46
+ from typing import Any, Literal, Self
47
+
48
+ Stage = Literal[
49
+ "on_train_start",
50
+ "on_train_end",
51
+ "on_epoch_start",
52
+ "on_epoch_end",
53
+ "on_test_start",
54
+ "on_test_end",
55
+ "on_batch_start",
56
+ "on_batch_end",
57
+ "on_train_batch_start",
58
+ "on_train_batch_end",
59
+ "on_valid_batch_start",
60
+ "on_valid_batch_end",
61
+ "on_test_batch_start",
62
+ "on_test_batch_end",
63
+ "after_train_forward",
64
+ "after_valid_forward",
65
+ "after_test_forward",
66
+ ]
67
+
68
+ STAGES: tuple[Stage, ...] = (
69
+ "on_train_start",
70
+ "on_train_end",
71
+ "on_epoch_start",
72
+ "on_epoch_end",
73
+ "on_test_start",
74
+ "on_test_end",
75
+ "on_batch_start",
76
+ "on_batch_end",
77
+ "on_train_batch_start",
78
+ "on_train_batch_end",
79
+ "on_valid_batch_start",
80
+ "on_valid_batch_end",
81
+ "on_test_batch_start",
82
+ "on_test_batch_end",
83
+ "after_train_forward",
84
+ "after_valid_forward",
85
+ "after_test_forward",
86
+ )
87
+
88
+
89
+ class Operation(ABC):
90
+ """Abstract base class representing a stateless unit of work executed inside a callback stage.
91
+
92
+ Subclasses should implement the `compute` method which returns
93
+ a dictionary of outputs to merge into the running event data.
94
+ """
95
+
96
+ def __repr__(self) -> str:
97
+ """Return a concise string representation of the operation."""
98
+ return f"<{self.__class__.__name__}>"
99
+
100
+ def __call__(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
101
+ """Execute the operation with the given event-local data and shared context.
102
+
103
+ Args:
104
+ data (dict[str, Any]): Event-local dictionary containing data for this stage.
105
+ ctx (dict[str, Any]): Shared context dictionary accessible by all operations and callbacks.
106
+
107
+ Returns:
108
+ dict[str, Any]: Outputs produced by the operation to merge into the running data.
109
+ Returns an empty dict if `compute` returns None.
110
+ """
111
+ out = self.compute(data, ctx)
112
+ if out is None:
113
+ return {}
114
+ if not isinstance(out, dict):
115
+ raise TypeError(f"{self.__class__.__name__}.compute must return dict or None")
116
+ return out
117
+
118
+ @abstractmethod
119
+ def compute(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any] | None:
120
+ """Perform the operation's computation.
121
+
122
+ Args:
123
+ data (dict[str, Any]): Event-local dictionary containing the current data.
124
+ ctx (dict[str, Any]): Shared context dictionary.
125
+
126
+ Returns:
127
+ dict[str, Any] or None: Outputs to merge into the running data.
128
+ Returning None is equivalent to {}.
129
+ """
130
+ raise NotImplementedError
131
+
132
+
133
+ class Callback(ABC): # noqa: B024
134
+ """Abstract base class representing a callback that can have multiple operations registered to different stages of the training lifecycle.
135
+
136
+ Each stage method executes all operations registered for that stage
137
+ in insertion order. Operations can modify the event-local data dictionary.
138
+ """
139
+
140
+ def __init__(self):
141
+ """Initialize the callback with empty operation lists for all stages."""
142
+ self._ops_by_stage: dict[Stage, list[Operation]] = {s: [] for s in STAGES}
143
+
144
+ def __repr__(self) -> str:
145
+ """Return a concise string showing number of operations per stage."""
146
+ ops_summary = {stage: len(ops) for stage, ops in self._ops_by_stage.items() if ops}
147
+ return f"<{self.__class__.__name__} ops={ops_summary}>"
148
+
149
+ def add(self, stage: Stage, op: Operation) -> Self:
150
+ """Register an operation to execute at the given stage.
151
+
152
+ Args:
153
+ stage (Stage): Lifecycle stage at which to run the operation.
154
+ op (Operation): Operation instance to add.
155
+
156
+ Returns:
157
+ Self: Returns self for method chaining.
158
+ """
159
+ self._ops_by_stage[stage].append(op)
160
+ return self
161
+
162
+ def _run_ops(self, stage: Stage, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
163
+ """Execute all operations registered for a specific stage.
164
+
165
+ Args:
166
+ stage (Stage): Lifecycle stage to execute.
167
+ data (dict[str, Any]): Event-local data to pass to operations.
168
+ ctx (dict[str, Any]): Shared context across callbacks and operations.
169
+
170
+ Returns:
171
+ dict[str, Any]: Merged data dictionary after executing all operations.
172
+
173
+ Notes:
174
+ - Operations are executed in insertion order.
175
+ - If an operation overwrites existing keys, a warning is issued.
176
+ """
177
+ out = dict(data)
178
+
179
+ for operation in self._ops_by_stage[stage]:
180
+ try:
181
+ produced = operation(out, ctx) or {}
182
+ except Exception as e:
183
+ raise RuntimeError(f"Error in operation {operation} at stage {stage}") from e
184
+
185
+ collisions = set(produced.keys()) & set(out.keys())
186
+ if collisions:
187
+ import warnings
188
+
189
+ warnings.warn(
190
+ f"Operation {operation} at stage '{stage}' is overwriting keys: {collisions}",
191
+ stacklevel=2,
192
+ )
193
+
194
+ out.update(produced)
195
+
196
+ return out
197
+
198
+ # --- training ---
199
+ def on_train_start(self, data: dict[str, Any], ctx: dict[str, Any]):
200
+ """Execute operations registered for the 'on_train_start' stage."""
201
+ self._run_ops("on_train_start", data, ctx)
202
+
203
+ def on_train_end(self, data: dict[str, Any], ctx: dict[str, Any]):
204
+ """Execute operations registered for the 'on_train_end' stage."""
205
+ self._run_ops("on_train_end", data, ctx)
206
+
207
+ # --- epoch ---
208
+ def on_epoch_start(self, data: dict[str, Any], ctx: dict[str, Any]):
209
+ """Execute operations registered for the 'on_epoch_start' stage."""
210
+ self._run_ops("on_epoch_start", data, ctx)
211
+
212
+ def on_epoch_end(self, data: dict[str, Any], ctx: dict[str, Any]):
213
+ """Execute operations registered for the 'on_epoch_end' stage."""
214
+ self._run_ops("on_epoch_end", data, ctx)
215
+
216
+ # --- test ---
217
+ def on_test_start(self, data: dict[str, Any], ctx: dict[str, Any]):
218
+ """Execute operations registered for the 'on_test_start' stage."""
219
+ self._run_ops("on_test_start", data, ctx)
220
+
221
+ def on_test_end(self, data: dict[str, Any], ctx: dict[str, Any]):
222
+ """Execute operations registered for the 'on_test_end' stage."""
223
+ self._run_ops("on_test_end", data, ctx)
224
+
225
+ # --- batch ---
226
+ def on_batch_start(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
227
+ """Execute operations registered for the 'on_batch_start' stage."""
228
+ return self._run_ops("on_batch_start", data, ctx)
229
+
230
+ def on_batch_end(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
231
+ """Execute operations registered for the 'on_batch_end' stage."""
232
+ return self._run_ops("on_batch_end", data, ctx)
233
+
234
+ def on_train_batch_start(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
235
+ """Execute operations registered for the 'on_train_batch_start' stage."""
236
+ return self._run_ops("on_train_batch_start", data, ctx)
237
+
238
+ def on_train_batch_end(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
239
+ """Execute operations registered for the 'on_train_batch_end' stage."""
240
+ return self._run_ops("on_train_batch_end", data, ctx)
241
+
242
+ def on_valid_batch_start(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
243
+ """Execute operations registered for the 'on_valid_batch_start' stage."""
244
+ return self._run_ops("on_valid_batch_start", data, ctx)
245
+
246
+ def on_valid_batch_end(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
247
+ """Execute operations registered for the 'on_valid_batch_end' stage."""
248
+ return self._run_ops("on_valid_batch_end", data, ctx)
249
+
250
+ def on_test_batch_start(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
251
+ """Execute operations registered for the 'on_test_batch_start' stage."""
252
+ return self._run_ops("on_test_batch_start", data, ctx)
253
+
254
+ def on_test_batch_end(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
255
+ """Execute operations registered for the 'on_test_batch_end' stage."""
256
+ return self._run_ops("on_test_batch_end", data, ctx)
257
+
258
+ def after_train_forward(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
259
+ """Execute operations registered for the 'after_train_forward' stage."""
260
+ return self._run_ops("after_train_forward", data, ctx)
261
+
262
+ def after_valid_forward(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
263
+ """Execute operations registered for the 'after_valid_forward' stage."""
264
+ return self._run_ops("after_valid_forward", data, ctx)
265
+
266
+ def after_test_forward(self, data: dict[str, Any], ctx: dict[str, Any]) -> dict[str, Any]:
267
+ """Execute operations registered for the 'after_test_forward' stage."""
268
+ return self._run_ops("after_test_forward", data, ctx)
269
+
270
+
271
+ class CallbackManager:
272
+ """Orchestrates multiple callbacks and executes them at specific lifecycle stages.
273
+
274
+ - Callbacks are executed in registration order.
275
+ - Event-local data flows through all callbacks.
276
+ - Shared context is available for cross-callback communication.
277
+ """
278
+
279
+ def __init__(self, callbacks: Iterable[Callback] | None = None):
280
+ """Initialize a CallbackManager instance.
281
+
282
+ Args:
283
+ callbacks (Iterable[Callback] | None): Optional initial callbacks to register.
284
+ If None, starts with an empty callback list.
285
+
286
+ Attributes:
287
+ _callbacks (list[Callback]): Internal list of registered callbacks.
288
+ ctx (dict[str, Any]): Shared context dictionary accessible to all callbacks
289
+ and operations for cross-event communication.
290
+ """
291
+ self._callbacks: list[Callback] = list(callbacks) if callbacks else []
292
+ self.ctx: dict[str, Any] = {}
293
+
294
+ def __repr__(self) -> str:
295
+ """Return a concise representation showing registered callbacks and ctx keys."""
296
+ names = [cb.__class__.__name__ for cb in self._callbacks]
297
+ return f"<CallbackManager callbacks={names} ctx_keys={list(self.ctx.keys())}>"
298
+
299
+ def add(self, callback: Callback) -> Self:
300
+ """Register a single callback.
301
+
302
+ Args:
303
+ callback (Callback): Callback instance to add.
304
+
305
+ Returns:
306
+ Self: Returns self for fluent chaining.
307
+ """
308
+ self._callbacks.append(callback)
309
+ return self
310
+
311
+ def extend(self, callbacks: Iterable[Callback]) -> None:
312
+ """Register multiple callbacks at once.
313
+
314
+ Args:
315
+ callbacks (Iterable[Callback]): Iterable of callbacks to add.
316
+ """
317
+ self._callbacks.extend(callbacks)
318
+
319
+ def run(self, stage: Stage, data: dict[str, Any]) -> dict[str, Any]:
320
+ """Execute all registered callbacks for a specific stage.
321
+
322
+ Args:
323
+ stage (Stage): Lifecycle stage to run (e.g., "on_batch_start").
324
+ data (dict[str, Any]): Event-local data dictionary to pass through callbacks.
325
+
326
+ Returns:
327
+ dict[str, Any]: The final merged data dictionary after executing all callbacks.
328
+
329
+ Raises:
330
+ ValueError: If a callback does not implement the requested stage.
331
+ RuntimeError: If any callback raises an exception during execution.
332
+ """
333
+ for cb in self._callbacks:
334
+ if not hasattr(cb, stage):
335
+ raise ValueError(
336
+ f"Callback {cb.__class__.__name__} has no handler for stage {stage}"
337
+ )
338
+ handler = getattr(cb, stage)
339
+
340
+ try:
341
+ new_data = handler(data, self.ctx)
342
+ if new_data is not None:
343
+ data = new_data
344
+
345
+ except Exception as e:
346
+ raise RuntimeError(f"Error in callback {cb.__class__.__name__}.{stage}") from e
347
+
348
+ return data
349
+
350
+ @property
351
+ def callbacks(self) -> tuple[Callback, ...]:
352
+ """Return a read-only tuple of registered callbacks.
353
+
354
+ Returns:
355
+ tuple[Callback, ...]: Registered callbacks.
356
+ """
357
+ return tuple(self._callbacks)
@@ -0,0 +1,106 @@
1
+ """Holds all callback implementations for use in the training workflow.
2
+
3
+ This module acts as a central registry for defining and storing different
4
+ callback classes, such as logging, checkpointing, or custom behaviors
5
+ triggered during training, validation, or testing. It is intended to
6
+ collect all callback implementations in one place for easy reference
7
+ and import, and can be extended as new callbacks are added.
8
+ """
9
+
10
+ from torch.utils.tensorboard import SummaryWriter
11
+
12
+ from ..callbacks.base import Callback
13
+ from ..metrics import MetricManager
14
+ from ..utils.utility import CSVLogger
15
+
16
+
17
+ class LoggerCallback(Callback):
18
+ """Callback to log metrics to TensorBoard and CSV after each epoch or test.
19
+
20
+ This callback queries a MetricManager for aggregated metrics, writes them
21
+ to TensorBoard using SummaryWriter, and logs them to a CSV file via CSVLogger.
22
+ It also flushes loggers and resets metrics after logging.
23
+
24
+ Methods implemented:
25
+ - on_epoch_end: Logs metrics at the end of a training epoch.
26
+ - on_test_end: Logs metrics at the end of testing.
27
+ """
28
+
29
+ def __init__(
30
+ self,
31
+ metric_manager: MetricManager,
32
+ tensorboard_logger: SummaryWriter,
33
+ csv_logger: CSVLogger,
34
+ ):
35
+ """Initialize the LoggerCallback.
36
+
37
+ Args:
38
+ metric_manager: Instance of MetricManager used to collect metrics.
39
+ tensorboard_logger: TensorBoard SummaryWriter instance for logging scalars.
40
+ csv_logger: CSVLogger instance for logging metrics to CSV files.
41
+ """
42
+ super().__init__()
43
+ self.metric_manager = metric_manager
44
+ self.tensorboard_logger = tensorboard_logger
45
+ self.csv_logger = csv_logger
46
+
47
+ def on_epoch_end(self, data: dict[str, any], ctx: dict[str, any]):
48
+ """Log training metrics at the end of an epoch.
49
+
50
+ Aggregates metrics from the MetricManager under the 'during_training' category,
51
+ writes them to TensorBoard and CSV, flushes the loggers, and resets the metrics
52
+ for the next epoch.
53
+
54
+ Args:
55
+ data: Dictionary containing batch/epoch context (must include 'epoch').
56
+ ctx: Additional context dictionary (unused in this implementation).
57
+
58
+ Returns:
59
+ data: The same input dictionary, unmodified.
60
+ """
61
+ epoch = data["epoch"]
62
+
63
+ # Log training metrics
64
+ metrics = self.metric_manager.aggregate("during_training")
65
+ for name, value in metrics.items():
66
+ self.tensorboard_logger.add_scalar(name, value.item(), epoch)
67
+ self.csv_logger.add_value(name, value.item(), epoch)
68
+
69
+ # Flush/save
70
+ self.tensorboard_logger.flush()
71
+ self.csv_logger.save()
72
+
73
+ # Reset metric manager for training
74
+ self.metric_manager.reset("during_training")
75
+
76
+ return data
77
+
78
+ def on_test_end(self, data: dict[str, any], ctx: dict[str, any]):
79
+ """Log test metrics at the end of testing.
80
+
81
+ Aggregates metrics from the MetricManager under the 'after_training' category,
82
+ writes them to TensorBoard and CSV, flushes the loggers, and resets the metrics.
83
+
84
+ Args:
85
+ data: Dictionary containing test context (must include 'epoch').
86
+ ctx: Additional context dictionary (unused in this implementation).
87
+
88
+ Returns:
89
+ data: The same input dictionary, unmodified.
90
+ """
91
+ epoch = data["epoch"]
92
+
93
+ # Log test metrics
94
+ metrics = self.metric_manager.aggregate("after_training")
95
+ for name, value in metrics.items():
96
+ self.tensorboard_logger.add_scalar(name, value.item(), epoch)
97
+ self.csv_logger.add_value(name, value.item(), epoch)
98
+
99
+ # Flush/save
100
+ self.tensorboard_logger.flush()
101
+ self.csv_logger.save()
102
+
103
+ # Reset metric manager for test
104
+ self.metric_manager.reset("after_training")
105
+
106
+ return data
@@ -0,0 +1,178 @@
1
+ """Module for managing PyTorch model checkpoints.
2
+
3
+ Provides the `CheckpointManager` class to save and load model and optimizer
4
+ states during training, track the best metric values, and optionally report
5
+ checkpoint events.
6
+ """
7
+
8
+ import os
9
+ from collections.abc import Callable
10
+ from pathlib import Path
11
+
12
+ from torch import Tensor, load, save
13
+ from torch.nn import Module
14
+ from torch.optim import Optimizer
15
+
16
+ from .metrics import MetricManager
17
+ from .utils.validation import validate_callable, validate_type
18
+
19
+
20
+ class CheckpointManager:
21
+ """Manage saving and loading checkpoints for PyTorch models and optimizers.
22
+
23
+ Handles checkpointing based on a criteria function, restores metric
24
+ states, and optionally reports when a checkpoint is saved.
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ criteria_function: Callable[[dict[str, Tensor], dict[str, Tensor]], bool],
30
+ network: Module,
31
+ optimizer: Optimizer,
32
+ metric_manager: MetricManager,
33
+ save_dir: str = "checkpoints",
34
+ create_dir: bool = False,
35
+ report_save: bool = False,
36
+ ):
37
+ """Initialize the CheckpointManager.
38
+
39
+ Args:
40
+ criteria_function (Callable[[dict[str, Tensor], dict[str, Tensor]], bool]):
41
+ Function that determines if the current checkpoint should be
42
+ saved based on the current and best metric values.
43
+ network (torch.nn.Module): The model to save/load.
44
+ optimizer (torch.optim.Optimizer): The optimizer to save/load.
45
+ metric_manager (MetricManager): Manages metric states for checkpointing.
46
+ save_dir (str, optional): Directory to save checkpoints. Defaults to 'checkpoints'.
47
+ create_dir (bool, optional): Whether to create `save_dir` if it does not exist.
48
+ Defaults to False.
49
+ report_save (bool, optional): Whether to report when a checkpoint is saved.
50
+ Defaults to False.
51
+
52
+ Raises:
53
+ TypeError: If any provided attribute has an incompatible type.
54
+ FileNotFoundError: If `save_dir` does not exist and `create_dir` is False.
55
+ """
56
+ # Type checking
57
+ validate_callable("criteria_function", criteria_function)
58
+ validate_type("network", network, Module)
59
+ validate_type("optimizer", optimizer, Optimizer)
60
+ validate_type("metric_manager", metric_manager, MetricManager)
61
+ validate_type("create_dir", create_dir, bool)
62
+ validate_type("report_save", report_save, bool)
63
+
64
+ # Create path or raise error if create_dir is not found
65
+ if not os.path.exists(save_dir):
66
+ if not create_dir:
67
+ raise FileNotFoundError(
68
+ f"Save directory '{save_dir}' configured in checkpoint manager is not found."
69
+ )
70
+ Path(save_dir).mkdir(parents=True, exist_ok=True)
71
+
72
+ # Initialize objects variables
73
+ self.criteria_function = criteria_function
74
+ self.network = network
75
+ self.optimizer = optimizer
76
+ self.metric_manager = metric_manager
77
+ self.save_dir = save_dir
78
+ self.report_save = report_save
79
+
80
+ self.best_metric_values: dict[str, Tensor] = {}
81
+
82
+ def evaluate_criteria(self, epoch: int, metric_group: str = "during_training"):
83
+ """Evaluate the criteria function to determine if a better model is found.
84
+
85
+ Aggregates the current metric values during training and applies the
86
+ criteria function. If the criteria function indicates improvement, the
87
+ best metric values are updated, a checkpoint is saved, and a message is
88
+ optionally printed.
89
+
90
+ Args:
91
+ epoch (int): The current epoch number.
92
+ metric_group (str, optional): The metric group to evaluate. Defaults to 'during_training'.
93
+ """
94
+ current_metric_values = self.metric_manager.aggregate(metric_group)
95
+ if self.criteria_function is not None and self.criteria_function(
96
+ current_metric_values, self.best_metric_values
97
+ ):
98
+ # Print message if a new checkpoint is saved
99
+ if self.report_save:
100
+ print(f"New checkpoint saved at epoch {epoch}.")
101
+
102
+ # Update current best metric values
103
+ for metric_name, metric_value in current_metric_values.items():
104
+ self.best_metric_values[metric_name] = metric_value
105
+
106
+ # Save the current state
107
+ self.save(epoch)
108
+
109
+ def resume(self, filename: str = "checkpoint.pth", ignore_missing: bool = False) -> int:
110
+ """Resumes training from a saved checkpoint file.
111
+
112
+ Args:
113
+ filename (str): The name of the checkpoint file to load.
114
+ Defaults to "checkpoint.pth".
115
+ ignore_missing (bool): If True, does not raise an error if the
116
+ checkpoint file is missing and continues without loading,
117
+ starting from epoch 0. Defaults to False.
118
+
119
+ Returns:
120
+ int: The epoch number from the loaded checkpoint, or 0 if
121
+ ignore_missing is True and no checkpoint was found.
122
+
123
+ Raises:
124
+ TypeError: If a provided attribute has an incompatible type.
125
+ FileNotFoundError: If the specified checkpoint file does not exist.
126
+ """
127
+ # Type checking
128
+ validate_type("filename", filename, str)
129
+ validate_type("ignore_missing", ignore_missing, bool)
130
+
131
+ # Return starting epoch, either from checkpoint file or default
132
+ filepath = os.path.join(self.save_dir, filename)
133
+ if os.path.exists(filepath):
134
+ checkpoint = self.load(filename)
135
+ return checkpoint["epoch"]
136
+ elif ignore_missing:
137
+ return 0
138
+ else:
139
+ raise FileNotFoundError(f"A checkpoint was not found at {filepath} to resume training.")
140
+
141
+ def save(self, epoch: int, filename: str = "checkpoint.pth"):
142
+ """Save a checkpoint.
143
+
144
+ Args:
145
+ epoch (int): Current epoch number.
146
+ filename (str): Name of the checkpoint file. Defaults to
147
+ 'checkpoint.pth'.
148
+ """
149
+ state = {
150
+ "epoch": epoch,
151
+ "network_state": self.network.state_dict(),
152
+ "optimizer_state": self.optimizer.state_dict(),
153
+ "best_metrics": self.best_metric_values,
154
+ }
155
+ filepath = os.path.join(self.save_dir, filename)
156
+ save(state, filepath)
157
+
158
+ def load(self, filename: str):
159
+ """Load a checkpoint and restore the training state.
160
+
161
+ Loads the checkpoint from the specified file and restores the network
162
+ weights, optimizer state, and best metric values.
163
+
164
+ Args:
165
+ filename (str): Name of the checkpoint file.
166
+
167
+ Returns:
168
+ dict: A dictionary containing the loaded checkpoint information,
169
+ including epoch, loss, and other relevant training state.
170
+ """
171
+ filepath = os.path.join(self.save_dir, filename)
172
+
173
+ checkpoint = load(filepath, weights_only=True)
174
+ self.network.load_state_dict(checkpoint["network_state"])
175
+ self.optimizer.load_state_dict(checkpoint["optimizer_state"])
176
+ self.best_metric_values = checkpoint["best_metrics"]
177
+
178
+ return checkpoint