compressed-tensors-nightly 0.8.1.20250110__py3-none-any.whl → 0.8.1.20250112__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- compressed_tensors/compressors/model_compressors/model_compressor.py +4 -1
- compressed_tensors/compressors/sparse_compressors/__init__.py +1 -0
- compressed_tensors/compressors/sparse_compressors/sparse_24_bitmask.py +238 -0
- compressed_tensors/compressors/sparse_compressors/sparse_bitmask.py +1 -38
- compressed_tensors/config/__init__.py +1 -0
- compressed_tensors/config/base.py +1 -0
- compressed_tensors/config/sparse_24_bitmask.py +40 -0
- compressed_tensors/utils/helpers.py +111 -1
- {compressed_tensors_nightly-0.8.1.20250110.dist-info → compressed_tensors_nightly-0.8.1.20250112.dist-info}/METADATA +1 -1
- {compressed_tensors_nightly-0.8.1.20250110.dist-info → compressed_tensors_nightly-0.8.1.20250112.dist-info}/RECORD +13 -11
- {compressed_tensors_nightly-0.8.1.20250110.dist-info → compressed_tensors_nightly-0.8.1.20250112.dist-info}/LICENSE +0 -0
- {compressed_tensors_nightly-0.8.1.20250110.dist-info → compressed_tensors_nightly-0.8.1.20250112.dist-info}/WHEEL +0 -0
- {compressed_tensors_nightly-0.8.1.20250110.dist-info → compressed_tensors_nightly-0.8.1.20250112.dist-info}/top_level.txt +0 -0
@@ -310,7 +310,10 @@ class ModelCompressor:
|
|
310
310
|
model_path = get_safetensors_folder(model_path)
|
311
311
|
sparse_decompressed = False
|
312
312
|
|
313
|
-
if
|
313
|
+
if (
|
314
|
+
self.sparsity_compressor is not None
|
315
|
+
and self.sparsity_config.format != CompressionFormat.dense.value
|
316
|
+
):
|
314
317
|
# Sparse decompression is applied on the model_path
|
315
318
|
dense_gen = self.sparsity_compressor.decompress(model_path)
|
316
319
|
self._replace_weights(dense_gen, model)
|
@@ -0,0 +1,238 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from dataclasses import dataclass
|
16
|
+
from typing import Dict, List, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
from compressed_tensors.compressors.base import BaseCompressor
|
20
|
+
from compressed_tensors.compressors.sparse_compressors.base import BaseSparseCompressor
|
21
|
+
from compressed_tensors.config import CompressionFormat, SparsityStructure
|
22
|
+
from compressed_tensors.quantization import FP8_DTYPE
|
23
|
+
from compressed_tensors.utils import merge_names, pack_bitmasks, unpack_bitmasks
|
24
|
+
from torch import Tensor
|
25
|
+
|
26
|
+
|
27
|
+
__all__ = [
|
28
|
+
"Sparse24BitMaskCompressor",
|
29
|
+
"Sparse24BitMaskTensor",
|
30
|
+
"sparse24_bitmask_compress",
|
31
|
+
"sparse24_bitmask_decompress",
|
32
|
+
"get_24_bytemasks",
|
33
|
+
]
|
34
|
+
|
35
|
+
|
36
|
+
@BaseCompressor.register(name=CompressionFormat.sparse_24_bitmask.value)
|
37
|
+
class Sparse24BitMaskCompressor(BaseSparseCompressor):
|
38
|
+
"""
|
39
|
+
Compression for sparse models using bitmasks. Non-zero weights are stored in a 2d
|
40
|
+
values tensor, with their locations stored in a 2d bitmask
|
41
|
+
"""
|
42
|
+
|
43
|
+
COMPRESSION_PARAM_NAMES = [
|
44
|
+
"shape",
|
45
|
+
"compressed",
|
46
|
+
"bitmask",
|
47
|
+
]
|
48
|
+
|
49
|
+
def compress_weight(self, name, value):
|
50
|
+
bitmask_tensor = Sparse24BitMaskTensor.from_dense(
|
51
|
+
value, self.config.sparsity_structure
|
52
|
+
)
|
53
|
+
bitmask_dict = bitmask_tensor.dict(name_prefix=name, device="cpu")
|
54
|
+
return bitmask_dict
|
55
|
+
|
56
|
+
def decompress_weight(self, weight_data):
|
57
|
+
data = Sparse24BitMaskTensor.from_compressed_data(**weight_data)
|
58
|
+
decompressed = data.decompress()
|
59
|
+
return decompressed
|
60
|
+
|
61
|
+
|
62
|
+
@dataclass
|
63
|
+
class Sparse24BitMaskTensor:
|
64
|
+
"""
|
65
|
+
Owns compressions and decompression for a single 2:4 sparse
|
66
|
+
bitmask compressed tensor.
|
67
|
+
|
68
|
+
:param shape: shape of dense tensor
|
69
|
+
:param compressed: 2d tensor of non-zero values
|
70
|
+
:param bitmask: 2d bitmask of non-zero values
|
71
|
+
"""
|
72
|
+
|
73
|
+
shape: List[int]
|
74
|
+
compressed: Tensor
|
75
|
+
bitmask: Tensor
|
76
|
+
|
77
|
+
@staticmethod
|
78
|
+
def from_dense(
|
79
|
+
tensor: Tensor,
|
80
|
+
sparsity_structure: Union[SparsityStructure, str] = SparsityStructure.TWO_FOUR,
|
81
|
+
) -> "Sparse24BitMaskTensor":
|
82
|
+
"""
|
83
|
+
:param tensor: dense tensor to compress
|
84
|
+
:return: instantiated compressed tensor
|
85
|
+
"""
|
86
|
+
shape = list(tensor.shape)
|
87
|
+
compressed, bitmask = sparse24_bitmask_compress(
|
88
|
+
tensor.cpu(), sparsity_structure=sparsity_structure
|
89
|
+
)
|
90
|
+
return Sparse24BitMaskTensor(
|
91
|
+
shape=shape,
|
92
|
+
compressed=compressed,
|
93
|
+
bitmask=bitmask,
|
94
|
+
)
|
95
|
+
|
96
|
+
@staticmethod
|
97
|
+
def from_compressed_data(
|
98
|
+
shape: Union[List[int], Tensor], compressed: Tensor, bitmask: Tensor
|
99
|
+
) -> "Sparse24BitMaskTensor":
|
100
|
+
"""
|
101
|
+
:param shape: shape of the dense tensor (can be a list or a tensor)
|
102
|
+
:param compressed: 2d tensor of non-zero values
|
103
|
+
:param bitmask: 2d bitmask of non-zero values
|
104
|
+
:return: instantiated Sparse24BitMaskTensor
|
105
|
+
"""
|
106
|
+
if isinstance(shape, Tensor):
|
107
|
+
shape = shape.tolist()
|
108
|
+
return Sparse24BitMaskTensor(
|
109
|
+
shape=shape, compressed=compressed, bitmask=bitmask
|
110
|
+
)
|
111
|
+
|
112
|
+
def decompress(self) -> Tensor:
|
113
|
+
"""
|
114
|
+
:return: reconstructed dense tensor
|
115
|
+
"""
|
116
|
+
return sparse24_bitmask_decompress(self.compressed, self.bitmask, self.shape)
|
117
|
+
|
118
|
+
def curr_memory_size_bytes(self) -> int:
|
119
|
+
"""
|
120
|
+
:return: size in bytes required to store compressed tensor on disk
|
121
|
+
"""
|
122
|
+
|
123
|
+
def sizeof_tensor(a: Tensor) -> int:
|
124
|
+
return a.element_size() * a.nelement()
|
125
|
+
|
126
|
+
return sizeof_tensor(self.compressed) + sizeof_tensor(self.bitmask)
|
127
|
+
|
128
|
+
def dict(self, name_prefix: str, device: str = "cpu") -> Dict[str, Tensor]:
|
129
|
+
"""
|
130
|
+
:param name_prefix: name of original tensor to store compressed weight as
|
131
|
+
:return: dict of compressed data for the stored weight
|
132
|
+
"""
|
133
|
+
if name_prefix.endswith(".weight"):
|
134
|
+
name_prefix = name_prefix[: -len(".weight")]
|
135
|
+
return {
|
136
|
+
merge_names(name_prefix, "shape"): torch.tensor(
|
137
|
+
self.shape, device=device
|
138
|
+
).reshape(-1, 1),
|
139
|
+
merge_names(name_prefix, "compressed"): self.compressed.to(device),
|
140
|
+
merge_names(name_prefix, "bitmask"): self.bitmask.to(device),
|
141
|
+
}
|
142
|
+
|
143
|
+
def __repr__(self) -> str:
|
144
|
+
return f"BitMaskTensor(shape={self.shape}, compressed=True)"
|
145
|
+
|
146
|
+
|
147
|
+
def sparse24_bitmask_compress(
|
148
|
+
tensor: Tensor,
|
149
|
+
sparsity_structure: Union[SparsityStructure, str] = SparsityStructure.TWO_FOUR,
|
150
|
+
) -> Tuple[Tensor, Tensor, Tensor]:
|
151
|
+
"""
|
152
|
+
Compresses a dense tensor using bitmask compression
|
153
|
+
|
154
|
+
:param tensor: dense 2D tensor to compress
|
155
|
+
:param sparsity_structure: structure of sparsity in the tensor, defaults
|
156
|
+
to unstructured, can also be set to `2:4`
|
157
|
+
:return: tuple of compressed data representing tensor
|
158
|
+
"""
|
159
|
+
assert len(tensor.shape) == 2, "Only 2D tensors are supported"
|
160
|
+
assert (
|
161
|
+
SparsityStructure(sparsity_structure) == SparsityStructure.TWO_FOUR
|
162
|
+
), "Only 2:4 sparsity is supported"
|
163
|
+
|
164
|
+
bytemasks = get_24_bytemasks(tensor=tensor)
|
165
|
+
|
166
|
+
if tensor.dtype == FP8_DTYPE:
|
167
|
+
# acces raw bytes of the tensor
|
168
|
+
tensor_view = tensor.view(torch.int8)
|
169
|
+
values = tensor_view[bytemasks]
|
170
|
+
values = values.view(FP8_DTYPE)
|
171
|
+
else:
|
172
|
+
values = tensor[bytemasks]
|
173
|
+
|
174
|
+
num_rows, num_cols = tensor.shape
|
175
|
+
compressed_values = values.reshape(num_rows, num_cols // 2)
|
176
|
+
bitmasks_packed = pack_bitmasks(bytemasks)
|
177
|
+
return compressed_values, bitmasks_packed
|
178
|
+
|
179
|
+
|
180
|
+
def sparse24_bitmask_decompress(
|
181
|
+
values: Tensor, bitmasks: Tensor, original_shape: torch.Size
|
182
|
+
) -> Tensor:
|
183
|
+
"""
|
184
|
+
Reconstructs a dense tensor from a compressed one
|
185
|
+
|
186
|
+
:param values: 1d tensor of non-zero values
|
187
|
+
:param bitmasks: 2d int8 tensor flagging locations of non-zero values in the
|
188
|
+
tensors original shape
|
189
|
+
:param original_shape: shape of the dense tensor
|
190
|
+
:return: decompressed dense tensor
|
191
|
+
"""
|
192
|
+
bytemasks_unpacked = unpack_bitmasks(bitmasks, original_shape)
|
193
|
+
|
194
|
+
decompressed_tensor = torch.zeros(original_shape, dtype=values.dtype)
|
195
|
+
decompressed_tensor = decompressed_tensor.to(values.device)
|
196
|
+
values = values.flatten()
|
197
|
+
if decompressed_tensor.dtype == FP8_DTYPE:
|
198
|
+
decompressed_tensor[bytemasks_unpacked] = values
|
199
|
+
decompressed_tensor = decompressed_tensor.cuda()
|
200
|
+
else:
|
201
|
+
decompressed_tensor[bytemasks_unpacked] = values
|
202
|
+
return decompressed_tensor
|
203
|
+
|
204
|
+
|
205
|
+
def get_24_bytemasks(tensor):
|
206
|
+
"""
|
207
|
+
Generate a 2:4 sparsity mask for the given tensor.
|
208
|
+
|
209
|
+
This function creates a mask where exactly 2 out of every 4 elements are
|
210
|
+
preserved based on their magnitudes. The preserved elements are the ones
|
211
|
+
with the highest absolute values in each group of 4 elements.
|
212
|
+
|
213
|
+
:param tensor: The input tensor for which the 2:4 sparsity mask is to be created.
|
214
|
+
The tensor can be of any shape but its total number of elements
|
215
|
+
must be a multiple of 4.
|
216
|
+
:return: A boolean tensor of the same shape as the input tensor, where `True`
|
217
|
+
indicates the preserved elements and `False` indicates the pruned elements.
|
218
|
+
:raises ValueError: If the total number of elements in the tensor is not a
|
219
|
+
multiple of 4.
|
220
|
+
"""
|
221
|
+
original_dtype = tensor.dtype
|
222
|
+
if tensor.dtype == FP8_DTYPE:
|
223
|
+
tensor = tensor.view(torch.int8)
|
224
|
+
original_shape = tensor.shape
|
225
|
+
num_elements = tensor.numel()
|
226
|
+
|
227
|
+
if num_elements % 4 != 0:
|
228
|
+
raise ValueError("Tensor size must be a multiple of 4 for TWO_FOUR sparsity")
|
229
|
+
|
230
|
+
reshaped_tensor = tensor.view(-1, 4)
|
231
|
+
abs_tensor = reshaped_tensor.abs()
|
232
|
+
topk_indices = abs_tensor.topk(2, dim=1).indices
|
233
|
+
mask = torch.zeros_like(reshaped_tensor, dtype=torch.bool)
|
234
|
+
mask.scatter_(1, topk_indices, True)
|
235
|
+
mask = mask.view(original_shape)
|
236
|
+
tensor = tensor.view(original_dtype)
|
237
|
+
|
238
|
+
return mask
|
@@ -14,13 +14,12 @@
|
|
14
14
|
|
15
15
|
from typing import Dict, List, Tuple, Union
|
16
16
|
|
17
|
-
import numpy
|
18
17
|
import torch
|
19
18
|
from compressed_tensors.compressors.base import BaseCompressor
|
20
19
|
from compressed_tensors.compressors.sparse_compressors.base import BaseSparseCompressor
|
21
20
|
from compressed_tensors.config import CompressionFormat
|
22
21
|
from compressed_tensors.quantization import FP8_DTYPE
|
23
|
-
from compressed_tensors.utils import merge_names
|
22
|
+
from compressed_tensors.utils import merge_names, pack_bitmasks, unpack_bitmasks
|
24
23
|
from torch import Tensor
|
25
24
|
|
26
25
|
|
@@ -29,8 +28,6 @@ __all__ = [
|
|
29
28
|
"BitmaskTensor",
|
30
29
|
"bitmask_compress",
|
31
30
|
"bitmask_decompress",
|
32
|
-
"pack_bitmasks",
|
33
|
-
"unpack_bitmasks",
|
34
31
|
]
|
35
32
|
|
36
33
|
|
@@ -164,37 +161,3 @@ def bitmask_decompress(
|
|
164
161
|
decompressed_tensor[bytemasks_unpacked] = values
|
165
162
|
|
166
163
|
return decompressed_tensor
|
167
|
-
|
168
|
-
|
169
|
-
def pack_bitmasks(bytemasks: Tensor) -> Tensor:
|
170
|
-
"""
|
171
|
-
Converts a bytemask tensor to a bitmask tensor to reduce memory. Shape RxC will be
|
172
|
-
compressed to R x ceil(C/8)
|
173
|
-
:param bytemasks: mask tensor where each byte corresponds to a weight
|
174
|
-
:return: mask tensor where each bit corresounds to a weight
|
175
|
-
"""
|
176
|
-
packed_bits_numpy = numpy.packbits(bytemasks.numpy(), axis=-1, bitorder="little")
|
177
|
-
packed_bits_torch = torch.from_numpy(packed_bits_numpy)
|
178
|
-
|
179
|
-
return packed_bits_torch
|
180
|
-
|
181
|
-
|
182
|
-
def unpack_bitmasks(packed_bitmasks: Tensor, original_shape: torch.Size) -> Tensor:
|
183
|
-
"""
|
184
|
-
Converts a bitmask tensor back to a bytemask tensor for use during decompression
|
185
|
-
|
186
|
-
:param packed_bitmasks: mask tensor where each bit corresponds to a weight
|
187
|
-
:param original_shape: dense shape to decompress to
|
188
|
-
:return: boolean mask of weights in the original dense shape
|
189
|
-
"""
|
190
|
-
# Unpack the bits
|
191
|
-
unpacked_bits = numpy.unpackbits(
|
192
|
-
packed_bitmasks.numpy(), axis=-1, count=original_shape[-1], bitorder="little"
|
193
|
-
)
|
194
|
-
|
195
|
-
# Reshape to match the original shape
|
196
|
-
unpacked_bitmasks_torch = torch.from_numpy(
|
197
|
-
unpacked_bits.reshape(original_shape).astype(bool)
|
198
|
-
)
|
199
|
-
|
200
|
-
return unpacked_bitmasks_torch
|
@@ -26,6 +26,7 @@ __all__ = ["SparsityCompressionConfig", "CompressionFormat", "SparsityStructure"
|
|
26
26
|
class CompressionFormat(Enum):
|
27
27
|
dense = "dense"
|
28
28
|
sparse_bitmask = "sparse-bitmask"
|
29
|
+
sparse_24_bitmask = "sparse-24-bitmask"
|
29
30
|
int_quantized = "int-quantized"
|
30
31
|
float_quantized = "float-quantized"
|
31
32
|
naive_quantized = "naive-quantized"
|
@@ -0,0 +1,40 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Optional
|
16
|
+
|
17
|
+
from compressed_tensors.config import (
|
18
|
+
CompressionFormat,
|
19
|
+
SparsityCompressionConfig,
|
20
|
+
SparsityStructure,
|
21
|
+
)
|
22
|
+
|
23
|
+
|
24
|
+
__all__ = ["Sparse24BitMaskConfig"]
|
25
|
+
|
26
|
+
|
27
|
+
@SparsityCompressionConfig.register(name=CompressionFormat.sparse_24_bitmask.value)
|
28
|
+
class Sparse24BitMaskConfig(SparsityCompressionConfig):
|
29
|
+
"""
|
30
|
+
Configuration for storing a 24 sparse model using
|
31
|
+
bytemask compression
|
32
|
+
|
33
|
+
:param global_sparsity: average sparsity of the entire model
|
34
|
+
:param sparsity_structure: structure of the sparsity, should always be
|
35
|
+
"2:4" for this compression format
|
36
|
+
"""
|
37
|
+
|
38
|
+
format: str = CompressionFormat.sparse_24_bitmask.value
|
39
|
+
global_sparsity: Optional[float] = 0.0
|
40
|
+
sparsity_structure: Optional[str] = SparsityStructure.TWO_FOUR.value
|
@@ -14,8 +14,9 @@
|
|
14
14
|
|
15
15
|
import warnings
|
16
16
|
from functools import wraps
|
17
|
-
from typing import Any, Callable, Dict, Optional
|
17
|
+
from typing import Any, Callable, Dict, List, Optional
|
18
18
|
|
19
|
+
import numpy
|
19
20
|
import torch
|
20
21
|
from transformers import AutoConfig
|
21
22
|
|
@@ -29,6 +30,10 @@ __all__ = [
|
|
29
30
|
"getattr_chain",
|
30
31
|
"deprecated",
|
31
32
|
"Aliasable",
|
33
|
+
"combine_shards",
|
34
|
+
"shard_tensor",
|
35
|
+
"pack_bitmasks",
|
36
|
+
"unpack_bitmasks",
|
32
37
|
]
|
33
38
|
|
34
39
|
FSDP_WRAPPER_NAME = "_fsdp_wrapped_module"
|
@@ -214,3 +219,108 @@ class Aliasable:
|
|
214
219
|
def __hash__(self):
|
215
220
|
canonical_value = self.aliases.get(self.value, self.value)
|
216
221
|
return hash(canonical_value)
|
222
|
+
|
223
|
+
|
224
|
+
def shard_tensor(
|
225
|
+
tensor: torch.Tensor, shard_sizes: List[int], dim: int = 0
|
226
|
+
) -> List[torch.Tensor]:
|
227
|
+
"""
|
228
|
+
Shards a tensor into a list of tensors along a given dimension.
|
229
|
+
|
230
|
+
raises: ValueError: If the sum of shard_sizes does not match the
|
231
|
+
size of the tensor along the given dimension.
|
232
|
+
|
233
|
+
:param tensor: The input tensor to shard.
|
234
|
+
:param shard_sizes : List of sizes for each shard along the specified dimension.
|
235
|
+
:param dim : The dimension along which to shard the tensor.
|
236
|
+
:returns: A list of tensors sharded along the specified dimension.
|
237
|
+
"""
|
238
|
+
if sum(shard_sizes) != tensor.size(dim):
|
239
|
+
raise ValueError(
|
240
|
+
"Sum of shard_sizes must equal the size of the tensor "
|
241
|
+
"along the specified dimension."
|
242
|
+
)
|
243
|
+
|
244
|
+
shards = []
|
245
|
+
start_idx = 0
|
246
|
+
|
247
|
+
for size in shard_sizes:
|
248
|
+
end_idx = start_idx + size
|
249
|
+
shard = tensor.narrow(dim, start_idx, size)
|
250
|
+
shards.append(shard)
|
251
|
+
start_idx = end_idx
|
252
|
+
|
253
|
+
return shards
|
254
|
+
|
255
|
+
|
256
|
+
def combine_shards(shards, dim=0):
|
257
|
+
"""
|
258
|
+
Combine decompressed shards along a given dimension using `narrow`.
|
259
|
+
|
260
|
+
:param shards: List of decompressed shard tensors.
|
261
|
+
:param dim: Dimension to combine along (default: 0).
|
262
|
+
:return: Combined decompressed tensor.
|
263
|
+
"""
|
264
|
+
if not shards:
|
265
|
+
raise ValueError("The list of shards is empty.")
|
266
|
+
|
267
|
+
# Assert that all shards have the same dtype
|
268
|
+
shard_dtypes = {shard.dtype for shard in shards}
|
269
|
+
if len(shard_dtypes) > 1:
|
270
|
+
raise ValueError("All shards must have the same dtype.")
|
271
|
+
|
272
|
+
# Determine the total shape of the combined tensor
|
273
|
+
total_shape = list(shards[0].shape)
|
274
|
+
total_shape[dim] = sum(shard.shape[dim] for shard in shards)
|
275
|
+
|
276
|
+
# Create the combined tensor
|
277
|
+
combined = torch.zeros(total_shape, dtype=shards[0].dtype, device=shards[0].device)
|
278
|
+
|
279
|
+
# Fill the combined tensor using narrow
|
280
|
+
shard_offset = 0
|
281
|
+
for shard in shards:
|
282
|
+
shard_size = shard.shape[dim]
|
283
|
+
combined.narrow(dim, shard_offset, shard_size).copy_(shard)
|
284
|
+
shard_offset += shard_size
|
285
|
+
|
286
|
+
return combined
|
287
|
+
|
288
|
+
|
289
|
+
def pack_bitmasks(bytemasks: torch.Tensor) -> torch.Tensor:
|
290
|
+
"""
|
291
|
+
Converts a bytemask tensor to a bitmask tensor to reduce memory. Shape RxC will be
|
292
|
+
compressed to R x ceil(C/8)
|
293
|
+
|
294
|
+
:param bytemasks: mask tensor where each byte corresponds to a weight
|
295
|
+
:return: mask tensor where each bit corresounds to a weight
|
296
|
+
"""
|
297
|
+
packed_bits_numpy = numpy.packbits(bytemasks.numpy(), axis=-1, bitorder="little")
|
298
|
+
packed_bits_torch = torch.from_numpy(packed_bits_numpy)
|
299
|
+
|
300
|
+
return packed_bits_torch
|
301
|
+
|
302
|
+
|
303
|
+
def unpack_bitmasks(
|
304
|
+
packed_bitmasks: torch.Tensor, original_shape: torch.Size
|
305
|
+
) -> torch.Tensor:
|
306
|
+
"""
|
307
|
+
Converts a bitmask tensor back to a bytemask tensor for use during decompression
|
308
|
+
|
309
|
+
:param packed_bitmasks: mask tensor where each bit corresponds to a weight
|
310
|
+
:param original_shape: dense shape to decompress to
|
311
|
+
:return: boolean mask of weights in the original dense shape
|
312
|
+
"""
|
313
|
+
# Unpack the bits
|
314
|
+
unpacked_bits = numpy.unpackbits(
|
315
|
+
packed_bitmasks.cpu().numpy(),
|
316
|
+
axis=-1,
|
317
|
+
count=original_shape[-1],
|
318
|
+
bitorder="little",
|
319
|
+
)
|
320
|
+
|
321
|
+
# Reshape to match the original shape
|
322
|
+
unpacked_bitmasks_torch = torch.from_numpy(
|
323
|
+
unpacked_bits.reshape(original_shape).astype(bool)
|
324
|
+
)
|
325
|
+
|
326
|
+
return unpacked_bitmasks_torch
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: compressed-tensors-nightly
|
3
|
-
Version: 0.8.1.
|
3
|
+
Version: 0.8.1.20250112
|
4
4
|
Summary: Library for utilization of compressed safetensors of neural network models
|
5
5
|
Home-page: https://github.com/neuralmagic/compressed-tensors
|
6
6
|
Author: Neuralmagic, Inc.
|
@@ -5,20 +5,22 @@ compressed_tensors/compressors/__init__.py,sha256=smSygTSfcfuujRrAXDc6uZm4L_ccV1
|
|
5
5
|
compressed_tensors/compressors/base.py,sha256=D9TNwQcjanDiAHODPbg8JUqc66e3j50rctY7A708NEs,6743
|
6
6
|
compressed_tensors/compressors/helpers.py,sha256=OK6qxX9j3bHwF9JfIYSGMgBJe2PWjlTA3byXKCJaTIQ,5431
|
7
7
|
compressed_tensors/compressors/model_compressors/__init__.py,sha256=5RGGPFu4YqEt_aOdFSQYFYFDjcZFJN0CsMqRtDZz3Js,666
|
8
|
-
compressed_tensors/compressors/model_compressors/model_compressor.py,sha256=
|
8
|
+
compressed_tensors/compressors/model_compressors/model_compressor.py,sha256=3WyzAW2Rm_uLprxwO2QH6FR76W6Mk4r2yedayaSZHhw,18396
|
9
9
|
compressed_tensors/compressors/quantized_compressors/__init__.py,sha256=09UJq68Pht6Bf-4iP9xYl3tetKsncNPHD8IAGbePsr4,714
|
10
10
|
compressed_tensors/compressors/quantized_compressors/base.py,sha256=LVqSSqSjGi8LB-X13zC_0AFHc8BobGQVC0zjInDhOWE,7217
|
11
11
|
compressed_tensors/compressors/quantized_compressors/naive_quantized.py,sha256=fahmPJFz49rVS7q705uQwZ0kUtdP46GuXR7nPr6uIqI,4943
|
12
12
|
compressed_tensors/compressors/quantized_compressors/pack_quantized.py,sha256=OO5dceCfNVuY8A23kBg6z2wk-zGUVqR_MyLvObvT7pk,7741
|
13
|
-
compressed_tensors/compressors/sparse_compressors/__init__.py,sha256=
|
13
|
+
compressed_tensors/compressors/sparse_compressors/__init__.py,sha256=Atuz-OdEgn8OCUhx7Ovd6gXdyImAI186uCR-uR0t_Nk,737
|
14
14
|
compressed_tensors/compressors/sparse_compressors/base.py,sha256=9e841MQWr0j8m33ejDw_jP5_BIpQ5099x9_pvuZ-Nr0,5944
|
15
15
|
compressed_tensors/compressors/sparse_compressors/dense.py,sha256=lSKNWRx6H7aUqaJj1j4qbXk8Gkm1UohbnvW1Rvq6Ra4,1284
|
16
|
-
compressed_tensors/compressors/sparse_compressors/
|
16
|
+
compressed_tensors/compressors/sparse_compressors/sparse_24_bitmask.py,sha256=3M0FI8gY_T8iNmp9oSEHoVjr_AwdercdRd3R9hzltVM,8512
|
17
|
+
compressed_tensors/compressors/sparse_compressors/sparse_bitmask.py,sha256=7zSr9bqkpuH1ivQpxtYBNxXIoElal7Jo1nSKpZN_IFk,5633
|
17
18
|
compressed_tensors/compressors/sparse_quantized_compressors/__init__.py,sha256=4f_cwcKXB1nVVMoiKgTFAc8jAPjPLElo-Df_EDm1_xw,675
|
18
19
|
compressed_tensors/compressors/sparse_quantized_compressors/marlin_24.py,sha256=BMIQWTLlnUvxy14iEJegtiP75WHJeOVojey9mKOK1hE,9427
|
19
|
-
compressed_tensors/config/__init__.py,sha256=
|
20
|
-
compressed_tensors/config/base.py,sha256=
|
20
|
+
compressed_tensors/config/__init__.py,sha256=8sOoZ6xvYSC79mBvEtO8l6xk4PC80d29AnnJiGMrY2M,737
|
21
|
+
compressed_tensors/config/base.py,sha256=R3iUmFf1MslEjin5LgwQbmfJHIsS7Uw0UIxfn780uqY,3479
|
21
22
|
compressed_tensors/config/dense.py,sha256=NgSxnFCnckU9-iunxEaqiFwqgdO7YYxlWKR74jNbjks,1317
|
23
|
+
compressed_tensors/config/sparse_24_bitmask.py,sha256=Lhj39zT2V1hxftprvxvneyhv45ShlXOKd75DBbDTyTE,1401
|
22
24
|
compressed_tensors/config/sparse_bitmask.py,sha256=pZUboRNZTu6NajGOQEFExoPknak5ynVAUeiiYpS1Gt8,1308
|
23
25
|
compressed_tensors/linear/__init__.py,sha256=fH6rjBYAxuwrTzBTlTjTgCYNyh6TCvCqajCz4Im4YrA,617
|
24
26
|
compressed_tensors/linear/compressed_linear.py,sha256=MJa-UfoKhIkdUWRD1shrXXri2cOwR5GK0a4t4bNYosM,3268
|
@@ -37,14 +39,14 @@ compressed_tensors/quantization/utils/helpers.py,sha256=DBP-sGRpGAY01K0LFE7qqonN
|
|
37
39
|
compressed_tensors/registry/__init__.py,sha256=FwLSNYqfIrb5JD_6OK_MT4_svvKTN_nEhpgQlQvGbjI,658
|
38
40
|
compressed_tensors/registry/registry.py,sha256=vRcjVB1ITfSbfYUaGndBBmqhip_5vsS62weorVg0iXo,11896
|
39
41
|
compressed_tensors/utils/__init__.py,sha256=gS4gSU2pwcAbsKj-6YMaqhm25udFy6ISYaWBf-myRSM,808
|
40
|
-
compressed_tensors/utils/helpers.py,sha256=
|
42
|
+
compressed_tensors/utils/helpers.py,sha256=OODitCQuSKH6Ux_8Ff05pSrKzaai1t8IERNPKTtiD1A,10321
|
41
43
|
compressed_tensors/utils/offload.py,sha256=cMmzd9IdlNbs29CReHj1PPSLUM6OWaT5YumlLT5eP3w,13845
|
42
44
|
compressed_tensors/utils/permutations_24.py,sha256=kx6fsfDHebx94zsSzhXGyCyuC9sVyah6BUUir_StT28,2530
|
43
45
|
compressed_tensors/utils/permute.py,sha256=V6tJLKo3Syccj-viv4F7ZKZgJeCB-hl-dK8RKI_kBwI,2355
|
44
46
|
compressed_tensors/utils/safetensors_load.py,sha256=fBuoHVPoBt1mkvqFJ60zQIASX_4nhl0-6QfFS27NY8I,11430
|
45
47
|
compressed_tensors/utils/semi_structured_conversions.py,sha256=XKNffPum54kPASgqKzgKvyeqWPAkair2XEQXjkp7ho8,13489
|
46
|
-
compressed_tensors_nightly-0.8.1.
|
47
|
-
compressed_tensors_nightly-0.8.1.
|
48
|
-
compressed_tensors_nightly-0.8.1.
|
49
|
-
compressed_tensors_nightly-0.8.1.
|
50
|
-
compressed_tensors_nightly-0.8.1.
|
48
|
+
compressed_tensors_nightly-0.8.1.20250112.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
49
|
+
compressed_tensors_nightly-0.8.1.20250112.dist-info/METADATA,sha256=pq2PSfcDi6Nd2HW_UQdaHAYGGDo8X4Ko948pS3B1fj0,6799
|
50
|
+
compressed_tensors_nightly-0.8.1.20250112.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
51
|
+
compressed_tensors_nightly-0.8.1.20250112.dist-info/top_level.txt,sha256=w2i-GyPs2s1UwVxvutSvN_lM22SXC2hQFBmoMcPnV7Y,19
|
52
|
+
compressed_tensors_nightly-0.8.1.20250112.dist-info/RECORD,,
|
File without changes
|
File without changes
|