compressed-tensors-nightly 0.8.1.20241220__py3-none-any.whl → 0.8.1.20241223__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -29,7 +29,11 @@ from compressed_tensors.quantization.quant_args import (
29
29
  from compressed_tensors.quantization.quant_config import QuantizationStatus
30
30
  from compressed_tensors.quantization.quant_scheme import QuantizationScheme
31
31
  from compressed_tensors.quantization.utils import is_kv_cache_quant_scheme
32
- from compressed_tensors.utils import get_execution_device, is_module_offloaded
32
+ from compressed_tensors.utils import (
33
+ disable_hf_hook,
34
+ has_offloaded_params,
35
+ register_offload_parameter,
36
+ )
33
37
  from torch.nn import Module, Parameter
34
38
 
35
39
 
@@ -112,43 +116,10 @@ def initialize_module_for_quantization(
112
116
  module.quantization_scheme = scheme
113
117
  module.quantization_status = QuantizationStatus.INITIALIZED
114
118
 
115
- offloaded = False
116
- # What is this doing/why isn't this in the attn case?
117
- if is_module_offloaded(module):
118
- try:
119
- from accelerate.hooks import add_hook_to_module, remove_hook_from_module
120
- from accelerate.utils import PrefixedDataset
121
- except ModuleNotFoundError:
122
- raise ModuleNotFoundError(
123
- "Offloaded model detected. To use CPU offloading with "
124
- "compressed-tensors the `accelerate` package must be installed, "
125
- "run `pip install compressed-tensors[accelerate]`"
126
- )
127
-
128
- offloaded = True
129
- hook = module._hf_hook
130
- prefix_dict = module._hf_hook.weights_map
131
- new_prefix = {}
132
-
133
- # recreate the prefix dict (since it is immutable)
134
- # and add quantization parameters
135
- for key, data in module.named_parameters():
136
- if key not in prefix_dict:
137
- new_prefix[f"{prefix_dict.prefix}{key}"] = data
138
- else:
139
- new_prefix[f"{prefix_dict.prefix}{key}"] = prefix_dict[key]
140
- new_prefix_dict = PrefixedDataset(new_prefix, prefix_dict.prefix)
141
- remove_hook_from_module(module)
142
-
143
- # wrap forward call of module to perform
144
- # quantized actions based on calltime status
145
- wrap_module_forward_quantized(module, scheme)
146
-
147
- if offloaded:
148
- # we need to re-add the hook for offloading now that we've wrapped forward
149
- add_hook_to_module(module, hook)
150
- if prefix_dict is not None:
151
- module._hf_hook.weights_map = new_prefix_dict
119
+ with disable_hf_hook(module):
120
+ # wrap forward call of module to perform
121
+ # quantized actions based on calltime status
122
+ wrap_module_forward_quantized(module, scheme)
152
123
 
153
124
 
154
125
  def is_attention_module(module: Module):
@@ -169,9 +140,11 @@ def _initialize_scale_zero_point(
169
140
  if quantization_args.dynamic:
170
141
  return
171
142
 
172
- device = next(module.parameters()).device
173
- if is_module_offloaded(module):
174
- device = get_execution_device(module)
143
+ # begin on the same device as other parameters or cpu if offloaded.
144
+ # in the offloaded case, there's no point moving tensors to the execution device
145
+ # if they're going to be immediately offloaded by `register_offload_parameter`
146
+ params_device = next(module.parameters()).device
147
+ device = "cpu" if has_offloaded_params(module) else params_device
175
148
 
176
149
  # infer expected scale/zero point shape
177
150
  if quantization_args.strategy == QuantizationStrategy.TOKEN:
@@ -196,7 +169,7 @@ def _initialize_scale_zero_point(
196
169
  torch.empty(expected_shape, dtype=scale_dtype, device=device),
197
170
  requires_grad=False,
198
171
  )
199
- module.register_parameter(f"{base_name}_scale", init_scale)
172
+ register_offload_parameter(module, f"{base_name}_scale", init_scale)
200
173
 
201
174
  if force_zero_point or not quantization_args.symmetric:
202
175
  zp_dtype = quantization_args.pytorch_dtype()
@@ -204,7 +177,7 @@ def _initialize_scale_zero_point(
204
177
  torch.zeros(expected_shape, device=device, dtype=zp_dtype),
205
178
  requires_grad=False,
206
179
  )
207
- module.register_parameter(f"{base_name}_zero_point", init_zero_point)
180
+ register_offload_parameter(module, f"{base_name}_zero_point", init_zero_point)
208
181
 
209
182
  # only grouped activation ordering has g_idx
210
183
  if quantization_args.actorder == ActivationOrdering.GROUP:
@@ -214,7 +187,7 @@ def _initialize_scale_zero_point(
214
187
  torch.full(g_idx_shape, -1, device=device, dtype=g_idx_dtype),
215
188
  requires_grad=False,
216
189
  )
217
- module.register_parameter(f"{base_name}_g_idx", init_g_idx)
190
+ register_offload_parameter(module, f"{base_name}_g_idx", init_g_idx)
218
191
 
219
192
 
220
193
  def _initialize_attn_scales(module: Module) -> None:
@@ -12,7 +12,9 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from typing import Any, Dict, Optional
15
+ import warnings
16
+ from functools import wraps
17
+ from typing import Any, Callable, Dict, Optional
16
18
 
17
19
  import torch
18
20
  from transformers import AutoConfig
@@ -24,6 +26,8 @@ __all__ = [
24
26
  "tensor_follows_mask_structure",
25
27
  "replace_module",
26
28
  "is_compressed_tensors_config",
29
+ "getattr_chain",
30
+ "deprecated",
27
31
  "Aliasable",
28
32
  ]
29
33
 
@@ -122,6 +126,65 @@ def is_compressed_tensors_config(compression_config: Any) -> bool:
122
126
  return False
123
127
 
124
128
 
129
+ def getattr_chain(obj: Any, chain_str: str, *args, **kwargs) -> Any:
130
+ """
131
+ Chain multiple getattr calls, separated by `.`
132
+
133
+ :param obj: base object whose attributes are being retrieved
134
+ :param chain_str: attribute names separated by `.`
135
+ :param default: default value, throw error otherwise
136
+ """
137
+ if len(args) >= 1:
138
+ has_default = True
139
+ default = args[0]
140
+ elif "default" in kwargs:
141
+ has_default = True
142
+ default = kwargs["default"]
143
+ else:
144
+ has_default = False
145
+
146
+ attr_names = chain_str.split(".")
147
+
148
+ res = obj
149
+ for attr_name in attr_names:
150
+ if not hasattr(res, attr_name):
151
+ if has_default:
152
+ return default
153
+ else:
154
+ raise AttributeError(f"{res} object has no attribute {attr_name}")
155
+ res = getattr(res, attr_name)
156
+
157
+ return res
158
+
159
+
160
+ def deprecated(future_name: Optional[str] = None, message: Optional[str] = None):
161
+ """
162
+ Decorator to mark functions as deprecated
163
+
164
+ :param new_function: Function called in place of depreciated function
165
+ :param message: Depreciation message, replaces default depreciation message
166
+ """
167
+
168
+ def decorator(func: Callable[[Any], Any]):
169
+ nonlocal message
170
+
171
+ if message is None:
172
+ message = (
173
+ f"{func.__name__} is deprecated and will be removed in a future release"
174
+ )
175
+ if future_name is not None:
176
+ message += f". Please use {future_name} instead."
177
+
178
+ @wraps(func)
179
+ def wrapped(*args, **kwargs):
180
+ warnings.warn(message, DeprecationWarning, stacklevel=2)
181
+ return func(*args, **kwargs)
182
+
183
+ return wrapped
184
+
185
+ return decorator
186
+
187
+
125
188
  class Aliasable:
126
189
  """
127
190
  A mixin for enums to allow aliasing of enum members
@@ -11,9 +11,48 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
+ """
15
+ Utilities associated with offloading functionality provided by `accelerate`.
16
+
17
+ | ----------------------------------------------------------------------------------------------------- | # noqa: E501
18
+ | Operation | Without offloading support | With offloading support | # noqa: E501
19
+ | --------- | -------------------------------------- | ------------------------------------------------ | # noqa: E501
20
+ | Add | module.register_parameter(name, param) | register_offload_parameter(module, name, param) | # noqa: E501
21
+ | Check | N/A | has_offloaded_params(module) | # noqa: E501
22
+ | Onload | N/A | with align_module_device(module) | # noqa: E501
23
+ | Update | module.name.data.copy_(new_data) | update_offload_parameter(module, name, new_data) | # noqa: E501
24
+ | Delete | del module.name | delete_offload_parameter(module, name) | # noqa: E501
25
+ | ----------------------------------------------------------------------------------------------------- | # noqa: E501
26
+ """
27
+
28
+ import contextlib
29
+ from functools import wraps
30
+ from typing import Any, Callable, Dict, Literal, Optional, Union
14
31
 
15
32
  import torch
16
- from torch.nn import Module
33
+
34
+
35
+ try:
36
+ from accelerate.hooks import (
37
+ AlignDevicesHook,
38
+ add_hook_to_module,
39
+ remove_hook_from_module,
40
+ )
41
+ from accelerate.utils import (
42
+ OffloadedWeightsLoader,
43
+ PrefixedDataset,
44
+ set_module_tensor_to_device,
45
+ )
46
+
47
+ _has_accelerate = True
48
+ except ImportError:
49
+ _has_accelerate = False
50
+ AlignDevicesHook = None
51
+ add_hook_to_module = None
52
+ remove_hook_from_module = None
53
+ OffloadedWeightsLoader = None
54
+ PrefixedDataset = None
55
+ set_module_tensor_to_device = None
17
56
 
18
57
 
19
58
  __all__ = [
@@ -22,23 +61,44 @@ __all__ = [
22
61
  "get_offloaded_device",
23
62
  "update_prefix_dict",
24
63
  "update_parameter_data",
64
+ "register_offload_parameter",
65
+ "update_offload_parameter",
66
+ "delete_offload_parameter",
67
+ "has_offloaded_params",
68
+ "disable_hf_hook",
69
+ "align_module_device",
25
70
  ]
26
71
 
27
72
 
28
- def is_module_offloaded(module: Module) -> bool:
29
- """
30
- :param module: layer to check
31
- :return: True if layer is offloaded from GPU, False otherwise
32
- """
33
- return hasattr(module, "_hf_hook") and module._hf_hook.offload
73
+ def check_accelerate(fallback: Any):
74
+ def decorator(func: Callable[[Any], Any]):
75
+ if not _has_accelerate:
76
+
77
+ @wraps(func)
78
+ def fallback_fn(*args, **kwargs):
79
+ return fallback
80
+
81
+ return fallback_fn
82
+
83
+ return func
34
84
 
85
+ return decorator
35
86
 
36
- def get_execution_device(module: Module) -> torch.device:
87
+
88
+ """ Candidates for Depreciation """
89
+
90
+
91
+ @check_accelerate(fallback=False)
92
+ def is_module_offloaded(module: torch.nn.Module) -> bool:
93
+ return has_offloaded_params(module)
94
+
95
+
96
+ def get_execution_device(module: torch.nn.Module) -> torch.device:
37
97
  """
38
- :param module: layer to check
39
- :return: device layer is loaded onto during forward pass
98
+ :param module: module to check
99
+ :return: device module is loaded onto during forward pass
40
100
  """
41
- if is_module_offloaded(module):
101
+ if has_offloaded_params(module):
42
102
  return module._hf_hook.execution_device
43
103
  device = next(module.parameters()).device
44
104
 
@@ -49,68 +109,296 @@ def get_execution_device(module: Module) -> torch.device:
49
109
  return device
50
110
 
51
111
 
52
- def get_offloaded_device(module: Module) -> torch.device:
112
+ def get_offloaded_device(module: torch.nn.Module) -> torch.device:
53
113
  """
54
- :param module: layer to check
55
- :return: device layer is offloaded to onto after forward pass
114
+ :param module: module to check
115
+ :return: device module is offloaded to onto after forward pass
56
116
  """
57
- if is_module_offloaded(module):
117
+ if has_offloaded_params(module):
58
118
  first_key = list(module._hf_hook.weights_map.keys())[0]
59
119
  prefix_dataset = module._hf_hook.weights_map.dataset
60
120
  return prefix_dataset[first_key].device
61
121
  return next(module.parameters()).device
62
122
 
63
123
 
64
- def update_prefix_dict(module: Module, key: str, data: torch.Tensor):
124
+ @check_accelerate(fallback=None)
125
+ def update_prefix_dict(module: torch.nn.Module, key: str, data: torch.Tensor):
65
126
  """
66
127
  Updates the offloaded state dict for a given module. Parameter named key is replaced
67
128
  by data. This is neccesary because parameter updates for offloaded modules do not
68
129
  persist automatically between loads. This function only affects the offloaded
69
130
  state dict and not the current state of the loaded module.
70
131
 
71
- :param module: layer containing the parameter to update
132
+ :param module: module containing the parameter to update
72
133
  :param key: name of parameter to update
73
134
  :param data: tensor to update parameter with in the offloaded state dict
74
135
  """
75
- if not is_module_offloaded(module):
136
+ if not has_offloaded_params(module):
76
137
  raise ValueError("Prefix dict is only applicable to offloaded modules")
77
- prefix_dict = module._hf_hook.weights_map
78
- prefix_dict.dataset[f"{prefix_dict.prefix}{key}"] = data
138
+
139
+ weights_map = module._hf_hook.weights_map
140
+ offload_to_weights_map(weights_map, key, data)
79
141
 
80
142
 
81
143
  def update_parameter_data(
82
- module: Module, new_param_data: torch.Tensor, param_name: str
144
+ module: torch.nn.Module, new_param_data: torch.Tensor, param_name: str
83
145
  ):
84
146
  """
85
- Updates the paramter value named param_name for a given module. This function
86
- updates both the current loaded module state and the offloaded state dict if
87
- the module is offloaded. This is neccesary because parameter updates for offloaded
88
- modules do not persist automatically between loads.
147
+ Update the data of an existing parameter and its offload dict. Supports both
148
+ parameters of offloaded modules and non-offloaded modules
89
149
 
90
- :param module: layer containing the parameter to update
150
+ :param module: module containing the parameter to update
91
151
  :param new_param_data: tensor to update parameter with
92
- :param param_name: name of layer parameter to update
152
+ :param param_name: name of module parameter to update
93
153
  """
94
- if not hasattr(module, param_name):
95
- return
154
+ update_offload_parameter(module, param_name, new_param_data)
155
+
156
+
157
+ """ Candidates for Upstreaming """
158
+
159
+
160
+ def register_offload_parameter(
161
+ module: torch.nn.Module,
162
+ name: str,
163
+ parameter: torch.nn.Parameter,
164
+ offload_device: Optional[Union[torch.device, Literal["disk"]]] = None,
165
+ ):
166
+ """
167
+ Register a parameter to the given module which may be offloaded
168
+
169
+ :param module: maybe offloaded module
170
+ :param name: name of newly registered parameter
171
+ :param parameter: parameter being registered
172
+ :param offload_device: device on which weight will be offloaded to. If None is
173
+ provided, then infer device from parameters on module
174
+ """
175
+ has_onload = any(p.device != torch.device("meta") for p in module.parameters())
176
+ module.register_parameter(name, parameter)
177
+
178
+ if has_offloaded_params(module):
179
+ weights_map = module._hf_hook.weights_map
180
+ offload_to_weights_map(weights_map, name, parameter.data, offload_device)
181
+ if not has_onload:
182
+ set_module_tensor_to_device(module, name, "meta")
183
+
184
+
185
+ def update_offload_parameter(
186
+ module: torch.nn.Module,
187
+ name: str,
188
+ data: Optional[torch.Tensor],
189
+ offload_device: Optional[Union[torch.device, Literal["disk"]]] = None,
190
+ ):
191
+ """
192
+ Update the data of an existing parameter and its offload dict. Supports both
193
+ parameters of offloaded modules and non-offloaded modules
194
+
195
+ :param module: module containing the parameter to update
196
+ :param name: name of module parameter to update
197
+ :param data: tensor to update parameter with
198
+ :param offload_device: device on which weight will be offloaded to. If None is
199
+ provided, then infer device from parameters on module
200
+ """
201
+ param = getattr(module, name)
202
+ data = data.to(param.dtype)
203
+
204
+ # copy data into onloaded parameter if applicable
205
+ if param.device != "meta":
206
+ param.data.copy_(data)
207
+
208
+ # update offload dict
209
+ if has_offloaded_params(module):
210
+ weights_map = module._hf_hook.weights_map
211
+ offload_to_weights_map(weights_map, name, data, offload_device)
212
+
213
+
214
+ def delete_offload_parameter(module: torch.nn.Module, name: str):
215
+ """
216
+ Delete a parameter from a module which may be offloaded
217
+
218
+ :param module: maybe offloaded module
219
+ :param name: name of parameter being deleted
220
+ """
221
+ delattr(module, name)
222
+
223
+ if has_offloaded_params(module):
224
+ weights_map = module._hf_hook.weights_map
225
+ delete_from_weights_map(weights_map, name)
96
226
 
97
- device = next(module.parameters()).device
98
227
 
99
- offloaded = False
100
- if is_module_offloaded(module):
101
- offload_device = get_offloaded_device(module)
102
- offloaded = True
228
+ @check_accelerate(fallback=contextlib.nullcontext())
229
+ @contextlib.contextmanager
230
+ def disable_hf_hook(module: torch.nn.Module):
231
+ hooks = {}
103
232
 
104
- parameter = getattr(module, param_name, None)
105
- if parameter is None:
106
- raise ValueError("Attempted to update uninitialized parameter")
233
+ def collect_hooks(module):
234
+ nonlocal hooks
235
+ if hasattr(module, "_hf_hook"):
236
+ hooks[module] = module._hf_hook
237
+ remove_hook_from_module(module)
107
238
 
108
- dtype = parameter.dtype
109
- parameter.data = new_param_data.to(device).to(dtype)
239
+ module.apply(collect_hooks)
110
240
 
111
- if offloaded:
112
- prefix_dict = module._hf_hook.weights_map.dataset
113
- prefix = module._hf_hook.weights_map.prefix
114
- prefix_dict[f"{prefix}{param_name}"] = new_param_data.to(offload_device).to(
115
- dtype
241
+ yield
242
+
243
+ for submodule, hook in hooks.items():
244
+ add_hook_to_module(submodule, hook)
245
+
246
+
247
+ @check_accelerate(fallback=None)
248
+ def offload_to_weights_map(
249
+ weights_map: Union[PrefixedDataset, Dict, OffloadedWeightsLoader],
250
+ key: str,
251
+ value: torch.Tensor,
252
+ offload_device: Optional[Union[torch.device, Literal["disk"]]] = None,
253
+ ):
254
+ """
255
+ Helper function which implements offloaded item assignment for PrefixedDataset,
256
+ OffloadedWeightsLoader, and Dict types.
257
+
258
+ :param weights_map: weight map to be updated with offload information
259
+ :param key: key used to identify weight location
260
+ :param value: weight being offloaded
261
+ :param offload_device: device on which weight will be offloaded to. If None is
262
+ provided, then infer device from parameters in weights_map
263
+ """
264
+ if isinstance(weights_map, PrefixedDataset):
265
+ if offload_device == "disk":
266
+ raise ValueError(f"Cannot offload to disk with type {type(weights_map)}")
267
+
268
+ dataset = weights_map.dataset
269
+ key = f"{weights_map.prefix}{key}"
270
+ offload_to_weights_map(dataset, key, value, offload_device)
271
+
272
+ elif isinstance(weights_map, OffloadedWeightsLoader):
273
+ if key not in weights_map.all_keys:
274
+ weights_map.all_keys.append(key)
275
+
276
+ if len(weights_map.index) <= 0 and offload_device != "disk":
277
+ offload_to_weights_map(weights_map.state_dict, key, value, offload_device)
278
+
279
+ else:
280
+ raise NotImplementedError(
281
+ "Updating weights_map with disk offloading is not implemented yet"
282
+ )
283
+
284
+ elif isinstance(weights_map, dict):
285
+ if offload_device == "disk":
286
+ raise ValueError(f"Cannot offload to disk with type {type(weights_map)}")
287
+
288
+ # infer offload device
289
+ if offload_device is None:
290
+ if key in weights_map:
291
+ offload_device = weights_map[key].device
292
+ else:
293
+ tens = next(iter(weights_map.values()), None)
294
+ if tens is None:
295
+ raise ValueError(
296
+ "Cannot infer offload device from empty weights_map"
297
+ )
298
+ offload_device = tens.device
299
+
300
+ weights_map[key] = value.to(device=offload_device)
301
+
302
+ else:
303
+ raise NotImplementedError(
304
+ "Updating offload data not implemented for weights_map of type "
305
+ f"{type(weights_map)}"
306
+ )
307
+
308
+
309
+ @check_accelerate(fallback=None)
310
+ def delete_from_weights_map(
311
+ weights_map: Union[PrefixedDataset, Dict, OffloadedWeightsLoader],
312
+ key: str,
313
+ ):
314
+ if isinstance(weights_map, PrefixedDataset):
315
+ dataset = weights_map.dataset
316
+ key = f"{weights_map.prefix}{key}"
317
+ delete_from_weights_map(dataset, key)
318
+
319
+ elif isinstance(weights_map, OffloadedWeightsLoader):
320
+ if len(weights_map.index) <= 0:
321
+ delete_from_weights_map(weights_map.state_dict, key)
322
+
323
+ else:
324
+ raise NotImplementedError(
325
+ "Delete from weights_map with disk offloading is not implemented yet"
326
+ )
327
+
328
+ elif isinstance(weights_map, dict):
329
+ del weights_map[key]
330
+
331
+ else:
332
+ raise NotImplementedError(
333
+ "Updating offload data not implemented for weights_map of type "
334
+ f"{type(weights_map)}"
116
335
  )
336
+
337
+
338
+ """ Upstreamed Functions """
339
+
340
+
341
+ # introduced in accelerate v1.1.0
342
+ @check_accelerate(fallback=False)
343
+ def has_offloaded_params(module: torch.nn.Module) -> bool:
344
+ """
345
+ Checks if a module has offloaded parameters by checking if the given module has a
346
+ AlignDevicesHook attached with offloading enabled
347
+
348
+ Args:
349
+ module (`torch.nn.Module`): The module to check for an offload hook.
350
+
351
+ Returns:
352
+ bool: `True` if the module has an offload hook and offloading is enabled,
353
+ `False` otherwise.
354
+ """
355
+ return (
356
+ hasattr(module, "_hf_hook")
357
+ and isinstance(module._hf_hook, AlignDevicesHook)
358
+ and module._hf_hook.offload
359
+ )
360
+
361
+
362
+ # introduced in accelerate v1.1.0
363
+ @check_accelerate(fallback=contextlib.nullcontext())
364
+ @contextlib.contextmanager
365
+ def align_module_device(
366
+ module: torch.nn.Module, execution_device: Optional[torch.device] = None
367
+ ):
368
+ """
369
+ Context manager that moves a module's parameters to the specified execution device.
370
+
371
+ Args:
372
+ module (`torch.nn.Module`):
373
+ Module with parameters to align.
374
+ execution_device (`torch.device`, *optional*):
375
+ If provided, overrides the module's execution device within the context.
376
+ Otherwise, use hook execution device or pass
377
+ """
378
+ if has_offloaded_params(module):
379
+ if execution_device is not None:
380
+ original_device = module._hf_hook.execution_device
381
+ module._hf_hook.execution_device = execution_device
382
+
383
+ try:
384
+ module._hf_hook.pre_forward(module)
385
+ yield
386
+ finally:
387
+ module._hf_hook.post_forward(module, None)
388
+ if execution_device is not None:
389
+ module._hf_hook.execution_device = original_device
390
+
391
+ elif execution_device is not None:
392
+ devices = {
393
+ name: param.device for name, param in module.named_parameters(recurse=False)
394
+ }
395
+ try:
396
+ for name in devices:
397
+ set_module_tensor_to_device(module, name, execution_device)
398
+ yield
399
+ finally:
400
+ for name, device in devices.items():
401
+ set_module_tensor_to_device(module, name, device)
402
+
403
+ else:
404
+ yield
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: compressed-tensors-nightly
3
- Version: 0.8.1.20241220
3
+ Version: 0.8.1.20241223
4
4
  Summary: Library for utilization of compressed safetensors of neural network models
5
5
  Home-page: https://github.com/neuralmagic/compressed-tensors
6
6
  Author: Neuralmagic, Inc.
@@ -31,20 +31,20 @@ compressed_tensors/quantization/lifecycle/apply.py,sha256=jCUSgeOBtagE5IhgIbyYMZ
31
31
  compressed_tensors/quantization/lifecycle/compressed.py,sha256=Fj9n66IN0EWsOAkBHg3O0GlOQpxstqjCcs0ttzMXrJ0,2296
32
32
  compressed_tensors/quantization/lifecycle/forward.py,sha256=QPL6-vKOFuKdKIEsVqMhsw4x552Jpm2sqO0oeChbnrM,12941
33
33
  compressed_tensors/quantization/lifecycle/helpers.py,sha256=C0mhy2vJ0fCjVeN4kFNhw8Eq1wkteBGHiZ36RVLThRY,944
34
- compressed_tensors/quantization/lifecycle/initialize.py,sha256=WFhbdrKHRZj_kScYCua6HMSbD9rKb8juB6k_EZj7EN4,8634
34
+ compressed_tensors/quantization/lifecycle/initialize.py,sha256=hymYtayTSumm8KCYAYPY267aWmlsJpt8oQFiRblk8qE,7452
35
35
  compressed_tensors/quantization/utils/__init__.py,sha256=VdtEmP0bvuND_IGQnyqUPc5lnFp-1_yD7StKSX4x80w,656
36
36
  compressed_tensors/quantization/utils/helpers.py,sha256=DBP-sGRpGAY01K0LFE7qqonNj4hkTYL_mXrMs2LtAD8,14100
37
37
  compressed_tensors/registry/__init__.py,sha256=FwLSNYqfIrb5JD_6OK_MT4_svvKTN_nEhpgQlQvGbjI,658
38
38
  compressed_tensors/registry/registry.py,sha256=vRcjVB1ITfSbfYUaGndBBmqhip_5vsS62weorVg0iXo,11896
39
39
  compressed_tensors/utils/__init__.py,sha256=gS4gSU2pwcAbsKj-6YMaqhm25udFy6ISYaWBf-myRSM,808
40
- compressed_tensors/utils/helpers.py,sha256=T3p0TbhWbQIRjL6Up2Z7UhZO5jpR6WxBhYPPvrhE6lE,5018
41
- compressed_tensors/utils/offload.py,sha256=d9q8LNe8HyF8tOjgjA7QGLD3HRysmNp0d8eBbdqBgIM,4089
40
+ compressed_tensors/utils/helpers.py,sha256=XF36-SLkXnAHh0VzbvUlAdh6a88aCQvS_WeYs9Lfio8,6827
41
+ compressed_tensors/utils/offload.py,sha256=cMmzd9IdlNbs29CReHj1PPSLUM6OWaT5YumlLT5eP3w,13845
42
42
  compressed_tensors/utils/permutations_24.py,sha256=kx6fsfDHebx94zsSzhXGyCyuC9sVyah6BUUir_StT28,2530
43
43
  compressed_tensors/utils/permute.py,sha256=V6tJLKo3Syccj-viv4F7ZKZgJeCB-hl-dK8RKI_kBwI,2355
44
44
  compressed_tensors/utils/safetensors_load.py,sha256=m08ANVuTBxQdoa6LufDgcNJ7wCLDJolyZljB8VEybAU,8578
45
45
  compressed_tensors/utils/semi_structured_conversions.py,sha256=XKNffPum54kPASgqKzgKvyeqWPAkair2XEQXjkp7ho8,13489
46
- compressed_tensors_nightly-0.8.1.20241220.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
47
- compressed_tensors_nightly-0.8.1.20241220.dist-info/METADATA,sha256=KDGxrqR4lES09Mf7qx-xR7SAdc3Cb5TKmqsePVyjYug,6799
48
- compressed_tensors_nightly-0.8.1.20241220.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
49
- compressed_tensors_nightly-0.8.1.20241220.dist-info/top_level.txt,sha256=w2i-GyPs2s1UwVxvutSvN_lM22SXC2hQFBmoMcPnV7Y,19
50
- compressed_tensors_nightly-0.8.1.20241220.dist-info/RECORD,,
46
+ compressed_tensors_nightly-0.8.1.20241223.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
47
+ compressed_tensors_nightly-0.8.1.20241223.dist-info/METADATA,sha256=UvHeb8t-XsWBNCOSURieDhv3J8p6Hap-VNEa-odfA78,6799
48
+ compressed_tensors_nightly-0.8.1.20241223.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
49
+ compressed_tensors_nightly-0.8.1.20241223.dist-info/top_level.txt,sha256=w2i-GyPs2s1UwVxvutSvN_lM22SXC2hQFBmoMcPnV7Y,19
50
+ compressed_tensors_nightly-0.8.1.20241223.dist-info/RECORD,,