compressed-tensors-nightly 0.7.1.20241031__py3-none-any.whl → 0.7.1.20241102__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- compressed_tensors/quantization/__init__.py +0 -1
- compressed_tensors/quantization/lifecycle/__init__.py +0 -2
- compressed_tensors/quantization/lifecycle/apply.py +1 -16
- compressed_tensors/quantization/lifecycle/forward.py +15 -109
- compressed_tensors/quantization/lifecycle/initialize.py +18 -21
- compressed_tensors/quantization/quant_args.py +11 -22
- compressed_tensors/quantization/utils/helpers.py +125 -8
- compressed_tensors/registry/registry.py +1 -1
- {compressed_tensors_nightly-0.7.1.20241031.dist-info → compressed_tensors_nightly-0.7.1.20241102.dist-info}/METADATA +1 -1
- {compressed_tensors_nightly-0.7.1.20241031.dist-info → compressed_tensors_nightly-0.7.1.20241102.dist-info}/RECORD +13 -21
- compressed_tensors/quantization/cache.py +0 -200
- compressed_tensors/quantization/lifecycle/calibration.py +0 -80
- compressed_tensors/quantization/lifecycle/frozen.py +0 -50
- compressed_tensors/quantization/observers/__init__.py +0 -21
- compressed_tensors/quantization/observers/base.py +0 -213
- compressed_tensors/quantization/observers/helpers.py +0 -149
- compressed_tensors/quantization/observers/min_max.py +0 -104
- compressed_tensors/quantization/observers/mse.py +0 -164
- {compressed_tensors_nightly-0.7.1.20241031.dist-info → compressed_tensors_nightly-0.7.1.20241102.dist-info}/LICENSE +0 -0
- {compressed_tensors_nightly-0.7.1.20241031.dist-info → compressed_tensors_nightly-0.7.1.20241102.dist-info}/WHEEL +0 -0
- {compressed_tensors_nightly-0.7.1.20241031.dist-info → compressed_tensors_nightly-0.7.1.20241102.dist-info}/top_level.txt +0 -0
@@ -1,200 +0,0 @@
|
|
1
|
-
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing,
|
10
|
-
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
|
16
|
-
from enum import Enum
|
17
|
-
from typing import Any, Dict, List, Optional, Tuple
|
18
|
-
|
19
|
-
from compressed_tensors.quantization.observers import Observer
|
20
|
-
from compressed_tensors.quantization.quant_args import QuantizationArgs
|
21
|
-
from torch import Tensor
|
22
|
-
from transformers import DynamicCache as HFDyanmicCache
|
23
|
-
|
24
|
-
|
25
|
-
class KVCacheScaleType(Enum):
|
26
|
-
KEY = "k_scale"
|
27
|
-
VALUE = "v_scale"
|
28
|
-
|
29
|
-
|
30
|
-
class QuantizedKVParameterCache(HFDyanmicCache):
|
31
|
-
"""
|
32
|
-
Quantized KV cache used in the forward call based on HF's dynamic cache.
|
33
|
-
Quantization strategy (tensor, group, channel) set from Quantization arg's strategy
|
34
|
-
Singleton, so that the same cache gets reused in all forward call of self_attn.
|
35
|
-
Each time forward is called, .update() is called, and ._quantize(), ._dequantize()
|
36
|
-
gets called appropriately.
|
37
|
-
The size of tensor is
|
38
|
-
`[batch_size, num_heads, seq_len - residual_length, head_dim]`.
|
39
|
-
|
40
|
-
|
41
|
-
Triggered by adding kv_cache_scheme in the recipe.
|
42
|
-
|
43
|
-
Example:
|
44
|
-
|
45
|
-
```python3
|
46
|
-
recipe = '''
|
47
|
-
quant_stage:
|
48
|
-
quant_modifiers:
|
49
|
-
QuantizationModifier:
|
50
|
-
kv_cache_scheme:
|
51
|
-
num_bits: 8
|
52
|
-
type: float
|
53
|
-
strategy: tensor
|
54
|
-
dynamic: false
|
55
|
-
symmetric: true
|
56
|
-
'''
|
57
|
-
|
58
|
-
"""
|
59
|
-
|
60
|
-
_instance = None
|
61
|
-
_initialized = False
|
62
|
-
|
63
|
-
def __new__(cls, *args, **kwargs):
|
64
|
-
"""Singleton"""
|
65
|
-
if cls._instance is None:
|
66
|
-
cls._instance = super(QuantizedKVParameterCache, cls).__new__(cls)
|
67
|
-
return cls._instance
|
68
|
-
|
69
|
-
def __init__(self, quantization_args: QuantizationArgs):
|
70
|
-
if not self._initialized:
|
71
|
-
super().__init__()
|
72
|
-
|
73
|
-
self.quantization_args = quantization_args
|
74
|
-
|
75
|
-
self.k_observers: List[Observer] = []
|
76
|
-
self.v_observers: List[Observer] = []
|
77
|
-
|
78
|
-
# each index corresponds to layer_idx of the attention layer
|
79
|
-
self.k_scales: List[Tensor] = []
|
80
|
-
self.v_scales: List[Tensor] = []
|
81
|
-
|
82
|
-
self.k_zps: List[Tensor] = []
|
83
|
-
self.v_zps: List[Tensor] = []
|
84
|
-
|
85
|
-
self._initialized = True
|
86
|
-
|
87
|
-
def update(
|
88
|
-
self,
|
89
|
-
key_states: Tensor,
|
90
|
-
value_states: Tensor,
|
91
|
-
layer_idx: int,
|
92
|
-
cache_kwargs: Optional[Dict[str, Any]] = None,
|
93
|
-
) -> Tuple[Tensor, Tensor]:
|
94
|
-
"""
|
95
|
-
Get the k_scale and v_scale and output the
|
96
|
-
fakequant-ed key_states and value_states
|
97
|
-
"""
|
98
|
-
|
99
|
-
if len(self.k_observers) <= layer_idx:
|
100
|
-
k_observer = self.quantization_args.get_observer()
|
101
|
-
v_observer = self.quantization_args.get_observer()
|
102
|
-
|
103
|
-
self.k_observers.append(k_observer)
|
104
|
-
self.v_observers.append(v_observer)
|
105
|
-
|
106
|
-
q_key_states = self._quantize(
|
107
|
-
key_states.contiguous(), KVCacheScaleType.KEY, layer_idx
|
108
|
-
)
|
109
|
-
q_value_states = self._quantize(
|
110
|
-
value_states.contiguous(), KVCacheScaleType.VALUE, layer_idx
|
111
|
-
)
|
112
|
-
|
113
|
-
qdq_key_states = self._dequantize(q_key_states, KVCacheScaleType.KEY, layer_idx)
|
114
|
-
qdq_value_states = self._dequantize(
|
115
|
-
q_value_states, KVCacheScaleType.VALUE, layer_idx
|
116
|
-
)
|
117
|
-
|
118
|
-
keys_to_return, values_to_return = qdq_key_states, qdq_value_states
|
119
|
-
|
120
|
-
return keys_to_return, values_to_return
|
121
|
-
|
122
|
-
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
123
|
-
"""
|
124
|
-
Returns the sequence length of the cached states.
|
125
|
-
A layer index can be optionally passed.
|
126
|
-
"""
|
127
|
-
if len(self.key_cache) <= layer_idx:
|
128
|
-
return 0
|
129
|
-
# since we cannot get the seq_length of each layer directly and
|
130
|
-
# rely on `_seen_tokens` which is updated every "layer_idx" == 0,
|
131
|
-
# this is a hack to get the actual seq_length for the given layer_idx
|
132
|
-
# this part of code otherwise fails when used to
|
133
|
-
# verify attn_weight shape in some models
|
134
|
-
return self._seen_tokens if layer_idx == 0 else self._seen_tokens - 1
|
135
|
-
|
136
|
-
def reset_states(self):
|
137
|
-
"""reset the kv states (used in calibration)"""
|
138
|
-
self.key_cache: List[Tensor] = []
|
139
|
-
self.value_cache: List[Tensor] = []
|
140
|
-
# Used in `generate` to keep tally of how many tokens the cache has seen
|
141
|
-
self._seen_tokens = 0
|
142
|
-
self._quantized_key_cache: List[Tensor] = []
|
143
|
-
self._quantized_value_cache: List[Tensor] = []
|
144
|
-
|
145
|
-
def reset(self):
|
146
|
-
"""
|
147
|
-
Reset the instantiation, create new instance on init
|
148
|
-
"""
|
149
|
-
QuantizedKVParameterCache._instance = None
|
150
|
-
QuantizedKVParameterCache._initialized = False
|
151
|
-
|
152
|
-
def _quantize(self, tensor, kv_type, layer_idx):
|
153
|
-
"""Quantizes a key/value using a defined quantization method."""
|
154
|
-
from compressed_tensors.quantization.lifecycle.forward import quantize
|
155
|
-
|
156
|
-
if kv_type == KVCacheScaleType.KEY: # key type
|
157
|
-
observer = self.k_observers[layer_idx]
|
158
|
-
scales = self.k_scales
|
159
|
-
zps = self.k_zps
|
160
|
-
else:
|
161
|
-
assert kv_type == KVCacheScaleType.VALUE
|
162
|
-
observer = self.v_observers[layer_idx]
|
163
|
-
scales = self.v_scales
|
164
|
-
zps = self.v_zps
|
165
|
-
|
166
|
-
scale, zp = observer(tensor)
|
167
|
-
if len(scales) <= layer_idx:
|
168
|
-
scales.append(scale)
|
169
|
-
zps.append(zp)
|
170
|
-
else:
|
171
|
-
scales[layer_idx] = scale
|
172
|
-
zps[layer_idx] = scale
|
173
|
-
|
174
|
-
q_tensor = quantize(
|
175
|
-
x=tensor,
|
176
|
-
scale=scale,
|
177
|
-
zero_point=zp,
|
178
|
-
args=self.quantization_args,
|
179
|
-
)
|
180
|
-
return q_tensor
|
181
|
-
|
182
|
-
def _dequantize(self, qtensor, kv_type, layer_idx):
|
183
|
-
"""Dequantizes back the tensor that was quantized by `self._quantize()`"""
|
184
|
-
from compressed_tensors.quantization.lifecycle.forward import dequantize
|
185
|
-
|
186
|
-
if kv_type == KVCacheScaleType.KEY:
|
187
|
-
scale = self.k_scales[layer_idx]
|
188
|
-
zp = self.k_zps[layer_idx]
|
189
|
-
else:
|
190
|
-
assert kv_type == KVCacheScaleType.VALUE
|
191
|
-
scale = self.v_scales[layer_idx]
|
192
|
-
zp = self.v_zps[layer_idx]
|
193
|
-
|
194
|
-
qdq_tensor = dequantize(
|
195
|
-
x_q=qtensor,
|
196
|
-
scale=scale,
|
197
|
-
zero_point=zp,
|
198
|
-
args=self.quantization_args,
|
199
|
-
)
|
200
|
-
return qdq_tensor
|
@@ -1,80 +0,0 @@
|
|
1
|
-
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing,
|
10
|
-
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
|
16
|
-
import logging
|
17
|
-
|
18
|
-
from compressed_tensors.quantization.quant_config import QuantizationStatus
|
19
|
-
from compressed_tensors.utils import is_module_offloaded, update_parameter_data
|
20
|
-
from torch.nn import Module
|
21
|
-
|
22
|
-
|
23
|
-
__all__ = [
|
24
|
-
"set_module_for_calibration",
|
25
|
-
]
|
26
|
-
|
27
|
-
|
28
|
-
_LOGGER = logging.getLogger(__name__)
|
29
|
-
|
30
|
-
|
31
|
-
def set_module_for_calibration(module: Module, quantize_weights_upfront: bool = True):
|
32
|
-
"""
|
33
|
-
marks a layer as ready for calibration which activates observers
|
34
|
-
to update scales and zero points on each forward pass
|
35
|
-
|
36
|
-
apply to full model with `model.apply(set_module_for_calibration)`
|
37
|
-
|
38
|
-
:param module: module to set for calibration
|
39
|
-
:param quantize_weights_upfront: whether to automatically
|
40
|
-
run weight quantization at the start of calibration
|
41
|
-
"""
|
42
|
-
if not getattr(module, "quantization_scheme", None):
|
43
|
-
# no quantization scheme nothing to do
|
44
|
-
return
|
45
|
-
status = getattr(module, "quantization_status", None)
|
46
|
-
if not status or status != QuantizationStatus.INITIALIZED:
|
47
|
-
_LOGGER.warning(
|
48
|
-
f"Attempting set module with status {status} to calibration mode. "
|
49
|
-
f"but status is not {QuantizationStatus.INITIALIZED} - you may "
|
50
|
-
"be calibrating an uninitialized module which may fail or attempting "
|
51
|
-
"to re-calibrate a frozen module"
|
52
|
-
)
|
53
|
-
|
54
|
-
if quantize_weights_upfront and module.quantization_scheme.weights is not None:
|
55
|
-
# set weight scale and zero_point up front, calibration data doesn't affect it
|
56
|
-
if not hasattr(module, "weight_observer"):
|
57
|
-
from compressed_tensors.quantization.lifecycle.initialize import (
|
58
|
-
initialize_observers,
|
59
|
-
)
|
60
|
-
|
61
|
-
initialize_observers(
|
62
|
-
module=module,
|
63
|
-
base_name="weight",
|
64
|
-
quantization_args=module.quantization_scheme.weights,
|
65
|
-
)
|
66
|
-
|
67
|
-
offloaded = is_module_offloaded(module)
|
68
|
-
if offloaded:
|
69
|
-
module._hf_hook.pre_forward(module)
|
70
|
-
|
71
|
-
observer = module.weight_observer
|
72
|
-
g_idx = getattr(module, "weight_g_idx", None)
|
73
|
-
scale, zero_point = observer(module.weight, g_idx=g_idx)
|
74
|
-
update_parameter_data(module, scale, "weight_scale")
|
75
|
-
update_parameter_data(module, zero_point, "weight_zero_point")
|
76
|
-
|
77
|
-
if offloaded:
|
78
|
-
module._hf_hook.post_forward(module, None)
|
79
|
-
|
80
|
-
module.quantization_status = QuantizationStatus.CALIBRATION
|
@@ -1,50 +0,0 @@
|
|
1
|
-
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing,
|
10
|
-
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
|
16
|
-
from compressed_tensors.quantization.quant_config import QuantizationStatus
|
17
|
-
from torch.nn import Module
|
18
|
-
|
19
|
-
|
20
|
-
__all__ = [
|
21
|
-
"freeze_module_quantization",
|
22
|
-
]
|
23
|
-
|
24
|
-
|
25
|
-
def freeze_module_quantization(module: Module):
|
26
|
-
"""
|
27
|
-
deletes observers so static quantization is completed.
|
28
|
-
|
29
|
-
apply to full model with `model.apply(freeze_module_quantization)`
|
30
|
-
|
31
|
-
:param module: module to freeze quantization for
|
32
|
-
"""
|
33
|
-
scheme = getattr(module, "quantization_scheme", None)
|
34
|
-
if not scheme:
|
35
|
-
# no quantization scheme nothing to do
|
36
|
-
return
|
37
|
-
|
38
|
-
if module.quantization_status == QuantizationStatus.FROZEN:
|
39
|
-
# nothing to do, already frozen
|
40
|
-
return
|
41
|
-
|
42
|
-
# delete observers from module if not dynamic
|
43
|
-
if hasattr(module, "input_observer") and not scheme.input_activations.dynamic:
|
44
|
-
delattr(module, "input_observer")
|
45
|
-
if hasattr(module, "weight_observer") and not scheme.weights.dynamic:
|
46
|
-
delattr(module, "weight_observer")
|
47
|
-
if hasattr(module, "output_observer") and not scheme.output_activations.dynamic:
|
48
|
-
delattr(module, "output_observer")
|
49
|
-
|
50
|
-
module.quantization_status = QuantizationStatus.FROZEN
|
@@ -1,21 +0,0 @@
|
|
1
|
-
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing,
|
10
|
-
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
# flake8: noqa
|
16
|
-
# isort: skip_file
|
17
|
-
|
18
|
-
from .helpers import *
|
19
|
-
from .base import *
|
20
|
-
from .min_max import *
|
21
|
-
from .mse import *
|
@@ -1,213 +0,0 @@
|
|
1
|
-
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing,
|
10
|
-
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
import logging
|
16
|
-
from math import ceil
|
17
|
-
from typing import Any, Iterable, Optional, Tuple, Union
|
18
|
-
|
19
|
-
import torch
|
20
|
-
from compressed_tensors.quantization.quant_args import (
|
21
|
-
QuantizationArgs,
|
22
|
-
QuantizationStrategy,
|
23
|
-
)
|
24
|
-
from compressed_tensors.registry.registry import RegistryMixin
|
25
|
-
from compressed_tensors.utils import safe_permute
|
26
|
-
from torch import FloatTensor, IntTensor, Tensor
|
27
|
-
from torch.nn import Module
|
28
|
-
|
29
|
-
|
30
|
-
_LOGGER = logging.getLogger(__name__)
|
31
|
-
|
32
|
-
|
33
|
-
__all__ = ["Observer"]
|
34
|
-
|
35
|
-
|
36
|
-
class Observer(Module, RegistryMixin):
|
37
|
-
"""
|
38
|
-
Base Observer class to be subclassed for specific implementation.
|
39
|
-
Subclasses should override `calculate_qparams` to return a scale, zero_point
|
40
|
-
pair
|
41
|
-
"""
|
42
|
-
|
43
|
-
def __init__(self, quantization_args: QuantizationArgs):
|
44
|
-
self.quantization_args: QuantizationArgs = quantization_args
|
45
|
-
super().__init__()
|
46
|
-
self._scale = None
|
47
|
-
self._zero_point = None
|
48
|
-
self._num_observed_tokens = None
|
49
|
-
|
50
|
-
@torch.no_grad()
|
51
|
-
def forward(
|
52
|
-
self, observed: Tensor, g_idx: Optional[Tensor] = None
|
53
|
-
) -> Tuple[FloatTensor, IntTensor]:
|
54
|
-
"""
|
55
|
-
maps directly to get_qparams
|
56
|
-
:param observed: optional observed tensor from which to calculate
|
57
|
-
quantization parameters
|
58
|
-
:param g_idx: optional mapping from column index to group index
|
59
|
-
:return: tuple of scale and zero point based on last observed value
|
60
|
-
"""
|
61
|
-
self.record_observed_tokens(observed)
|
62
|
-
return self.get_qparams(observed=observed, g_idx=g_idx)
|
63
|
-
|
64
|
-
def calculate_qparams(
|
65
|
-
self,
|
66
|
-
observed: Tensor,
|
67
|
-
reduce_dims: Optional[Tuple[int]] = None,
|
68
|
-
) -> Tuple[FloatTensor, IntTensor]:
|
69
|
-
"""
|
70
|
-
:param observed: observed tensor to calculate quantization parameters for
|
71
|
-
:param reduce_dims: optional tuple of dimensions to reduce along,
|
72
|
-
returned scale and zero point will be shaped (1,) along the
|
73
|
-
reduced dimensions
|
74
|
-
:return: tuple of scale and zero point derived from the observed tensor
|
75
|
-
"""
|
76
|
-
raise NotImplementedError(f"{self.__class__} must implement calculate_qparams")
|
77
|
-
|
78
|
-
def post_calculate_qparams(self) -> None:
|
79
|
-
"""
|
80
|
-
Run any logic specific to its observers after running calculate_qparams
|
81
|
-
"""
|
82
|
-
...
|
83
|
-
|
84
|
-
def get_qparams(
|
85
|
-
self,
|
86
|
-
observed: Optional[Tensor] = None,
|
87
|
-
g_idx: Optional[Tensor] = None,
|
88
|
-
) -> Tuple[FloatTensor, IntTensor]:
|
89
|
-
"""
|
90
|
-
Convenience function to wrap overwritten calculate_qparams
|
91
|
-
adds support to make observed tensor optional and support for tracking latest
|
92
|
-
calculated scale and zero point
|
93
|
-
|
94
|
-
:param observed: optional observed tensor to calculate quantization parameters
|
95
|
-
from
|
96
|
-
:param g_idx: optional mapping from column index to group index
|
97
|
-
:return: tuple of scale and zero point based on last observed value
|
98
|
-
"""
|
99
|
-
if observed is not None:
|
100
|
-
group_size = self.quantization_args.group_size
|
101
|
-
|
102
|
-
if self.quantization_args.strategy == QuantizationStrategy.TENSOR:
|
103
|
-
|
104
|
-
# re-calculate scale and zero point, update the stored value
|
105
|
-
self._scale, self._zero_point = self.calculate_qparams(observed)
|
106
|
-
|
107
|
-
elif self.quantization_args.strategy == QuantizationStrategy.GROUP:
|
108
|
-
rows = observed.shape[0]
|
109
|
-
columns = observed.shape[1]
|
110
|
-
num_groups = int(ceil(columns / group_size))
|
111
|
-
self._scale = torch.empty(
|
112
|
-
(rows, num_groups), dtype=observed.dtype, device=observed.device
|
113
|
-
)
|
114
|
-
zp_dtype = self.quantization_args.pytorch_dtype()
|
115
|
-
self._zero_point = torch.empty(
|
116
|
-
(rows, num_groups), dtype=zp_dtype, device=observed.device
|
117
|
-
)
|
118
|
-
|
119
|
-
# support column-order (default) quantization as well as other orderings
|
120
|
-
# such as activation ordering. Below checks if g_idx has initialized
|
121
|
-
is_column_order = g_idx is None or -1 in g_idx
|
122
|
-
if is_column_order:
|
123
|
-
group_sizes = torch.full((num_groups,), group_size, dtype=torch.int)
|
124
|
-
else:
|
125
|
-
group_indices, group_sizes = torch.unique(g_idx, return_counts=True)
|
126
|
-
group_sizes = group_sizes[torch.argsort(group_indices)]
|
127
|
-
|
128
|
-
perm = torch.argsort(g_idx)
|
129
|
-
observed = safe_permute(observed, perm, dim=1)
|
130
|
-
|
131
|
-
# TODO: experiment with vectorizing for loop for performance
|
132
|
-
end = 0
|
133
|
-
for group_index, group_count in enumerate(group_sizes):
|
134
|
-
start = end
|
135
|
-
end = start + group_count
|
136
|
-
scale, zero_point = self.get_qparams_along_dim(
|
137
|
-
observed[:, start:end],
|
138
|
-
0,
|
139
|
-
tensor_id=group_index,
|
140
|
-
)
|
141
|
-
|
142
|
-
self._scale[:, group_index] = scale.squeeze(1)
|
143
|
-
self._zero_point[:, group_index] = zero_point.squeeze(1)
|
144
|
-
|
145
|
-
elif self.quantization_args.strategy == QuantizationStrategy.CHANNEL:
|
146
|
-
# assume observed is transposed, because its the output, hence use dim 0
|
147
|
-
self._scale, self._zero_point = self.get_qparams_along_dim(observed, 0)
|
148
|
-
|
149
|
-
elif self.quantization_args.strategy == QuantizationStrategy.TOKEN:
|
150
|
-
# use dim 1, assume the obsersed.shape = [batch, token, hidden]
|
151
|
-
# should be batch, token
|
152
|
-
self._scale, self._zero_point = self.get_qparams_along_dim(
|
153
|
-
observed,
|
154
|
-
dim={0, 1},
|
155
|
-
)
|
156
|
-
|
157
|
-
return self._scale, self._zero_point
|
158
|
-
|
159
|
-
def get_qparams_along_dim(
|
160
|
-
self,
|
161
|
-
observed,
|
162
|
-
dim: Union[int, Iterable[int]],
|
163
|
-
tensor_id: Optional[Any] = None,
|
164
|
-
):
|
165
|
-
if isinstance(dim, int):
|
166
|
-
dim = [dim]
|
167
|
-
dim = set(dim)
|
168
|
-
|
169
|
-
reduce_dims = tuple(idx for idx in range(observed.ndim) if idx not in dim)
|
170
|
-
return self.calculate_qparams(
|
171
|
-
observed, reduce_dims=reduce_dims, tensor_id=tensor_id
|
172
|
-
)
|
173
|
-
|
174
|
-
def record_observed_tokens(self, batch_tensor: Tensor):
|
175
|
-
"""
|
176
|
-
Counts the number of tokens observed during the
|
177
|
-
forward passes. The count is aggregated in the
|
178
|
-
_num_observed_tokens attribute of the class.
|
179
|
-
|
180
|
-
Note: The batch_tensor is expected to have two dimensions
|
181
|
-
(batch_size * sequence_length, num_features). This is the
|
182
|
-
general shape expected by the forward pass of the expert
|
183
|
-
layers in a MOE model. If the input tensor does not have
|
184
|
-
two dimensions, the _num_observed_tokens attribute will be set
|
185
|
-
to None.
|
186
|
-
"""
|
187
|
-
if not isinstance(batch_tensor, Tensor):
|
188
|
-
raise ValueError(f"Expected value to be a tensor, got {type(batch_tensor)}")
|
189
|
-
|
190
|
-
if batch_tensor.ndim != 2:
|
191
|
-
_LOGGER.debug(
|
192
|
-
"The input tensor is expected to have two dimensions "
|
193
|
-
"(batch_size * sequence_length, num_features). "
|
194
|
-
f"The input tensor has {batch_tensor.ndim} dimensions."
|
195
|
-
)
|
196
|
-
return
|
197
|
-
|
198
|
-
if self._num_observed_tokens is None:
|
199
|
-
# initialize the count
|
200
|
-
self._num_observed_tokens = 0
|
201
|
-
|
202
|
-
# batch_tensor (batch_size * sequence_length, num_features)
|
203
|
-
# observed_tokens (batch_size * sequence_length)
|
204
|
-
observed_tokens, _ = batch_tensor.shape
|
205
|
-
self._num_observed_tokens += observed_tokens
|
206
|
-
|
207
|
-
def reset(self):
|
208
|
-
"""
|
209
|
-
Reset the state of the observer
|
210
|
-
"""
|
211
|
-
self._num_observed_tokens = None
|
212
|
-
self._scale = None
|
213
|
-
self._zero_point = None
|