compressed-tensors-nightly 0.5.0.20240812__py3-none-any.whl → 0.5.0.20240814__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: compressed-tensors-nightly
3
- Version: 0.5.0.20240812
3
+ Version: 0.5.0.20240814
4
4
  Summary: Library for utilization of compressed safetensors of neural network models
5
5
  Home-page: https://github.com/neuralmagic/compressed-tensors
6
6
  Author: Neuralmagic, Inc.
@@ -20,32 +20,43 @@ Requires-Dist: flake8>=3.8.3; extra == "dev"
20
20
  Requires-Dist: pytest>=6.0.0; extra == "dev"
21
21
  Requires-Dist: nbconvert>=7.16.3; extra == "dev"
22
22
 
23
- # compressed_tensors
23
+ # compressed-tensors
24
24
 
25
- This repository extends a [safetensors](https://github.com/huggingface/safetensors) format to efficiently store sparse and/or quantized tensors on disk. `compressed-tensors` format supports multiple compression types to minimize the disk space and facilitate the tensor manipulation.
25
+ The `compressed-tensors` library extends the [safetensors](https://github.com/huggingface/safetensors) format, providing a versatile and efficient way to store and manage compressed tensor data. This library supports various quantization and sparsity schemes, making it a unified format for handling different model optimizations like GPTQ, AWQ, SmoothQuant, INT8, FP8, SparseGPT, and more.
26
26
 
27
- ## Motivation
27
+ ## Why `compressed-tensors`?
28
28
 
29
- ### Reduce disk space by saving sparse tensors in a compressed format
29
+ As model compression becomes increasingly important for efficient deployment of LLMs, the landscape of quantization and compression techniques has become increasingly fragmented.
30
+ Each method often comes with its own storage format and loading procedures, making it challenging to work with multiple techniques or switch between them.
31
+ `compressed-tensors` addresses this by providing a single, extensible format that can represent a wide variety of compression schemes.
30
32
 
31
- The compressed format stores the data much more efficiently by taking advantage of two properties of tensors:
33
+ * **Unified Checkpoint Format**: Supports various compression schemes in a single, consistent format.
34
+ * **Wide Compatibility**: Works with popular quantization methods like GPTQ, SmoothQuant, and FP8. See [llm-compressor](https://github.com/vllm-project/llm-compressor)
35
+ * **Flexible Quantization Support**:
36
+ * Weight-only quantization (e.g., W4A16, W8A16, WnA16)
37
+ * Activation quantization (e.g., W8A8)
38
+ * KV cache quantization
39
+ * Non-uniform schemes (different layers can be quantized in different ways!)
40
+ * **Sparsity Support**: Handles both unstructured and semi-structured (e.g., 2:4) sparsity patterns.
41
+ * **Open-Source Integration**: Designed to work seamlessly with Hugging Face models and PyTorch.
32
42
 
33
- - Sparse tensors -> due to a large number of entries that are equal to zero.
34
- - Quantized -> due to their low precision representation.
35
-
36
- ### Introduce an elegant interface to save/load compressed tensors
37
-
38
- The library provides the user with the ability to compress/decompress tensors. The properties of tensors are defined by human-readable configs, allowing the users to understand the compression format at a quick glance.
43
+ This allows developers and researchers to easily experiment with composing different quantization methods, simplify model deployment pipelines, and reduce the overhead of supporting multiple compression formats in inference engines.
39
44
 
40
45
  ## Installation
41
46
 
42
- ### Pip
47
+ ### From [PyPI](https://pypi.org/project/compressed-tensors)
43
48
 
49
+ Stable release:
44
50
  ```bash
45
51
  pip install compressed-tensors
46
52
  ```
47
53
 
48
- ### From source
54
+ Nightly release:
55
+ ```bash
56
+ pip install compressed-tensors-nightly
57
+ ```
58
+
59
+ ### From Source
49
60
 
50
61
  ```bash
51
62
  git clone https://github.com/neuralmagic/compressed-tensors
@@ -41,8 +41,8 @@ compressed_tensors/utils/offload.py,sha256=qAMwoFT3WEQ9nB_SegE12ob8ghDugddQseE6z
41
41
  compressed_tensors/utils/permutations_24.py,sha256=kx6fsfDHebx94zsSzhXGyCyuC9sVyah6BUUir_StT28,2530
42
42
  compressed_tensors/utils/safetensors_load.py,sha256=0MheXwx1jeY12PeISppiSIZHs6rmN2YddwPpFb9V67I,8527
43
43
  compressed_tensors/utils/semi_structured_conversions.py,sha256=g1EZHzdv-ko7ufPX430dp7wE33o6FWJXuSP4zZydCu0,13488
44
- compressed_tensors_nightly-0.5.0.20240812.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
45
- compressed_tensors_nightly-0.5.0.20240812.dist-info/METADATA,sha256=hm6LdxXI04P0BWQv4mhejSipHT1WIeu3blhiGHBWfJQ,5680
46
- compressed_tensors_nightly-0.5.0.20240812.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
47
- compressed_tensors_nightly-0.5.0.20240812.dist-info/top_level.txt,sha256=w2i-GyPs2s1UwVxvutSvN_lM22SXC2hQFBmoMcPnV7Y,19
48
- compressed_tensors_nightly-0.5.0.20240812.dist-info/RECORD,,
44
+ compressed_tensors_nightly-0.5.0.20240814.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
45
+ compressed_tensors_nightly-0.5.0.20240814.dist-info/METADATA,sha256=BSOm6u2fWJxLBox3AwpDt9mo-vUBqToHwv3qtSEKPDQ,6749
46
+ compressed_tensors_nightly-0.5.0.20240814.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
47
+ compressed_tensors_nightly-0.5.0.20240814.dist-info/top_level.txt,sha256=w2i-GyPs2s1UwVxvutSvN_lM22SXC2hQFBmoMcPnV7Y,19
48
+ compressed_tensors_nightly-0.5.0.20240814.dist-info/RECORD,,