compressed-tensors-nightly 0.3.3.20240514__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- compressed_tensors/__init__.py +21 -0
- compressed_tensors/base.py +17 -0
- compressed_tensors/compressors/__init__.py +22 -0
- compressed_tensors/compressors/base.py +59 -0
- compressed_tensors/compressors/dense.py +34 -0
- compressed_tensors/compressors/helpers.py +137 -0
- compressed_tensors/compressors/int_quantized.py +95 -0
- compressed_tensors/compressors/model_compressor.py +264 -0
- compressed_tensors/compressors/sparse_bitmask.py +239 -0
- compressed_tensors/config/__init__.py +18 -0
- compressed_tensors/config/base.py +43 -0
- compressed_tensors/config/dense.py +36 -0
- compressed_tensors/config/sparse_bitmask.py +36 -0
- compressed_tensors/quantization/__init__.py +21 -0
- compressed_tensors/quantization/lifecycle/__init__.py +23 -0
- compressed_tensors/quantization/lifecycle/apply.py +196 -0
- compressed_tensors/quantization/lifecycle/calibration.py +51 -0
- compressed_tensors/quantization/lifecycle/compressed.py +69 -0
- compressed_tensors/quantization/lifecycle/forward.py +333 -0
- compressed_tensors/quantization/lifecycle/frozen.py +50 -0
- compressed_tensors/quantization/lifecycle/initialize.py +99 -0
- compressed_tensors/quantization/observers/__init__.py +21 -0
- compressed_tensors/quantization/observers/base.py +130 -0
- compressed_tensors/quantization/observers/helpers.py +54 -0
- compressed_tensors/quantization/observers/memoryless.py +48 -0
- compressed_tensors/quantization/observers/min_max.py +80 -0
- compressed_tensors/quantization/quant_args.py +125 -0
- compressed_tensors/quantization/quant_config.py +210 -0
- compressed_tensors/quantization/quant_scheme.py +39 -0
- compressed_tensors/quantization/utils/__init__.py +16 -0
- compressed_tensors/quantization/utils/helpers.py +131 -0
- compressed_tensors/registry/__init__.py +17 -0
- compressed_tensors/registry/registry.py +360 -0
- compressed_tensors/utils/__init__.py +16 -0
- compressed_tensors/utils/helpers.py +45 -0
- compressed_tensors/utils/safetensors_load.py +237 -0
- compressed_tensors/version.py +50 -0
- compressed_tensors_nightly-0.3.3.20240514.dist-info/LICENSE +201 -0
- compressed_tensors_nightly-0.3.3.20240514.dist-info/METADATA +105 -0
- compressed_tensors_nightly-0.3.3.20240514.dist-info/RECORD +42 -0
- compressed_tensors_nightly-0.3.3.20240514.dist-info/WHEEL +5 -0
- compressed_tensors_nightly-0.3.3.20240514.dist-info/top_level.txt +1 -0
@@ -0,0 +1,21 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from .base import *
|
16
|
+
|
17
|
+
# flake8: noqa
|
18
|
+
from .compressors import *
|
19
|
+
from .config import *
|
20
|
+
from .quantization import QuantizationConfig, QuantizationStatus
|
21
|
+
from .utils import *
|
@@ -0,0 +1,17 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
SPARSITY_CONFIG_NAME = "sparsity_config"
|
16
|
+
QUANTIZATION_CONFIG_NAME = "quantization_config"
|
17
|
+
COMPRESSION_CONFIG_NAME = "compression_config"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# flake8: noqa
|
16
|
+
|
17
|
+
from .base import Compressor
|
18
|
+
from .dense import DenseCompressor
|
19
|
+
from .helpers import load_compressed, save_compressed, save_compressed_model
|
20
|
+
from .int_quantized import IntQuantizationCompressor
|
21
|
+
from .model_compressor import ModelCompressor
|
22
|
+
from .sparse_bitmask import BitmaskCompressor, BitmaskTensor
|
@@ -0,0 +1,59 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Dict, Generator, Tuple, Union
|
16
|
+
|
17
|
+
from compressed_tensors.config import SparsityCompressionConfig
|
18
|
+
from compressed_tensors.quantization import QuantizationConfig
|
19
|
+
from compressed_tensors.registry import RegistryMixin
|
20
|
+
from torch import Tensor
|
21
|
+
|
22
|
+
|
23
|
+
__all__ = ["Compressor"]
|
24
|
+
|
25
|
+
|
26
|
+
class Compressor(RegistryMixin):
|
27
|
+
"""
|
28
|
+
Base class representing a model compression algorithm
|
29
|
+
|
30
|
+
:param config: config specifying compression parameters
|
31
|
+
"""
|
32
|
+
|
33
|
+
def __init__(
|
34
|
+
self, config: Union[SparsityCompressionConfig, QuantizationConfig, None] = None
|
35
|
+
):
|
36
|
+
self.config = config
|
37
|
+
|
38
|
+
def compress(self, model_state: Dict[str, Tensor], **kwargs) -> Dict[str, Tensor]:
|
39
|
+
"""
|
40
|
+
Compresses a dense state dict
|
41
|
+
|
42
|
+
:param model_state: state dict of uncompressed model
|
43
|
+
:return: compressed state dict
|
44
|
+
"""
|
45
|
+
raise NotImplementedError()
|
46
|
+
|
47
|
+
def decompress(
|
48
|
+
self, path_to_model_or_tensors: str, device: str = "cpu"
|
49
|
+
) -> Generator[Tuple[str, Tensor], None, None]:
|
50
|
+
"""
|
51
|
+
Reads a compressed state dict located at path_to_model_or_tensors
|
52
|
+
and returns a generator for sequentially decompressing back to a
|
53
|
+
dense state dict
|
54
|
+
|
55
|
+
:param model_path: path to compressed safetensors model (directory with
|
56
|
+
one or more safetensors files) or compressed tensors file
|
57
|
+
:return: compressed state dict
|
58
|
+
"""
|
59
|
+
raise NotImplementedError()
|
@@ -0,0 +1,34 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Dict, Generator, Tuple
|
16
|
+
|
17
|
+
from compressed_tensors.compressors import Compressor
|
18
|
+
from compressed_tensors.config import CompressionFormat
|
19
|
+
from torch import Tensor
|
20
|
+
|
21
|
+
|
22
|
+
@Compressor.register(name=CompressionFormat.dense.value)
|
23
|
+
class DenseCompressor(Compressor):
|
24
|
+
"""
|
25
|
+
Identity compressor for dense models, returns the original state_dict
|
26
|
+
"""
|
27
|
+
|
28
|
+
def compress(self, model_state: Dict[str, Tensor], **kwargs) -> Dict[str, Tensor]:
|
29
|
+
return model_state
|
30
|
+
|
31
|
+
def decompress(
|
32
|
+
self, path_to_model_or_tensors: str, device: str = "cpu"
|
33
|
+
) -> Generator[Tuple[str, Tensor], None, None]:
|
34
|
+
return iter([])
|
@@ -0,0 +1,137 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from pathlib import Path
|
16
|
+
from typing import Dict, Generator, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
from compressed_tensors.compressors import Compressor
|
20
|
+
from compressed_tensors.config import CompressionFormat, SparsityCompressionConfig
|
21
|
+
from compressed_tensors.utils.safetensors_load import get_weight_mappings
|
22
|
+
from safetensors import safe_open
|
23
|
+
from safetensors.torch import save_file
|
24
|
+
from torch import Tensor
|
25
|
+
|
26
|
+
|
27
|
+
__all__ = [
|
28
|
+
"load_compressed",
|
29
|
+
"save_compressed",
|
30
|
+
"save_compressed_model",
|
31
|
+
]
|
32
|
+
|
33
|
+
|
34
|
+
def save_compressed(
|
35
|
+
tensors: Dict[str, Tensor],
|
36
|
+
save_path: Union[str, Path],
|
37
|
+
compression_format: Optional[CompressionFormat] = None,
|
38
|
+
):
|
39
|
+
"""
|
40
|
+
Save compressed tensors to disk. If tensors are not compressed,
|
41
|
+
save them as is.
|
42
|
+
|
43
|
+
:param tensors: dictionary of tensors to compress
|
44
|
+
:param save_path: path to save compressed tensors
|
45
|
+
:param compression_format: compression format used for the tensors
|
46
|
+
:return: compression config, if tensors were compressed - None otherwise
|
47
|
+
"""
|
48
|
+
if tensors is None or len(tensors) == 0:
|
49
|
+
raise ValueError("No tensors or empty tensors provided to compress")
|
50
|
+
|
51
|
+
# if no compression_format specified, default to `dense`
|
52
|
+
compression_format = compression_format or CompressionFormat.dense.value
|
53
|
+
|
54
|
+
if not (
|
55
|
+
compression_format in Compressor.registered_names()
|
56
|
+
or compression_format in Compressor.registered_aliases()
|
57
|
+
):
|
58
|
+
raise ValueError(
|
59
|
+
f"Unknown compression format: {compression_format}. "
|
60
|
+
f"Must be one of {set(Compressor.registered_names() + Compressor.registered_aliases())}" # noqa E501
|
61
|
+
)
|
62
|
+
|
63
|
+
# compress
|
64
|
+
compressor = Compressor.load_from_registry(compression_format)
|
65
|
+
# save compressed tensors
|
66
|
+
compressed_tensors = compressor.compress(tensors)
|
67
|
+
save_file(compressed_tensors, save_path)
|
68
|
+
|
69
|
+
|
70
|
+
def load_compressed(
|
71
|
+
compressed_tensors: Union[str, Path],
|
72
|
+
compression_config: SparsityCompressionConfig = None,
|
73
|
+
device: Optional[str] = "cpu",
|
74
|
+
) -> Generator[Tuple[str, Tensor], None, None]:
|
75
|
+
"""
|
76
|
+
Load compressed tensors from disk.
|
77
|
+
If tensors are not compressed, load them as is.
|
78
|
+
|
79
|
+
:param compressed_tensors: path to compressed tensors.
|
80
|
+
This can be a path to a file or a directory containing
|
81
|
+
one or multiple safetensor files (if multiple - in the format
|
82
|
+
assumed by huggingface)
|
83
|
+
:param compression_config: compression config to use for decompressing tensors.
|
84
|
+
:param device: device to move tensors to. If None, tensors are loaded on CPU.
|
85
|
+
:param return_dict: if True, return a dictionary of decompressed tensors
|
86
|
+
:return a generator that yields the name and tensor of the decompressed tensor
|
87
|
+
"""
|
88
|
+
if compressed_tensors is None or not Path(compressed_tensors).exists():
|
89
|
+
raise ValueError("No compressed tensors provided to load")
|
90
|
+
|
91
|
+
if (
|
92
|
+
compression_config is None
|
93
|
+
or compression_config.format == CompressionFormat.dense.value
|
94
|
+
):
|
95
|
+
# if no compression_config specified, or `dense` format specified,
|
96
|
+
# assume tensors are not compressed on disk
|
97
|
+
weight_mappings = get_weight_mappings(compressed_tensors)
|
98
|
+
for weight_name, file_with_weight_name in weight_mappings.items():
|
99
|
+
with safe_open(file_with_weight_name, framework="pt", device=device) as f:
|
100
|
+
weight = f.get_tensor(weight_name)
|
101
|
+
yield weight_name, weight
|
102
|
+
else:
|
103
|
+
# decompress tensors
|
104
|
+
compression_format = compression_config.format
|
105
|
+
compressor = Compressor.load_from_registry(
|
106
|
+
compression_format, config=compression_config
|
107
|
+
)
|
108
|
+
yield from compressor.decompress(compressed_tensors, device=device)
|
109
|
+
|
110
|
+
|
111
|
+
def save_compressed_model(
|
112
|
+
model: torch.nn.Module,
|
113
|
+
filename: str,
|
114
|
+
compression_format: Optional[CompressionFormat] = None,
|
115
|
+
force_contiguous: bool = True,
|
116
|
+
):
|
117
|
+
"""
|
118
|
+
Wrapper around safetensors `save_model` helper function, which allows for
|
119
|
+
saving compressed model to disk.
|
120
|
+
|
121
|
+
Note: The model is assumed to have a
|
122
|
+
state_dict with unique entries
|
123
|
+
|
124
|
+
:param model: model to save on disk
|
125
|
+
:param filename: filename location to save the file
|
126
|
+
:param compression_format: compression format used for the model
|
127
|
+
:param force_contiguous: forcing the state_dict to be saved as contiguous tensors
|
128
|
+
"""
|
129
|
+
state_dict = model.state_dict()
|
130
|
+
if force_contiguous:
|
131
|
+
state_dict = {k: v.contiguous() for k, v in state_dict.items()}
|
132
|
+
try:
|
133
|
+
save_compressed(state_dict, filename, compression_format=compression_format)
|
134
|
+
except ValueError as e:
|
135
|
+
msg = str(e)
|
136
|
+
msg += " Or use save_compressed_model(..., force_contiguous=True), read the docs for potential caveats." # noqa E501
|
137
|
+
raise ValueError(msg)
|
@@ -0,0 +1,95 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import logging
|
16
|
+
from typing import Dict, Generator, Tuple
|
17
|
+
|
18
|
+
import torch
|
19
|
+
from compressed_tensors.compressors import Compressor
|
20
|
+
from compressed_tensors.config import CompressionFormat
|
21
|
+
from compressed_tensors.quantization.lifecycle.forward import dequantize, quantize
|
22
|
+
from compressed_tensors.utils import get_nested_weight_mappings, merge_names
|
23
|
+
from safetensors import safe_open
|
24
|
+
from torch import Tensor
|
25
|
+
from tqdm import tqdm
|
26
|
+
|
27
|
+
|
28
|
+
__all__ = ["IntQuantizationCompressor"]
|
29
|
+
|
30
|
+
_LOGGER: logging.Logger = logging.getLogger(__name__)
|
31
|
+
|
32
|
+
|
33
|
+
@Compressor.register(name=CompressionFormat.int_quantized.value)
|
34
|
+
class IntQuantizationCompressor(Compressor):
|
35
|
+
"""
|
36
|
+
Integer compression for quantized models. Weight of each quantized layer is
|
37
|
+
converted from its original float type to the format specified by the layer's
|
38
|
+
quantization scheme.
|
39
|
+
"""
|
40
|
+
|
41
|
+
COMPRESSION_PARAM_NAMES = ["weight", "weight_scale", "weight_zero_point"]
|
42
|
+
|
43
|
+
def compress(self, model_state: Dict[str, Tensor], **kwargs) -> Dict[str, Tensor]:
|
44
|
+
model_quant_args = kwargs["model_quant_args"]
|
45
|
+
compressed_dict = {}
|
46
|
+
_LOGGER.debug(
|
47
|
+
f"Compressing model with {len(model_state)} parameterized layers..."
|
48
|
+
)
|
49
|
+
|
50
|
+
for name, value in tqdm(model_state.items(), desc="Compressing model"):
|
51
|
+
if name.endswith(".weight"):
|
52
|
+
prefix = name.removesuffix(".weight")
|
53
|
+
scale = model_state.get(merge_names(prefix, "weight_scale"), None)
|
54
|
+
zp = model_state.get(merge_names(prefix, "weight_zero_point"), None)
|
55
|
+
if scale is not None and zp is not None:
|
56
|
+
# weight is quantized, compress it
|
57
|
+
quant_args = model_quant_args[prefix]
|
58
|
+
try:
|
59
|
+
bit_depth = torch.finfo(value.dtype).bits
|
60
|
+
except TypeError:
|
61
|
+
bit_depth = torch.iinfo(value.dtype).bits
|
62
|
+
if bit_depth > quant_args.num_bits:
|
63
|
+
# only quantize if not already quantized
|
64
|
+
value = quantize(
|
65
|
+
x=value,
|
66
|
+
scale=scale,
|
67
|
+
zero_point=zp,
|
68
|
+
args=quant_args,
|
69
|
+
dtype=torch.int8,
|
70
|
+
)
|
71
|
+
|
72
|
+
compressed_dict[name] = value.to("cpu")
|
73
|
+
|
74
|
+
return compressed_dict
|
75
|
+
|
76
|
+
def decompress(
|
77
|
+
self, path_to_model_or_tensors: str, device: str = "cpu"
|
78
|
+
) -> Generator[Tuple[str, Tensor], None, None]:
|
79
|
+
weight_mappings = get_nested_weight_mappings(
|
80
|
+
path_to_model_or_tensors, self.COMPRESSION_PARAM_NAMES
|
81
|
+
)
|
82
|
+
for weight_name in weight_mappings.keys():
|
83
|
+
weight_data = {}
|
84
|
+
for param_name, safe_path in weight_mappings[weight_name].items():
|
85
|
+
full_name = merge_names(weight_name, param_name)
|
86
|
+
with safe_open(safe_path, framework="pt", device=device) as f:
|
87
|
+
weight_data[param_name] = f.get_tensor(full_name)
|
88
|
+
|
89
|
+
if len(weight_data) == len(self.COMPRESSION_PARAM_NAMES):
|
90
|
+
decompressed = dequantize(
|
91
|
+
x_q=weight_data["weight"],
|
92
|
+
scale=weight_data["weight_scale"],
|
93
|
+
zero_point=weight_data["weight_zero_point"],
|
94
|
+
)
|
95
|
+
yield merge_names(weight_name, "weight"), decompressed
|
@@ -0,0 +1,264 @@
|
|
1
|
+
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing,
|
10
|
+
# software distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import json
|
16
|
+
import logging
|
17
|
+
import operator
|
18
|
+
import os
|
19
|
+
from typing import Dict, Optional, Union
|
20
|
+
|
21
|
+
from compressed_tensors.base import (
|
22
|
+
COMPRESSION_CONFIG_NAME,
|
23
|
+
QUANTIZATION_CONFIG_NAME,
|
24
|
+
SPARSITY_CONFIG_NAME,
|
25
|
+
)
|
26
|
+
from compressed_tensors.compressors import Compressor
|
27
|
+
from compressed_tensors.config import SparsityCompressionConfig
|
28
|
+
from compressed_tensors.quantization import (
|
29
|
+
QuantizationConfig,
|
30
|
+
QuantizationStatus,
|
31
|
+
apply_quantization_config,
|
32
|
+
load_pretrained_quantization,
|
33
|
+
)
|
34
|
+
from compressed_tensors.quantization.utils import (
|
35
|
+
is_module_quantized,
|
36
|
+
iter_named_leaf_modules,
|
37
|
+
)
|
38
|
+
from compressed_tensors.utils import get_safetensors_folder
|
39
|
+
from torch import Tensor
|
40
|
+
from torch.nn import Module, Parameter
|
41
|
+
from tqdm import tqdm
|
42
|
+
from transformers import AutoConfig
|
43
|
+
from transformers.file_utils import CONFIG_NAME
|
44
|
+
|
45
|
+
|
46
|
+
__all__ = ["ModelCompressor"]
|
47
|
+
|
48
|
+
_LOGGER: logging.Logger = logging.getLogger(__name__)
|
49
|
+
|
50
|
+
|
51
|
+
class ModelCompressor:
|
52
|
+
"""
|
53
|
+
Handles compression and decompression of a model with a sparsity config and/or
|
54
|
+
quantization config.
|
55
|
+
|
56
|
+
Compression LifeCycle
|
57
|
+
- compressor = ModelCompressor.from_pretrained_model(model)
|
58
|
+
- compressed_state_dict = compressor.compress(model, state_dict)
|
59
|
+
- compressor.quantization_compressor.compress(model, state_dict)
|
60
|
+
- compressor.sparsity_compressor.compress(model, state_dict)
|
61
|
+
- model.save_pretrained(output_dir, state_dict=compressed_state_dict)
|
62
|
+
- compressor.update_config(output_dir)
|
63
|
+
|
64
|
+
Decompression LifeCycle
|
65
|
+
- compressor = ModelCompressor.from_pretrained(comp_model_path)
|
66
|
+
- model = AutoModel.from_pretrained(comp_model_path)
|
67
|
+
- compressor.decompress(comp_model_path, model)
|
68
|
+
- compressor.sparsity_compressor.decompress(comp_model_path, model)
|
69
|
+
- compressor.quantization_compressor.decompress(comp_model_path, model)
|
70
|
+
|
71
|
+
:param sparsity_config: config specifying sparsity compression parameters
|
72
|
+
:param quantization_config: config specifying quantization compression parameters
|
73
|
+
"""
|
74
|
+
|
75
|
+
@classmethod
|
76
|
+
def from_pretrained(
|
77
|
+
cls,
|
78
|
+
pretrained_model_name_or_path: str,
|
79
|
+
) -> Optional["ModelCompressor"]:
|
80
|
+
"""
|
81
|
+
Given a path to a model config, extract the sparsity and/or quantization
|
82
|
+
configs and load a ModelCompressor
|
83
|
+
|
84
|
+
:param pretrained_model_name_or_path: path to model config on disk or HF hub
|
85
|
+
:return: compressor for the extracted configs
|
86
|
+
"""
|
87
|
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
|
88
|
+
compression_config = getattr(config, COMPRESSION_CONFIG_NAME, None)
|
89
|
+
if compression_config is None:
|
90
|
+
return None
|
91
|
+
|
92
|
+
sparsity_config = compression_config.get(SPARSITY_CONFIG_NAME, None)
|
93
|
+
quantization_config = compression_config.get(QUANTIZATION_CONFIG_NAME, None)
|
94
|
+
|
95
|
+
if sparsity_config is None and quantization_config is None:
|
96
|
+
return None
|
97
|
+
|
98
|
+
if sparsity_config is not None:
|
99
|
+
format = sparsity_config.get("format")
|
100
|
+
sparsity_config = SparsityCompressionConfig.load_from_registry(
|
101
|
+
format, **sparsity_config
|
102
|
+
)
|
103
|
+
if quantization_config is not None:
|
104
|
+
quantization_config = QuantizationConfig.parse_obj(quantization_config)
|
105
|
+
|
106
|
+
return cls(
|
107
|
+
sparsity_config=sparsity_config, quantization_config=quantization_config
|
108
|
+
)
|
109
|
+
|
110
|
+
@classmethod
|
111
|
+
def from_pretrained_model(
|
112
|
+
cls,
|
113
|
+
model: Module,
|
114
|
+
sparsity_config: Union[SparsityCompressionConfig, str, None] = None,
|
115
|
+
quantization_format: Optional[str] = None,
|
116
|
+
) -> Optional["ModelCompressor"]:
|
117
|
+
"""
|
118
|
+
Given a pytorch model and optional sparsity and/or quantization configs,
|
119
|
+
load the appropriate compressors
|
120
|
+
|
121
|
+
:param model: pytorch model to target for compression
|
122
|
+
:param sparsity_config: a filled in sparsity config or string corresponding
|
123
|
+
to a sparsity compression algorithm
|
124
|
+
:param quantization_format: string corresponding to a quantization compression
|
125
|
+
algorithm
|
126
|
+
:return: compressor for the extracted configs
|
127
|
+
"""
|
128
|
+
quantization_config = QuantizationConfig.from_pretrained(
|
129
|
+
model, format=quantization_format
|
130
|
+
)
|
131
|
+
|
132
|
+
if isinstance(sparsity_config, str): # we passed in a sparsity format
|
133
|
+
sparsity_config = SparsityCompressionConfig.load_from_registry(
|
134
|
+
sparsity_config
|
135
|
+
)
|
136
|
+
|
137
|
+
if sparsity_config is None and quantization_config is None:
|
138
|
+
return None
|
139
|
+
|
140
|
+
return cls(
|
141
|
+
sparsity_config=sparsity_config, quantization_config=quantization_config
|
142
|
+
)
|
143
|
+
|
144
|
+
def __init__(
|
145
|
+
self,
|
146
|
+
sparsity_config: Optional[SparsityCompressionConfig] = None,
|
147
|
+
quantization_config: Optional[QuantizationConfig] = None,
|
148
|
+
):
|
149
|
+
self.sparsity_config = sparsity_config
|
150
|
+
self.quantization_config = quantization_config
|
151
|
+
self.sparsity_compressor = None
|
152
|
+
self.quantization_compressor = None
|
153
|
+
|
154
|
+
if sparsity_config is not None:
|
155
|
+
self.sparsity_compressor = Compressor.load_from_registry(
|
156
|
+
sparsity_config.format, config=sparsity_config
|
157
|
+
)
|
158
|
+
if quantization_config is not None:
|
159
|
+
self.quantization_compressor = Compressor.load_from_registry(
|
160
|
+
quantization_config.format, config=quantization_config
|
161
|
+
)
|
162
|
+
|
163
|
+
def compress(
|
164
|
+
self, model: Module, state_dict: Optional[Dict[str, Tensor]] = None
|
165
|
+
) -> Dict[str, Tensor]:
|
166
|
+
"""
|
167
|
+
Compresses a dense state dict or model with sparsity and/or quantization
|
168
|
+
|
169
|
+
:param model: uncompressed model to compress
|
170
|
+
:param model_state: optional uncompressed state_dict to insert into model
|
171
|
+
:return: compressed state dict
|
172
|
+
"""
|
173
|
+
if state_dict is None:
|
174
|
+
state_dict = model.state_dict()
|
175
|
+
|
176
|
+
compressed_state_dict = state_dict
|
177
|
+
quantized_modules_to_args = _get_weight_arg_mappings(model)
|
178
|
+
if self.quantization_compressor is not None:
|
179
|
+
compressed_state_dict = self.quantization_compressor.compress(
|
180
|
+
state_dict, model_quant_args=quantized_modules_to_args
|
181
|
+
)
|
182
|
+
|
183
|
+
if self.sparsity_compressor is not None:
|
184
|
+
compressed_state_dict = self.sparsity_compressor.compress(
|
185
|
+
compressed_state_dict
|
186
|
+
)
|
187
|
+
|
188
|
+
return compressed_state_dict
|
189
|
+
|
190
|
+
def decompress(self, model_path: str, model: Module):
|
191
|
+
"""
|
192
|
+
Overwrites the weights in model with weights decompressed from model_path
|
193
|
+
|
194
|
+
:param model_path: path to compressed weights
|
195
|
+
:param model: pytorch model to load decompressed weights into
|
196
|
+
"""
|
197
|
+
model_path = get_safetensors_folder(model_path)
|
198
|
+
if self.sparsity_compressor is not None:
|
199
|
+
dense_gen = self.sparsity_compressor.decompress(model_path)
|
200
|
+
self._replace_weights(dense_gen, model)
|
201
|
+
setattr(model, SPARSITY_CONFIG_NAME, self.sparsity_compressor.config)
|
202
|
+
|
203
|
+
if self.quantization_compressor is not None:
|
204
|
+
apply_quantization_config(model, self.quantization_config)
|
205
|
+
load_pretrained_quantization(model, model_path)
|
206
|
+
dense_gen = self.quantization_compressor.decompress(model_path)
|
207
|
+
self._replace_weights(dense_gen, model)
|
208
|
+
|
209
|
+
def update_status(module):
|
210
|
+
module.quantization_status = QuantizationStatus.FROZEN
|
211
|
+
|
212
|
+
model.apply(update_status)
|
213
|
+
setattr(model, QUANTIZATION_CONFIG_NAME, self.quantization_config)
|
214
|
+
|
215
|
+
def update_config(self, save_directory: str):
|
216
|
+
"""
|
217
|
+
Update the model config located at save_directory with compression configs
|
218
|
+
for sparsity and/or quantization
|
219
|
+
|
220
|
+
:param save_directory: path to a folder containing a HF model config
|
221
|
+
"""
|
222
|
+
config_file_path = os.path.join(save_directory, CONFIG_NAME)
|
223
|
+
if not os.path.exists(config_file_path):
|
224
|
+
_LOGGER.warning(
|
225
|
+
f"Could not find a valid model config file in "
|
226
|
+
f"{save_directory}. Compression config will not be saved."
|
227
|
+
)
|
228
|
+
return
|
229
|
+
|
230
|
+
with open(config_file_path, "r") as config_file:
|
231
|
+
config_data = json.load(config_file)
|
232
|
+
|
233
|
+
config_data[COMPRESSION_CONFIG_NAME] = {}
|
234
|
+
if self.quantization_config is not None:
|
235
|
+
quant_config_data = self.quantization_config.model_dump()
|
236
|
+
config_data[COMPRESSION_CONFIG_NAME][
|
237
|
+
QUANTIZATION_CONFIG_NAME
|
238
|
+
] = quant_config_data
|
239
|
+
if self.sparsity_config is not None:
|
240
|
+
sparsity_config_data = self.sparsity_config.model_dump()
|
241
|
+
config_data[COMPRESSION_CONFIG_NAME][
|
242
|
+
SPARSITY_CONFIG_NAME
|
243
|
+
] = sparsity_config_data
|
244
|
+
|
245
|
+
with open(config_file_path, "w") as config_file:
|
246
|
+
json.dump(config_data, config_file, indent=2, sort_keys=True)
|
247
|
+
|
248
|
+
def _replace_weights(self, dense_weight_generator, model):
|
249
|
+
for name, data in tqdm(dense_weight_generator, desc="Decompressing model"):
|
250
|
+
# loading the decompressed weights into the model
|
251
|
+
model_device = operator.attrgetter(name)(model).device
|
252
|
+
data_new = Parameter(data.to(model_device))
|
253
|
+
data_old = operator.attrgetter(name)(model)
|
254
|
+
data_old.data = data_new.data
|
255
|
+
|
256
|
+
|
257
|
+
def _get_weight_arg_mappings(model: Module) -> Dict:
|
258
|
+
quantized_modules_to_args = {}
|
259
|
+
for name, submodule in iter_named_leaf_modules(model):
|
260
|
+
if is_module_quantized(submodule):
|
261
|
+
if submodule.quantization_scheme.weights is not None:
|
262
|
+
quantized_modules_to_args[name] = submodule.quantization_scheme.weights
|
263
|
+
|
264
|
+
return quantized_modules_to_args
|