compiled-knowledge 4.1.0a3__cp312-cp312-macosx_11_0_arm64.whl → 4.2.0a1__cp312-cp312-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of compiled-knowledge might be problematic. Click here for more details.
- ck/circuit/_circuit_cy.c +1 -1
- ck/circuit/_circuit_cy.cpython-312-darwin.so +0 -0
- ck/circuit_compiler/cython_vm_compiler/_compiler.c +152 -152
- ck/circuit_compiler/cython_vm_compiler/_compiler.cpython-312-darwin.so +0 -0
- ck/circuit_compiler/llvm_compiler.py +4 -4
- ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.c +1 -1
- ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.cpython-312-darwin.so +0 -0
- ck/circuit_compiler/support/input_vars.py +4 -4
- ck/learning/coalesce_cross_tables.py +11 -3
- ck/learning/model_from_cross_tables.py +64 -10
- ck/pgm_compiler/support/circuit_table/_circuit_table_cy.c +1 -1
- ck/pgm_compiler/support/circuit_table/_circuit_table_cy.cpython-312-darwin.so +0 -0
- ck/utils/map_dict.py +89 -0
- ck_demos/learning/demo_bayesian_network_from_cross_tables.py +2 -3
- {compiled_knowledge-4.1.0a3.dist-info → compiled_knowledge-4.2.0a1.dist-info}/METADATA +1 -1
- {compiled_knowledge-4.1.0a3.dist-info → compiled_knowledge-4.2.0a1.dist-info}/RECORD +19 -18
- {compiled_knowledge-4.1.0a3.dist-info → compiled_knowledge-4.2.0a1.dist-info}/WHEEL +0 -0
- {compiled_knowledge-4.1.0a3.dist-info → compiled_knowledge-4.2.0a1.dist-info}/licenses/LICENSE.txt +0 -0
- {compiled_knowledge-4.1.0a3.dist-info → compiled_knowledge-4.2.0a1.dist-info}/top_level.txt +0 -0
|
Binary file
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
from dataclasses import dataclass
|
|
4
|
-
from enum import Enum
|
|
4
|
+
from enum import Enum, auto
|
|
5
5
|
from typing import Sequence, Optional, Tuple, Dict, Protocol, assert_never
|
|
6
6
|
|
|
7
7
|
import llvmlite.binding as llvm
|
|
@@ -15,9 +15,9 @@ from ..program.raw_program import RawProgramFunction
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class Flavour(Enum):
|
|
18
|
-
STACK =
|
|
19
|
-
TMPS =
|
|
20
|
-
FUNCS =
|
|
18
|
+
STACK = auto() # No working temporary memory requested - all on stack.
|
|
19
|
+
TMPS = auto() # Working temporary memory used for op node calculations.
|
|
20
|
+
FUNCS = auto() # Working temporary memory used for op node calculations, one sub-function per op-node.
|
|
21
21
|
|
|
22
22
|
|
|
23
23
|
DEFAULT_TYPE_INFO: TypeInfo = DataType.FLOAT_64.value
|
|
@@ -15,7 +15,7 @@
|
|
|
15
15
|
"-O3"
|
|
16
16
|
],
|
|
17
17
|
"include_dirs": [
|
|
18
|
-
"/private/var/folders/y6/nj790rtn62lfktb1sh__79hc0000gn/T/build-env-
|
|
18
|
+
"/private/var/folders/y6/nj790rtn62lfktb1sh__79hc0000gn/T/build-env-puw5bxqw/lib/python3.12/site-packages/numpy/_core/include"
|
|
19
19
|
],
|
|
20
20
|
"name": "ck.circuit_compiler.support.circuit_analyser._circuit_analyser_cy",
|
|
21
21
|
"sources": [
|
|
Binary file
|
|
@@ -3,7 +3,7 @@ This module supports circuit compilers and interpreters by inferring and checkin
|
|
|
3
3
|
that are explicitly or implicitly referred to by a client.
|
|
4
4
|
"""
|
|
5
5
|
|
|
6
|
-
from enum import Enum
|
|
6
|
+
from enum import Enum, auto
|
|
7
7
|
from itertools import chain
|
|
8
8
|
from typing import Sequence, Optional, Set, Iterable, List
|
|
9
9
|
|
|
@@ -15,9 +15,9 @@ class InferVars(Enum):
|
|
|
15
15
|
An enum specifying how to automatically infer a program's input variables.
|
|
16
16
|
"""
|
|
17
17
|
|
|
18
|
-
ALL =
|
|
19
|
-
REF =
|
|
20
|
-
LOW =
|
|
18
|
+
ALL = auto() # all circuit vars are input vars
|
|
19
|
+
REF = auto() # only referenced vars are input vars
|
|
20
|
+
LOW = auto() # input vars are circuit vars[0 : max_referenced + 1]
|
|
21
21
|
|
|
22
22
|
|
|
23
23
|
# Type for specifying input circuit vars
|
|
@@ -22,10 +22,18 @@ def coalesce_cross_tables(crosstabs: Sequence[CrossTable], rvs: Sequence[RandomV
|
|
|
22
22
|
|
|
23
23
|
`a` is a column vector with one entry for each instance of rvs seen in the cross-tables.
|
|
24
24
|
|
|
25
|
-
`b` is a column vector containing all probabilities from all cross-tables
|
|
25
|
+
`b` is a column vector containing all probabilities from all cross-tables.
|
|
26
26
|
|
|
27
27
|
`m` is a sparse matrix with m[i, j] = 1 where b[j] is in the sum for source probability a[i].
|
|
28
28
|
|
|
29
|
+
"Best" means the vector `a` with:
|
|
30
|
+
* `a[i] >= 0` for all i, then
|
|
31
|
+
* `b - m a` having the smallest L2 norm, then
|
|
32
|
+
* `a` having the smallest L2 norm.
|
|
33
|
+
|
|
34
|
+
The given crosstables will be used to form `b`. The entries each cross-table will be normalised
|
|
35
|
+
to represent a probability distribution over the cross-table's instances (keys).
|
|
36
|
+
|
|
29
37
|
Args:
|
|
30
38
|
crosstabs: a collection of cross-tables to coalesce.
|
|
31
39
|
rvs: the random variables that cross-tables will be projected on to.
|
|
@@ -171,8 +179,8 @@ def _make_matrix(
|
|
|
171
179
|
Returns:
|
|
172
180
|
the tuple (m, b, a_keys) where
|
|
173
181
|
'm' is a sparse matrix,
|
|
174
|
-
'b' is a numpy array of crosstab probabilities,
|
|
175
|
-
'a_keys' are the keys for the solution probabilities
|
|
182
|
+
'b' is a numpy array of crosstab probabilities (normalised as needed),
|
|
183
|
+
'a_keys' are the keys for the solution probabilities, co-indexed with `a`.
|
|
176
184
|
"""
|
|
177
185
|
|
|
178
186
|
# Sum out any unneeded random variables
|
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
from dataclasses import dataclass, field
|
|
4
|
+
from enum import Enum, auto
|
|
4
5
|
from itertools import chain
|
|
5
6
|
from typing import Iterable, List, Tuple, Dict, Sequence, Set, Optional
|
|
6
7
|
|
|
@@ -12,7 +13,37 @@ from ck.pgm import PGM, RandomVariable
|
|
|
12
13
|
from ck.utils.map_list import MapList
|
|
13
14
|
|
|
14
15
|
|
|
15
|
-
|
|
16
|
+
class ParameterInference(Enum):
|
|
17
|
+
"""
|
|
18
|
+
There are variations on the method for inferring a CPT's parameter values.
|
|
19
|
+
This enum defines the possible variations.
|
|
20
|
+
"""
|
|
21
|
+
first = auto()
|
|
22
|
+
"""
|
|
23
|
+
Use the first cross-table found that covers the CPT's random variables.
|
|
24
|
+
If there is no such cross-table, revert to the `all` method.
|
|
25
|
+
This is the fastest method.
|
|
26
|
+
"""
|
|
27
|
+
|
|
28
|
+
sum = auto()
|
|
29
|
+
"""
|
|
30
|
+
Use the sum of cross-tables that cover the CPT's random variables.
|
|
31
|
+
If there are no such cross-tables, revert to the `all` method.
|
|
32
|
+
This is the second fastest method.
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
all = auto()
|
|
36
|
+
"""
|
|
37
|
+
Project all cross-tables onto the needed random variables, then use
|
|
38
|
+
`coalesce_cross_tables` to solve for the best parameter values.
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def model_from_cross_tables(
|
|
43
|
+
pgm: PGM,
|
|
44
|
+
cross_tables: Iterable[CrossTable],
|
|
45
|
+
method: ParameterInference = ParameterInference.sum,
|
|
46
|
+
) -> None:
|
|
16
47
|
"""
|
|
17
48
|
Make best efforts to construct a Bayesian network model given only the
|
|
18
49
|
evidence from the supplied cross-tables.
|
|
@@ -24,6 +55,7 @@ def model_from_cross_tables(pgm: PGM, cross_tables: Iterable[CrossTable]) -> Non
|
|
|
24
55
|
Args:
|
|
25
56
|
pgm: the PGM to add factors and potential function to.
|
|
26
57
|
cross_tables: available cross-tables to build a model from.
|
|
58
|
+
method: what parameter inference method to use.
|
|
27
59
|
|
|
28
60
|
Raises:
|
|
29
61
|
ValueError: If `pgm` has any existing factors.
|
|
@@ -33,11 +65,16 @@ def model_from_cross_tables(pgm: PGM, cross_tables: Iterable[CrossTable]) -> Non
|
|
|
33
65
|
cpts: List[CrossTable] = get_cpts(
|
|
34
66
|
rvs=pgm.rvs,
|
|
35
67
|
cross_tables=cross_tables,
|
|
68
|
+
method=method,
|
|
36
69
|
)
|
|
37
70
|
make_factors(pgm, cpts)
|
|
38
71
|
|
|
39
72
|
|
|
40
|
-
def get_cpts(
|
|
73
|
+
def get_cpts(
|
|
74
|
+
rvs: Sequence[RandomVariable],
|
|
75
|
+
cross_tables: Iterable[CrossTable],
|
|
76
|
+
method: ParameterInference = ParameterInference.sum,
|
|
77
|
+
) -> ParameterValues:
|
|
41
78
|
"""
|
|
42
79
|
Make best efforts to define a Bayesian network model given only the
|
|
43
80
|
evidence from the supplied cross-tables.
|
|
@@ -53,6 +90,7 @@ def get_cpts(rvs: Sequence[RandomVariable], cross_tables: Iterable[CrossTable])
|
|
|
53
90
|
Args:
|
|
54
91
|
rvs: the random variables to define a network structure over.
|
|
55
92
|
cross_tables: available cross-tables to build a model from.
|
|
93
|
+
method: what parameter inference method to use.
|
|
56
94
|
|
|
57
95
|
Returns:
|
|
58
96
|
ParameterValues object as a list of CPTs, each CPT can be used to create
|
|
@@ -90,13 +128,17 @@ def get_cpts(rvs: Sequence[RandomVariable], cross_tables: Iterable[CrossTable])
|
|
|
90
128
|
# Make the factors, depth first.
|
|
91
129
|
done: Set[int] = set()
|
|
92
130
|
for model_factor in model_factors:
|
|
93
|
-
_infer_cpt(model_factor, done)
|
|
131
|
+
_infer_cpt(model_factor, done, method)
|
|
94
132
|
|
|
95
133
|
# Return the CPTs that define the structure
|
|
96
134
|
return [model_factor.cpt for model_factor in model_factors]
|
|
97
135
|
|
|
98
136
|
|
|
99
|
-
def _infer_cpt(
|
|
137
|
+
def _infer_cpt(
|
|
138
|
+
model_factor: _ModelFactor,
|
|
139
|
+
done: Set[int],
|
|
140
|
+
method: ParameterInference,
|
|
141
|
+
) -> None:
|
|
100
142
|
"""
|
|
101
143
|
Depth-first recursively infer the model factors as CPTs.
|
|
102
144
|
This sets `model_factor.cpt` and `model_factor.parent_rvs` for
|
|
@@ -110,7 +152,7 @@ def _infer_cpt(model_factor: _ModelFactor, done: Set[int]) -> None:
|
|
|
110
152
|
|
|
111
153
|
# Recursively visit the child factors
|
|
112
154
|
for child_model_factor in model_factor.child_factors:
|
|
113
|
-
_infer_cpt(child_model_factor, done)
|
|
155
|
+
_infer_cpt(child_model_factor, done, method)
|
|
114
156
|
|
|
115
157
|
# Get all relevant cross-tables to set the parameters
|
|
116
158
|
crosstabs: Sequence[CrossTable] = model_factor.cross_tables
|
|
@@ -121,19 +163,20 @@ def _infer_cpt(model_factor: _ModelFactor, done: Set[int]) -> None:
|
|
|
121
163
|
|
|
122
164
|
# Get the parameters
|
|
123
165
|
rvs = [child_rv] + list(model_factor.parent_rvs)
|
|
124
|
-
crosstab: CrossTable =
|
|
166
|
+
crosstab: CrossTable = _infer_parameter_values(rvs, crosstabs, child_crosstabs, method)
|
|
125
167
|
cpt, parent_sums = cpt_and_parent_sums_from_crosstab(crosstab)
|
|
126
168
|
model_factor.cpt = cpt
|
|
127
169
|
model_factor.parent_sums = parent_sums
|
|
128
170
|
|
|
129
171
|
|
|
130
|
-
def
|
|
172
|
+
def _infer_parameter_values(
|
|
131
173
|
rvs: Sequence[RandomVariable],
|
|
132
174
|
crosstabs: Sequence[CrossTable],
|
|
133
175
|
child_crosstabs: Sequence[CrossTable],
|
|
176
|
+
method: ParameterInference,
|
|
134
177
|
) -> CrossTable:
|
|
135
178
|
"""
|
|
136
|
-
Make best efforts to infer a probability distribution over the
|
|
179
|
+
Make best efforts to infer a probability distribution over the given random variables,
|
|
137
180
|
with evidence from the given cross-tables.
|
|
138
181
|
|
|
139
182
|
Returns:
|
|
@@ -144,8 +187,16 @@ def _infer_parameters(
|
|
|
144
187
|
`rvs` has no duplicates.
|
|
145
188
|
"""
|
|
146
189
|
|
|
190
|
+
if method == ParameterInference.all:
|
|
191
|
+
# Forced to use all cross-tables with `coalesce_cross_tables`
|
|
192
|
+
projected_crosstabs: List[CrossTable] = [
|
|
193
|
+
crosstab.project(rvs)
|
|
194
|
+
for crosstab in chain(crosstabs, child_crosstabs)
|
|
195
|
+
]
|
|
196
|
+
return coalesce_cross_tables(projected_crosstabs, rvs)
|
|
197
|
+
|
|
147
198
|
# Project crosstables onto rvs, splitting them into complete and partial coverage of `rvs`.
|
|
148
|
-
# Completely covering cross-tables will be
|
|
199
|
+
# Completely covering cross-tables will be summed into `complete_crosstab` while others
|
|
149
200
|
# will be appended to partial_crosstabs.
|
|
150
201
|
complete_crosstab: Optional[CrossTable] = None
|
|
151
202
|
partial_crosstabs: List[CrossTable] = []
|
|
@@ -153,10 +204,13 @@ def _infer_parameters(
|
|
|
153
204
|
available_rvs: Set[RandomVariable] = set(available_crosstab.rvs)
|
|
154
205
|
if available_rvs.issuperset(rvs):
|
|
155
206
|
to_add: CrossTable = available_crosstab.project(rvs)
|
|
207
|
+
if method == ParameterInference.first:
|
|
208
|
+
# Take the first available solution.
|
|
209
|
+
return to_add
|
|
156
210
|
if complete_crosstab is None:
|
|
157
211
|
complete_crosstab = to_add
|
|
158
212
|
else:
|
|
159
|
-
complete_crosstab.add_all(to_add.
|
|
213
|
+
complete_crosstab.add_all(to_add.items())
|
|
160
214
|
else:
|
|
161
215
|
partial_crosstabs.append(available_crosstab)
|
|
162
216
|
|
|
@@ -15,7 +15,7 @@
|
|
|
15
15
|
"-O3"
|
|
16
16
|
],
|
|
17
17
|
"include_dirs": [
|
|
18
|
-
"/private/var/folders/y6/nj790rtn62lfktb1sh__79hc0000gn/T/build-env-
|
|
18
|
+
"/private/var/folders/y6/nj790rtn62lfktb1sh__79hc0000gn/T/build-env-puw5bxqw/lib/python3.12/site-packages/numpy/_core/include"
|
|
19
19
|
],
|
|
20
20
|
"name": "ck.pgm_compiler.support.circuit_table._circuit_table_cy",
|
|
21
21
|
"sources": [
|
|
Binary file
|
ck/utils/map_dict.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This module defines a class "MapDict" for mapping keys to dicts.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import TypeVar, Generic, Dict, MutableMapping, Iterator, KeysView, ValuesView, ItemsView
|
|
6
|
+
|
|
7
|
+
_K = TypeVar('_K')
|
|
8
|
+
_KV = TypeVar('_KV')
|
|
9
|
+
_V = TypeVar('_V')
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class MapDict(Generic[_K, _KV, _V], MutableMapping[_K, Dict[_KV, _V]]):
|
|
13
|
+
"""
|
|
14
|
+
A MapDict keeps a dict for each key.
|
|
15
|
+
"""
|
|
16
|
+
__slots__ = ('_map',)
|
|
17
|
+
|
|
18
|
+
def __init__(self):
|
|
19
|
+
self._map: Dict[_K, Dict[_KV, _V]] = {}
|
|
20
|
+
|
|
21
|
+
def __str__(self) -> str:
|
|
22
|
+
return str(self._map)
|
|
23
|
+
|
|
24
|
+
def __repr__(self) -> str:
|
|
25
|
+
args = ', '.join(f'{key!r}:{key!r}' for key, val in self.items())
|
|
26
|
+
class_name = self.__class__.__name__
|
|
27
|
+
return f'{class_name}({args})'
|
|
28
|
+
|
|
29
|
+
def __len__(self) -> int:
|
|
30
|
+
return len(self._map)
|
|
31
|
+
|
|
32
|
+
def __bool__(self) -> bool:
|
|
33
|
+
return len(self) > 0
|
|
34
|
+
|
|
35
|
+
def __getitem__(self, key: _K) -> Dict[_KV, _V]:
|
|
36
|
+
return self._map[key]
|
|
37
|
+
|
|
38
|
+
def __setitem__(self, key: _K, val: Dict[_KV, _V]):
|
|
39
|
+
if not isinstance(val, dict):
|
|
40
|
+
class_name = self.__class__.__name__
|
|
41
|
+
raise RuntimeError(f'every {class_name} value must be a dict')
|
|
42
|
+
self._map[key] = val
|
|
43
|
+
|
|
44
|
+
def __delitem__(self, key: _K):
|
|
45
|
+
del self._map[key]
|
|
46
|
+
|
|
47
|
+
def __iter__(self) -> Iterator[_K]:
|
|
48
|
+
return iter(self._map)
|
|
49
|
+
|
|
50
|
+
def __contains__(self, key: _K) -> bool:
|
|
51
|
+
return key in self._map
|
|
52
|
+
|
|
53
|
+
def keys(self) -> KeysView[_K]:
|
|
54
|
+
return self._map.keys()
|
|
55
|
+
|
|
56
|
+
def values(self) -> ValuesView[Dict[_KV, _V]]:
|
|
57
|
+
return self._map.values()
|
|
58
|
+
|
|
59
|
+
def items(self) -> ItemsView[_K, Dict[_KV, _V]]:
|
|
60
|
+
return self._map.items()
|
|
61
|
+
|
|
62
|
+
def get(self, key: _K, default=None):
|
|
63
|
+
"""
|
|
64
|
+
Get the list corresponding to the given key.
|
|
65
|
+
If the key is not yet in the MapList then the
|
|
66
|
+
supplied default will be returned.
|
|
67
|
+
"""
|
|
68
|
+
return self._map.get(key, default)
|
|
69
|
+
|
|
70
|
+
def get_dict(self, key: _K) -> Dict[_KV, _V]:
|
|
71
|
+
"""
|
|
72
|
+
Get the dict corresponding to the given key.
|
|
73
|
+
|
|
74
|
+
This method will always return a dict in the MapDict, even if
|
|
75
|
+
it requires a new dict being created.
|
|
76
|
+
|
|
77
|
+
Modifying the returned dict affects this MapDict object.
|
|
78
|
+
"""
|
|
79
|
+
the_dict = self._map.get(key)
|
|
80
|
+
if the_dict is None:
|
|
81
|
+
the_dict = {}
|
|
82
|
+
self._map[key] = the_dict
|
|
83
|
+
return the_dict
|
|
84
|
+
|
|
85
|
+
def clear(self):
|
|
86
|
+
"""
|
|
87
|
+
Remove all items.
|
|
88
|
+
"""
|
|
89
|
+
return self._map.clear()
|
|
@@ -14,11 +14,10 @@ EXCLUDE_UNNECESSARY_CROSS_TABLES = True
|
|
|
14
14
|
|
|
15
15
|
|
|
16
16
|
def main() -> None:
|
|
17
|
-
number_of_samples: int = 10000 # How many instances to make for the model dataset
|
|
18
|
-
|
|
19
17
|
# Create a dataset based on model which is an example PGM
|
|
18
|
+
number_of_samples: int = 10000 # How many instances to make for the model dataset
|
|
20
19
|
model: PGM = example.Student()
|
|
21
|
-
model_dataset = dataset_from_sampler(
|
|
20
|
+
model_dataset: HardDataset = dataset_from_sampler(
|
|
22
21
|
WMCProgram(DEFAULT_PGM_COMPILER(model)).sample_direct(),
|
|
23
22
|
number_of_samples,
|
|
24
23
|
)
|
|
@@ -5,7 +5,7 @@ ck_demos/dataset/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
|
|
|
5
5
|
ck_demos/dataset/demo_dataset_builder.py,sha256=a9o-rw8PzpLq_5wtwjH0L15-eacbELlc7tfLrREJBqM,987
|
|
6
6
|
ck_demos/learning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
7
|
ck_demos/learning/demo_simple_learning.py,sha256=CZPzcsnTD8TK7nzGg3XUsx4exqggQXOT6UVwrV0ScF8,1483
|
|
8
|
-
ck_demos/learning/demo_bayesian_network_from_cross_tables.py,sha256=
|
|
8
|
+
ck_demos/learning/demo_bayesian_network_from_cross_tables.py,sha256=FmW5ylFVu7ONkKQVDCUGXXcOuNKdz3f1qbktOt2cX6Q,2591
|
|
9
9
|
ck_demos/circuit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
10
|
ck_demos/circuit/demo_derivatives.py,sha256=6VwnW_Dbm2MWQFfJ46UQQFecV56QdfGpL7srthw5Py0,1143
|
|
11
11
|
ck_demos/circuit/demo_circuit_dump.py,sha256=85x7UJV6cg6XVYU-PPsuKQVTBw5WZBfkhi6Avo9XbOs,436
|
|
@@ -58,11 +58,11 @@ ck_demos/pgm_inference/demo_inferencing_mpe_cancer.py,sha256=hS9U2kyqjFgJ8jnVBtT
|
|
|
58
58
|
ck_demos/pgm_inference/demo_inferencing_wmc_and_mpe_sprinkler.py,sha256=-q4Z1Fzf7-BuwVFTFXdGRY-zUNrY-SAU7ooaov2o_lM,5128
|
|
59
59
|
ck_demos/getting_started/simple_demo.py,sha256=hiYscNnfkEwHCQ3ymXAswAYO5jAKR7cseb36pjzuus8,650
|
|
60
60
|
ck_demos/getting_started/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
61
|
-
compiled_knowledge-4.
|
|
62
|
-
compiled_knowledge-4.
|
|
63
|
-
compiled_knowledge-4.
|
|
64
|
-
compiled_knowledge-4.
|
|
65
|
-
compiled_knowledge-4.
|
|
61
|
+
compiled_knowledge-4.2.0a1.dist-info/RECORD,,
|
|
62
|
+
compiled_knowledge-4.2.0a1.dist-info/WHEEL,sha256=V1loQ6TpxABu1APUg0MoTRBOzSKT5xVc3skizX-ovCU,136
|
|
63
|
+
compiled_knowledge-4.2.0a1.dist-info/top_level.txt,sha256=Cf8DAfd2vcnLiA7HlxoduOzV0Q-8surE3kzX8P9qdks,12
|
|
64
|
+
compiled_knowledge-4.2.0a1.dist-info/METADATA,sha256=3YM6rMFGtHgoZ7Uj1QPmIUiSN0oznniDl6p7JEl0_Rk,1808
|
|
65
|
+
compiled_knowledge-4.2.0a1.dist-info/licenses/LICENSE.txt,sha256=-LmkmqXKYojmS3zDxXAeTbsA82fnHA0KaRvpfIoEdjA,1068
|
|
66
66
|
ck/pgm.py,sha256=EwKTWuYV9-0OfgJQfBw59MfGDLtxFe3wlgbYlkTqj1Y,117703
|
|
67
67
|
ck/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
68
68
|
ck/pgm_circuit/target_marginals_program.py,sha256=qWz9FkAFzt8YHLZJzPkpRnvDH76BXm-dcEWhoqCkrOw,3665
|
|
@@ -120,18 +120,18 @@ ck/dataset/dataset.py,sha256=iQGOqVrNll6QMPcRcV2phUbe0fCfpVmUVbcBIaqYx0s,25531
|
|
|
120
120
|
ck/dataset/dataset_from_crosstable.py,sha256=rOdDFfb_2rnUJT3iZrLbZkeQcRJa5EzFVBs0hSdE57U,2281
|
|
121
121
|
ck/dataset/sampled_dataset.py,sha256=Vcz2WN6IKdmK8DsFeXLten7Id3Kc2epC6qs2ZW7mvWU,3261
|
|
122
122
|
ck/dataset/dataset_from_csv.py,sha256=q4qjOsJFYAmw22xDaHcS6XC3nwqmkT-RoOaRNr_zJ8I,5802
|
|
123
|
-
ck/learning/model_from_cross_tables.py,sha256=
|
|
123
|
+
ck/learning/model_from_cross_tables.py,sha256=227hBGF0hAmcObdI3wG1RUIPE-Y92wYp2gOcSAeUp44,10750
|
|
124
124
|
ck/learning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
125
125
|
ck/learning/parameters.py,sha256=x5yP-zxkpm0HfBusOxK5vImUnYanUJeZUjxgOwKNVAc,4388
|
|
126
|
-
ck/learning/coalesce_cross_tables.py,sha256=
|
|
126
|
+
ck/learning/coalesce_cross_tables.py,sha256=pPBH4GcNHtmLfEpstyq3zFYyarYxyAduEEXpqaimLAM,13297
|
|
127
127
|
ck/learning/train_generative_bn.py,sha256=hwmhbg4RKh3JvDlG7xOJm1apScXJ1Mmfgu4nasM-cwQ,8019
|
|
128
|
-
ck/circuit/_circuit_cy.c,sha256=
|
|
128
|
+
ck/circuit/_circuit_cy.c,sha256=gYwPt5JgPL9uq2kjpqyN_IelnfxdG4dEmm2SqNQCbig,1704292
|
|
129
129
|
ck/circuit/_circuit_cy.pyx,sha256=mER1HK5yyf4UAj9ibn7fUQNyXwoxwxp7PClULPhY9B4,26995
|
|
130
130
|
ck/circuit/__init__.py,sha256=B1jwDE_Xb6hOQE8DecjaTVotOnDxJaT7jsvPfGDXqCU,401
|
|
131
131
|
ck/circuit/_circuit_cy.pxd,sha256=ZcW8xjw4oGQqD5gwz73GXc1H8NxpdAswFWzc2CUWWcA,1025
|
|
132
132
|
ck/circuit/_circuit_py.py,sha256=hADjCFDC1LJKUdyiKZzNLFt7ZkUNJ0IYwEYRj594K4g,27495
|
|
133
133
|
ck/circuit/tmp_const.py,sha256=q01bkIvTEg1l-qFcfl2B8NrSzKlqcWU7McNm4HKv7bU,2300
|
|
134
|
-
ck/circuit/_circuit_cy.cpython-312-darwin.so,sha256=
|
|
134
|
+
ck/circuit/_circuit_cy.cpython-312-darwin.so,sha256=B58E391BE1pjGHl2yOlXsb2j7tqLICkUPduqeUg2J9g,335296
|
|
135
135
|
ck/sampling/wmc_metropolis_sampler.py,sha256=jfXb-MG0jAoMyepgq9zel2amqK-gmYrCtKuxJStl8VY,6305
|
|
136
136
|
ck/sampling/wmc_direct_sampler.py,sha256=Pkv-u4GjN3npBrcQ92raoTrEIel1vpiDoE8LrlcfYJE,7094
|
|
137
137
|
ck/sampling/sampler_support.py,sha256=AD47QPXlXSTiy7Jm-adD6US3cYeSwBimOY2jB5b2qn4,9534
|
|
@@ -142,6 +142,7 @@ ck/sampling/uniform_sampler.py,sha256=XV7i0urWgsJ0nIQA6ONlO8GevsfRdw1dfZuqzRdbnB
|
|
|
142
142
|
ck/sampling/sampler.py,sha256=LtMm9_kBlZeuIEdYr_DcO218f7OUSnciddiEaEE22Dc,2244
|
|
143
143
|
ck/sampling/wmc_gibbs_sampler.py,sha256=t5pIxr3Kkz37hG0guxVUQWivUZ1T-4lT47yu8qxrZko,6414
|
|
144
144
|
ck/sampling/forward_sampler.py,sha256=gHWEue69Z7EcrnHlVURJBhZh1t5RApMV0ioxJao3GkU,8137
|
|
145
|
+
ck/utils/map_dict.py,sha256=TSSh4CL1wZC9JBlwGWRGmFQ3hcpZwmZ0kpjI1gPZ-pQ,2458
|
|
145
146
|
ck/utils/random_extras.py,sha256=l9CfQM6k-b6KGESJXw9zF--Hqp4yadw2IU9uSoklai0,1796
|
|
146
147
|
ck/utils/map_set.py,sha256=T5E3j4Lz08vg8eviRBc-4F10xz1-CKIg6KiHVoGhdts,3681
|
|
147
148
|
ck/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -164,15 +165,15 @@ ck/pgm_compiler/support/named_compiler_maker.py,sha256=Qz8a9gwY46Q3dtRCZEZ2czq5z
|
|
|
164
165
|
ck/pgm_compiler/support/circuit_table/__init__.py,sha256=1kWjAZR5Rj6PYNdbCEbuyE2VtIDQU4Qf-3HPFzBlezs,562
|
|
165
166
|
ck/pgm_compiler/support/circuit_table/_circuit_table_cy.pyx,sha256=Fsjw8P9clKQioqlLyr1JirUK5oYkeotpDMy5sMo7Khk,11683
|
|
166
167
|
ck/pgm_compiler/support/circuit_table/_circuit_table_py.py,sha256=OZJC-JGX3ovCSv7nJtNYq7735KZ2eb4TQOlZdZbhPmk,10983
|
|
167
|
-
ck/pgm_compiler/support/circuit_table/_circuit_table_cy.c,sha256=
|
|
168
|
-
ck/pgm_compiler/support/circuit_table/_circuit_table_cy.cpython-312-darwin.so,sha256=
|
|
168
|
+
ck/pgm_compiler/support/circuit_table/_circuit_table_cy.c,sha256=jl_Vj-dyyNjLvg8Bwqjg8qjLVtmT5QIsdQ4GfMnRo5M,714044
|
|
169
|
+
ck/pgm_compiler/support/circuit_table/_circuit_table_cy.cpython-312-darwin.so,sha256=IMUXynqFcx7T_CppIJkG8Ynd5aH2X8htHIiiHK4SNj8,165096
|
|
169
170
|
ck/pgm_compiler/ace/ace.py,sha256=An83dHxE_gQFcEs6H5qgm0PlNFnJSGGuvLJNC2H3hGU,10098
|
|
170
171
|
ck/pgm_compiler/ace/__init__.py,sha256=5HWep-yL1Mr6z5VWEaIYpLumCdeso85J-l_-hQaVusM,96
|
|
171
172
|
ck/program/raw_program.py,sha256=U7kLBCSLtP1CfG09RrzmGo7E3sZdNr7wr2V1qkTfVGc,4106
|
|
172
173
|
ck/program/program_buffer.py,sha256=IHwAHTKIaUlhcbNFTuSxPWKyExIsOxxX6ffUn4KfheU,5485
|
|
173
174
|
ck/program/__init__.py,sha256=Rifdxk-l6cCjXLpwc6Q0pVXNDsllAwaFlRqRx3cURho,107
|
|
174
175
|
ck/program/program.py,sha256=ohsnE0CEy8O4q8uGB_YEjoJKAPhY1Mz_a08Z7fy7TLw,4047
|
|
175
|
-
ck/circuit_compiler/llvm_compiler.py,sha256=
|
|
176
|
+
ck/circuit_compiler/llvm_compiler.py,sha256=XaAPrMaR5Y0EQT7Zukpa5TFybdBXVLo8_A2cU2lzPtw,13656
|
|
176
177
|
ck/circuit_compiler/circuit_compiler.py,sha256=Sl7FS42GXrDL6eG_WNKILcSQl7Wlccgs5Dd1l0EZMsU,1121
|
|
177
178
|
ck/circuit_compiler/__init__.py,sha256=eRN6chBEt64PK5e6EFGyBNZBn6BXhXb6R3m12zPA1Qg,130
|
|
178
179
|
ck/circuit_compiler/named_circuit_compilers.py,sha256=paKyG876tdG_bdSHJU6KW5HxQrutmV_T80GPpz8A65s,2227
|
|
@@ -181,15 +182,15 @@ ck/circuit_compiler/llvm_vm_compiler.py,sha256=rM_6F5st3k9X5K1_MwzKJwDhQo1794voo
|
|
|
181
182
|
ck/circuit_compiler/cython_vm_compiler/cython_vm_compiler.py,sha256=GdtBkipud8vylXYArOJvZ-10U9L_PL0oJrkyrnFGH2Q,4345
|
|
182
183
|
ck/circuit_compiler/cython_vm_compiler/__init__.py,sha256=ks0sISOJ-XHIHgHnESyFsheNWvcSJQkbsrj1wVlnzTE,48
|
|
183
184
|
ck/circuit_compiler/cython_vm_compiler/_compiler.pyx,sha256=RssdkoAcB3Ahes8xisqFy0PQyOPmC3GLEC2xR-miQaE,12898
|
|
184
|
-
ck/circuit_compiler/cython_vm_compiler/_compiler.cpython-312-darwin.so,sha256=
|
|
185
|
-
ck/circuit_compiler/cython_vm_compiler/_compiler.c,sha256=
|
|
185
|
+
ck/circuit_compiler/cython_vm_compiler/_compiler.cpython-312-darwin.so,sha256=drpILWhPHsPsqPdu7r60g64OQGXkE5t3YJTSEEhY-qc,163488
|
|
186
|
+
ck/circuit_compiler/cython_vm_compiler/_compiler.c,sha256=OKxPxgQnSwjLUp6nlxquGeabFXf5xqP_kLw904VLl4A,857789
|
|
186
187
|
ck/circuit_compiler/support/llvm_ir_function.py,sha256=sMLKfwz90YcsrVyxsuY0Ymo1ibFOcul4Qiwdake-VkI,8321
|
|
187
|
-
ck/circuit_compiler/support/input_vars.py,sha256=
|
|
188
|
+
ck/circuit_compiler/support/input_vars.py,sha256=0g1I5GezT6Dt6ptJJgNFPTyHfRrpunTIkJOUqZhkP84,4673
|
|
188
189
|
ck/circuit_compiler/support/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
189
190
|
ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.pyx,sha256=a0fKmkwRNscJmy6qoO2AOqJYmHYptrQmkRSrDg3G-wg,3233
|
|
190
191
|
ck/circuit_compiler/support/circuit_analyser/__init__.py,sha256=WhNwfg7GHVeI4k_m7owPGWxX0MyZg_wtcp2MA07qbWg,523
|
|
191
|
-
ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.cpython-312-darwin.so,sha256=
|
|
192
|
-
ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.c,sha256=
|
|
192
|
+
ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.cpython-312-darwin.so,sha256=MycKij0HvH7_FfYgSD_RYrwMbTaDdgq7k_Tz2iGzca8,104936
|
|
193
|
+
ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.c,sha256=OiC5DlYl76XoiEzX71ssoRLT-a3aEJsyQ82WyDEakVQ,438223
|
|
193
194
|
ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_py.py,sha256=CMdXV6Rot5CCoK1UsurQdGK0UOx_09B6V7mCc_6-gfI,2993
|
|
194
195
|
ck/in_out/render_net.py,sha256=VePvN6aYWuzEkW-Hv-qGT9QneOvsnrBMmS_KYueuj2I,4970
|
|
195
196
|
ck/in_out/render_bugs.py,sha256=c39KbaD4gEiauFsZq2KUhDEEa-3cuY5kuvz97pEWVpw,3272
|
|
File without changes
|
{compiled_knowledge-4.1.0a3.dist-info → compiled_knowledge-4.2.0a1.dist-info}/licenses/LICENSE.txt
RENAMED
|
File without changes
|
|
File without changes
|