compiled-knowledge 4.0.0a24__cp313-cp313-macosx_11_0_arm64.whl → 4.1.0__cp313-cp313-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of compiled-knowledge might be problematic. Click here for more details.

Files changed (58) hide show
  1. ck/circuit/_circuit_cy.c +1 -1
  2. ck/circuit/_circuit_cy.cpython-313-darwin.so +0 -0
  3. ck/circuit/tmp_const.py +5 -4
  4. ck/circuit_compiler/cython_vm_compiler/_compiler.c +152 -152
  5. ck/circuit_compiler/cython_vm_compiler/_compiler.cpython-313-darwin.so +0 -0
  6. ck/circuit_compiler/interpret_compiler.py +2 -2
  7. ck/circuit_compiler/llvm_compiler.py +4 -4
  8. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.c +1 -1
  9. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.cpython-313-darwin.so +0 -0
  10. ck/circuit_compiler/support/input_vars.py +4 -4
  11. ck/circuit_compiler/support/llvm_ir_function.py +4 -4
  12. ck/dataset/__init__.py +1 -0
  13. ck/dataset/cross_table.py +334 -0
  14. ck/dataset/dataset.py +682 -0
  15. ck/dataset/dataset_builder.py +519 -0
  16. ck/dataset/dataset_compute.py +140 -0
  17. ck/dataset/dataset_from_crosstable.py +64 -0
  18. ck/dataset/dataset_from_csv.py +151 -0
  19. ck/dataset/sampled_dataset.py +96 -0
  20. ck/example/diamond_square.py +3 -1
  21. ck/example/triangle_square.py +3 -1
  22. ck/example/truss.py +3 -1
  23. ck/in_out/parse_net.py +21 -19
  24. ck/in_out/parser_utils.py +7 -3
  25. ck/learning/__init__.py +0 -0
  26. ck/learning/coalesce_cross_tables.py +403 -0
  27. ck/learning/model_from_cross_tables.py +296 -0
  28. ck/learning/parameters.py +117 -0
  29. ck/learning/train_generative_bn.py +198 -0
  30. ck/pgm.py +105 -92
  31. ck/pgm_circuit/marginals_program.py +5 -0
  32. ck/pgm_circuit/mpe_program.py +3 -4
  33. ck/pgm_circuit/pgm_circuit.py +27 -18
  34. ck/pgm_circuit/program_with_slotmap.py +27 -46
  35. ck/pgm_circuit/support/compile_circuit.py +2 -4
  36. ck/pgm_circuit/wmc_program.py +5 -0
  37. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.c +1 -1
  38. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.cpython-313-darwin.so +0 -0
  39. ck/probability/cross_table_probability_space.py +53 -0
  40. ck/probability/divergence.py +226 -0
  41. ck/probability/empirical_probability_space.py +1 -0
  42. ck/probability/probability_space.py +53 -30
  43. ck/program/raw_program.py +23 -16
  44. ck/sampling/sampler_support.py +5 -6
  45. ck/utils/iter_extras.py +3 -2
  46. ck/utils/local_config.py +16 -8
  47. ck_demos/dataset/__init__.py +0 -0
  48. ck_demos/dataset/demo_dataset_builder.py +37 -0
  49. ck_demos/dataset/demo_dataset_from_sampler.py +18 -0
  50. ck_demos/learning/__init__.py +0 -0
  51. ck_demos/learning/demo_bayesian_network_from_cross_tables.py +70 -0
  52. ck_demos/learning/demo_simple_learning.py +55 -0
  53. ck_demos/sampling/demo_wmc_direct_sampler.py +2 -2
  54. {compiled_knowledge-4.0.0a24.dist-info → compiled_knowledge-4.1.0.dist-info}/METADATA +2 -1
  55. {compiled_knowledge-4.0.0a24.dist-info → compiled_knowledge-4.1.0.dist-info}/RECORD +58 -37
  56. {compiled_knowledge-4.0.0a24.dist-info → compiled_knowledge-4.1.0.dist-info}/WHEEL +0 -0
  57. {compiled_knowledge-4.0.0a24.dist-info → compiled_knowledge-4.1.0.dist-info}/licenses/LICENSE.txt +0 -0
  58. {compiled_knowledge-4.0.0a24.dist-info → compiled_knowledge-4.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,70 @@
1
+ from typing import List, Set
2
+
3
+ from ck import example
4
+ from ck.dataset import HardDataset
5
+ from ck.dataset.cross_table import CrossTable, cross_table_from_hard_dataset
6
+ from ck.dataset.sampled_dataset import dataset_from_sampler
7
+ from ck.learning.model_from_cross_tables import model_from_cross_tables
8
+ from ck.pgm import PGM, RandomVariable
9
+ from ck.pgm_circuit.wmc_program import WMCProgram
10
+ from ck.pgm_compiler import DEFAULT_PGM_COMPILER
11
+ from ck.probability import divergence
12
+
13
+ EXCLUDE_UNNECESSARY_CROSS_TABLES = True
14
+
15
+
16
+ def main() -> None:
17
+ # Create a dataset based on model which is an example PGM
18
+ number_of_samples: int = 10000 # How many instances to make for the model dataset
19
+ model: PGM = example.Student()
20
+ model_dataset: HardDataset = dataset_from_sampler(
21
+ WMCProgram(DEFAULT_PGM_COMPILER(model)).sample_direct(),
22
+ number_of_samples,
23
+ )
24
+
25
+ # Clone the model, without factors, and transport the dataset to the new PGM
26
+ pgm = PGM()
27
+ dataset = HardDataset(weights=model_dataset.weights)
28
+ for model_rv in model.rvs:
29
+ rv = pgm.new_rv(model_rv.name, model_rv.states)
30
+ dataset.add_rv_from_state_idxs(rv, model_dataset.state_idxs(model_rv))
31
+
32
+ # What model rvs have a child
33
+ model_rvs_with_children: Set[RandomVariable] = set()
34
+ for model_factor in model.factors:
35
+ for parent_rv in model_factor.rvs[1:]:
36
+ model_rvs_with_children.add(parent_rv)
37
+
38
+ # Construct cross-tables from the dataset
39
+ cross_tables: List[CrossTable] = []
40
+ for model_factor in model.factors:
41
+ if (
42
+ EXCLUDE_UNNECESSARY_CROSS_TABLES
43
+ and len(model_factor.rvs) == 1
44
+ and model_factor.rvs[0] in model_rvs_with_children
45
+ ):
46
+ # The factor relates to a single random variable (has
47
+ # no parents) but it does have children.
48
+ # No need to include a cross-table as it is inferable from
49
+ # cross-tables of its children.
50
+ continue
51
+
52
+ rvs = tuple(pgm.rvs[model_rv.idx] for model_rv in model_factor.rvs)
53
+ cross_tables.append(cross_table_from_hard_dataset(dataset, rvs))
54
+ print('cross-table:', *rvs)
55
+
56
+ # Train the PGM
57
+ model_from_cross_tables(pgm, cross_tables)
58
+
59
+ # Show results
60
+ print()
61
+ pgm.dump(show_function_values=True)
62
+ print()
63
+ model_space = WMCProgram(DEFAULT_PGM_COMPILER(model))
64
+ pgm_space = WMCProgram(DEFAULT_PGM_COMPILER(pgm))
65
+ print('HI', divergence.hi(model_space, pgm_space))
66
+ print('KL', divergence.kl(model_space, pgm_space))
67
+
68
+
69
+ if __name__ == '__main__':
70
+ main()
@@ -0,0 +1,55 @@
1
+ from ck.dataset.dataset_from_csv import hard_dataset_from_csv
2
+ from ck.learning.train_generative_bn import train_generative_bn
3
+ from ck.pgm import PGM
4
+
5
+
6
+ def main() -> None:
7
+ pgm = PGM('Student')
8
+
9
+ difficult = pgm.new_rv('difficult', ['y', 'n'])
10
+ intelligent = pgm.new_rv('intelligent', ['y', 'n'])
11
+ grade = pgm.new_rv('grade', ['low', 'medium', 'high'])
12
+ award = pgm.new_rv('award', ['y', 'n'])
13
+ letter = pgm.new_rv('letter', ['y', 'n'])
14
+
15
+ pgm.new_factor(difficult)
16
+ pgm.new_factor(intelligent)
17
+ pgm.new_factor(grade, intelligent, difficult)
18
+ pgm.new_factor(award, intelligent)
19
+ pgm.new_factor(letter, grade)
20
+
21
+ rvs = (difficult, intelligent, grade, award, letter)
22
+ csv = """
23
+ 0,1,2,0,1
24
+ 1,1,2,0,1
25
+ 1,1,2,0,1
26
+ 0,0,2,0,0
27
+ 0,1,1,1,0
28
+ 1,1,1,1,1
29
+ 1,1,0,0,0
30
+ 1,1,0,0,1
31
+ 1,0,0,0,0
32
+ """
33
+
34
+ dataset = hard_dataset_from_csv(rvs, csv.splitlines())
35
+
36
+ # Learn parameters values for `pgm` using the training data `dataset`.
37
+ # This updates the PGMs potential functions.
38
+ train_generative_bn(pgm, dataset)
39
+
40
+ show_pgm_factors(pgm)
41
+
42
+ print('Done.')
43
+
44
+
45
+ def show_pgm_factors(pgm: PGM) -> None:
46
+ for factor in pgm.factors:
47
+ potential_function = factor.function
48
+ print(f'Factor: {factor} {type(potential_function)}')
49
+ for instance, _, param_value in potential_function.keys_with_param:
50
+ print(f'Factor{instance} = {param_value}')
51
+ print()
52
+
53
+
54
+ if __name__ == '__main__':
55
+ main()
@@ -2,7 +2,7 @@ import random
2
2
 
3
3
  from ck import example
4
4
  from ck.pgm import PGM
5
- from ck.pgm_compiler import factor_elimination
5
+ from ck.pgm_compiler import DEFAULT_PGM_COMPILER
6
6
  from ck.pgm_circuit import PGMCircuit
7
7
  from ck.pgm_circuit.wmc_program import WMCProgram
8
8
  from ck.probability.empirical_probability_space import EmpiricalProbabilitySpace
@@ -18,7 +18,7 @@ def main():
18
18
 
19
19
  pgm: PGM = example.Rain()
20
20
 
21
- pgm_cct: PGMCircuit = factor_elimination.compile_pgm(pgm)
21
+ pgm_cct: PGMCircuit = DEFAULT_PGM_COMPILER(pgm)
22
22
  wmc = WMCProgram(pgm_cct)
23
23
  sampler = wmc.sample_direct()
24
24
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: compiled-knowledge
3
- Version: 4.0.0a24
3
+ Version: 4.1.0
4
4
  Summary: A Python package for compiling and querying discrete probabilistic graphical models.
5
5
  Author-email: Barry Drake <barry@compiledknowledge.org>
6
6
  License-Expression: MIT
@@ -13,6 +13,7 @@ Description-Content-Type: text/markdown
13
13
  License-File: LICENSE.txt
14
14
  Requires-Dist: llvmlite
15
15
  Requires-Dist: numpy
16
+ Requires-Dist: scipy
16
17
  Dynamic: license-file
17
18
 
18
19
  Compiled Knowledge
@@ -1,11 +1,17 @@
1
1
  ck_demos/all_demos.py,sha256=tqnMFbW6t1F4ksErf6QYTz9XtvbfayWl35lD3Bjm47E,2468
2
2
  ck_demos/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ ck_demos/dataset/demo_dataset_from_sampler.py,sha256=N2UDctHWePuUfJNWDnsd-UOSqeRfio6YQI21ZvyYhts,485
4
+ ck_demos/dataset/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ ck_demos/dataset/demo_dataset_builder.py,sha256=a9o-rw8PzpLq_5wtwjH0L15-eacbELlc7tfLrREJBqM,987
6
+ ck_demos/learning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
+ ck_demos/learning/demo_simple_learning.py,sha256=CZPzcsnTD8TK7nzGg3XUsx4exqggQXOT6UVwrV0ScF8,1483
8
+ ck_demos/learning/demo_bayesian_network_from_cross_tables.py,sha256=FmW5ylFVu7ONkKQVDCUGXXcOuNKdz3f1qbktOt2cX6Q,2591
3
9
  ck_demos/circuit/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
10
  ck_demos/circuit/demo_derivatives.py,sha256=6VwnW_Dbm2MWQFfJ46UQQFecV56QdfGpL7srthw5Py0,1143
5
11
  ck_demos/circuit/demo_circuit_dump.py,sha256=85x7UJV6cg6XVYU-PPsuKQVTBw5WZBfkhi6Avo9XbOs,436
6
12
  ck_demos/sampling/demo_uniform_sampler.py,sha256=zY5Kz97r43b1YvFz_4xNAeXvSpd7Kc2l0geZhWrz2no,924
7
13
  ck_demos/sampling/check_sampler.py,sha256=9Xy7oS3KnlNzcbdIU3bLnWlQ1SNo6S9hEp3TWoSM6C8,2035
8
- ck_demos/sampling/demo_wmc_direct_sampler.py,sha256=USz7vynHOEYUQgu5dJY-dG_Z_zNEDAfoYJ3VtX6uFmk,1073
14
+ ck_demos/sampling/demo_wmc_direct_sampler.py,sha256=zLwygZ-LNZ_L47XM5czdhCDkj8m8dcq7eZyie-dtmiM,1065
9
15
  ck_demos/sampling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
16
  ck_demos/sampling/demo_marginal_direct_sampler.py,sha256=nv4smqYl1VhpB6pkF4L_aqnpVgVMcv3FrSvUkJ0EJz0,1109
11
17
  ck_demos/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -52,27 +58,29 @@ ck_demos/pgm_inference/demo_inferencing_mpe_cancer.py,sha256=hS9U2kyqjFgJ8jnVBtT
52
58
  ck_demos/pgm_inference/demo_inferencing_wmc_and_mpe_sprinkler.py,sha256=-q4Z1Fzf7-BuwVFTFXdGRY-zUNrY-SAU7ooaov2o_lM,5128
53
59
  ck_demos/getting_started/simple_demo.py,sha256=hiYscNnfkEwHCQ3ymXAswAYO5jAKR7cseb36pjzuus8,650
54
60
  ck_demos/getting_started/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
- compiled_knowledge-4.0.0a24.dist-info/RECORD,,
56
- compiled_knowledge-4.0.0a24.dist-info/WHEEL,sha256=oqGJCpG61FZJmvyZ3C_0aCv-2mdfcY9e3fXvyUNmWfM,136
57
- compiled_knowledge-4.0.0a24.dist-info/top_level.txt,sha256=Cf8DAfd2vcnLiA7HlxoduOzV0Q-8surE3kzX8P9qdks,12
58
- compiled_knowledge-4.0.0a24.dist-info/METADATA,sha256=L0xinlE8t7EAHnNAO-y3Tqjs3jq_H5l0R1RxUgmPpyU,1788
59
- compiled_knowledge-4.0.0a24.dist-info/licenses/LICENSE.txt,sha256=-LmkmqXKYojmS3zDxXAeTbsA82fnHA0KaRvpfIoEdjA,1068
60
- ck/pgm.py,sha256=px-eAq-2m3SJ6-eDcuVk9QY8rJE03ZGGWfGnbN-wn0s,117355
61
+ compiled_knowledge-4.1.0.dist-info/RECORD,,
62
+ compiled_knowledge-4.1.0.dist-info/WHEEL,sha256=oqGJCpG61FZJmvyZ3C_0aCv-2mdfcY9e3fXvyUNmWfM,136
63
+ compiled_knowledge-4.1.0.dist-info/top_level.txt,sha256=Cf8DAfd2vcnLiA7HlxoduOzV0Q-8surE3kzX8P9qdks,12
64
+ compiled_knowledge-4.1.0.dist-info/METADATA,sha256=dmGQAm-Qzr2htapl91zpBLYStM2CQHrfdaexyqxhZF4,1806
65
+ compiled_knowledge-4.1.0.dist-info/licenses/LICENSE.txt,sha256=-LmkmqXKYojmS3zDxXAeTbsA82fnHA0KaRvpfIoEdjA,1068
66
+ ck/pgm.py,sha256=EwKTWuYV9-0OfgJQfBw59MfGDLtxFe3wlgbYlkTqj1Y,117703
61
67
  ck/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
68
  ck/pgm_circuit/target_marginals_program.py,sha256=qWz9FkAFzt8YHLZJzPkpRnvDH76BXm-dcEWhoqCkrOw,3665
63
69
  ck/pgm_circuit/slot_map.py,sha256=pqN0t5ElmUjR7SzvzldQwnO-jjRIz1rNZHH1PzE-V88,822
64
- ck/pgm_circuit/mpe_program.py,sha256=haYfD7pw9nP7biqNfmWRS3LkbvZcJfDNe5rZpkWMQoA,10008
65
- ck/pgm_circuit/program_with_slotmap.py,sha256=HQNxLTYdxb1noAjyzvX3LknI9vT2RPk5UmYF__fn9Jg,8723
70
+ ck/pgm_circuit/mpe_program.py,sha256=uDOykbBIbvvDQtxXOgBj6gzoehq1AfaQzZIWW3rMZnY,9990
71
+ ck/pgm_circuit/program_with_slotmap.py,sha256=31Rgk4WoY7KW09L3TGySf1teYnf-ItvICTYEC17zB1w,7808
66
72
  ck/pgm_circuit/__init__.py,sha256=FctIFEYdL1pwxFMMEEu5Rwgq3kjPar-vJTqAmgIqb-I,36
67
- ck/pgm_circuit/marginals_program.py,sha256=E-L-4Rc2YLs3ndXIfXpTxUYGEFJG1_BkaZVDBs9gcgQ,14434
68
- ck/pgm_circuit/wmc_program.py,sha256=Btq7jUot-PodWXrgDFaE6zhUtr6GPUNF217CVLTaB70,12376
69
- ck/pgm_circuit/pgm_circuit.py,sha256=VBgHk7uDNYiElesEQxdmlU2iRn0bfHYWik2Cb6t838g,3208
73
+ ck/pgm_circuit/marginals_program.py,sha256=SOc31sxk_hNL0QgNQAbdYjVYRf0aOwsiHTh6CSyVsiM,14782
74
+ ck/pgm_circuit/wmc_program.py,sha256=v7DLS2oq34uW5v99fvtadk8CbRSu7gipLA--DxtGSYo,12724
75
+ ck/pgm_circuit/pgm_circuit.py,sha256=XBXANPREwp5Cl8P0x5XuG9besOJV5DjVxtNkqyt2DK8,3287
70
76
  ck/pgm_circuit/support/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- ck/pgm_circuit/support/compile_circuit.py,sha256=56KsI01Ww3gSHnqoTt81kzdHgbFTmHwVeB3jEajipHs,3179
72
- ck/probability/probability_space.py,sha256=f82dRyUoyusj0t4-H11mN8j0r2dN-5M6z5RV2SF0E-g,25544
77
+ ck/pgm_circuit/support/compile_circuit.py,sha256=XJFzi-BdFNTsdozRv0EHBM8cJ0SUZpbQwuTWONUzGck,3125
78
+ ck/probability/probability_space.py,sha256=fn_z3KWcRyBMF9XqoIE89Kij8-jpcmIjytGdnoNg2os,26125
79
+ ck/probability/cross_table_probability_space.py,sha256=exaAVxzpQkqTmGIQx6ui64p6QTcy66IRYi5eWz6DFiE,1944
73
80
  ck/probability/pgm_probability_space.py,sha256=9al9sZk2LGvnTITvxS8x_ntabHKhaliUW-6JUeAEEl4,1231
74
81
  ck/probability/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
- ck/probability/empirical_probability_space.py,sha256=ojEMLKVy9Qf-Vi803B9KWARCySIWwf4rt23--mpAxD0,1978
82
+ ck/probability/divergence.py,sha256=l9mhHmCJQWNtY6Xf67ZCBeW1nry0B7-Jec6Tb99DP08,8258
83
+ ck/probability/empirical_probability_space.py,sha256=Lp7_N_uNYq-W_S5caUC5ub9sTqaL-Vn4hudF0WYXPdU,2088
76
84
  ck/example/survey.py,sha256=ubjM8EP7aQMQbx7XFMaXvSYBOPuUDHeyG6wZIlRDqD8,1565
77
85
  ck/example/pathfinder.py,sha256=rQckvasnbzBYYESxngE_xbhyXxoJlELeiYc6Ghh7iFk,2257125
78
86
  ck/example/run.py,sha256=nYfC_prwCRBN0uawLvrRVsl5IFag9VrQ5x_hhWmr-18,964
@@ -81,7 +89,7 @@ ck/example/asia.py,sha256=vS81n-qyhHscW8yG__9TQvDHLI-s6y6gaDetfOKMvFw,1267
81
89
  ck/example/clique.py,sha256=c3bATknqkD3QJztHQffgyL6_WzupWUpLSnI-EIEndqg,1055
82
90
  ck/example/mildew.py,sha256=Hfn_nQUhZVK6wFzNgxjD8HgzxgGxU1TWTZcWUrN3tDU,1792796
83
91
  ck/example/chain.py,sha256=aPlqMtqWO2BOz1WLXFtVwT3uPKN2E2Z7a7TSPvtloQU,1313
84
- ck/example/truss.py,sha256=7SM16u6rJVrWIPKRWVTJve13XNnb_CKta4_iIv_sXzY,1925
92
+ ck/example/truss.py,sha256=KgYka1OwoZ_9wRvtCPzI2SkiB22crch_wpZzAYQiRNc,1928
85
93
  ck/example/insurance.py,sha256=XRycrk8YBLxv5cQXWd4uIWW5fHhD1_Le9XKdNz_yJA4,31204
86
94
  ck/example/sachs.py,sha256=X-2stEbTlnV9hGuo2u6z19jqxJ2mFcIvDQfQnWGuKvc,5678
87
95
  ck/example/empty.py,sha256=RU3kjIrWSCBoqK_XZqk82GhI-0blu1dzM32UtGe5Y0Q,172
@@ -99,21 +107,34 @@ ck/example/munin.py,sha256=IZvZrVXDi2Zeu0M-nWIpIbzQu-U0cv0Be6dz960L5lo,1657227
99
107
  ck/example/child.py,sha256=qb3cOJms_Bzdfgk0aDrHwfFjjBojCfAYQnorv3p3rQM,7612
100
108
  ck/example/hailfinder.py,sha256=7M-J0XqFeNxK-TsdbOYu-GX581oM7wY1INEvTTSwqfs,38866
101
109
  ck/example/student.py,sha256=WayCWuMCrE0YSXez-a8TuptS53R6PBG2argyCsas7mc,1290
102
- ck/example/triangle_square.py,sha256=4JpB-p9hBfCz3Jn1sOKb5qlp5W04Kqm0rdHk2KuZ4lQ,2094
110
+ ck/example/triangle_square.py,sha256=mzl04AqaTkLNo0NU0dZYAh-sBMZbNqpOcdi_Dd1ZgMM,2097
103
111
  ck/example/sprinkler.py,sha256=t8RIiPorf3QXYyTXbxFkSrK1SsG5ALWmTfTsFUq2C_c,938
104
- ck/example/diamond_square.py,sha256=HqGqmInYTpAsCBuz3s8FuhT2Jnc11L3wGCTgJDmFLjw,2722
112
+ ck/example/diamond_square.py,sha256=ic8adEomQHMFlGQ3gMYGEja0LxEla8KEQKhET0XpULs,2725
105
113
  ck/example/rain.py,sha256=kLTU_9f_-_yy0ymPnS9-cbFVT6fYyCanDgszk3vQOgc,1187
106
114
  ck/example/cancer.py,sha256=-FnLbfb9yxriLl97N5BDZ0VrDZ5UnOWlT-Ep_tzO6QI,1698
107
- ck/circuit/_circuit_cy.c,sha256=Qc4AXKFu7Q89eQN-MT5_K2O7hmmRSayF4p5BII1QAvU,1704292
115
+ ck/dataset/dataset_compute.py,sha256=Bdxjl4c_0OttHgVWx-C3WdOI-imgupUQnnQVzNesPCw,5705
116
+ ck/dataset/cross_table.py,sha256=-uBlzapzZ5SKB3Y2OdUs51syZZp4x9805NM3yfLJfk8,13014
117
+ ck/dataset/__init__.py,sha256=QXCZWPHusMfXtl9bLPrIJP89ZnqWMz9KfdxScVrB3UQ,55
118
+ ck/dataset/dataset_builder.py,sha256=ewsz6znW_GtBvwsw6k9uXHT8yh_u6zQI5PFBZ_ykXlM,18873
119
+ ck/dataset/dataset.py,sha256=iQGOqVrNll6QMPcRcV2phUbe0fCfpVmUVbcBIaqYx0s,25531
120
+ ck/dataset/dataset_from_crosstable.py,sha256=rOdDFfb_2rnUJT3iZrLbZkeQcRJa5EzFVBs0hSdE57U,2281
121
+ ck/dataset/sampled_dataset.py,sha256=Vcz2WN6IKdmK8DsFeXLten7Id3Kc2epC6qs2ZW7mvWU,3261
122
+ ck/dataset/dataset_from_csv.py,sha256=q4qjOsJFYAmw22xDaHcS6XC3nwqmkT-RoOaRNr_zJ8I,5802
123
+ ck/learning/model_from_cross_tables.py,sha256=227hBGF0hAmcObdI3wG1RUIPE-Y92wYp2gOcSAeUp44,10750
124
+ ck/learning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
125
+ ck/learning/parameters.py,sha256=x5yP-zxkpm0HfBusOxK5vImUnYanUJeZUjxgOwKNVAc,4388
126
+ ck/learning/coalesce_cross_tables.py,sha256=pPBH4GcNHtmLfEpstyq3zFYyarYxyAduEEXpqaimLAM,13297
127
+ ck/learning/train_generative_bn.py,sha256=hwmhbg4RKh3JvDlG7xOJm1apScXJ1Mmfgu4nasM-cwQ,8019
128
+ ck/circuit/_circuit_cy.c,sha256=HpvPZPEwF6EcvCjl4Z9eI9K5uVDgSjE1ybuCWc19BJQ,1704292
108
129
  ck/circuit/_circuit_cy.pyx,sha256=mER1HK5yyf4UAj9ibn7fUQNyXwoxwxp7PClULPhY9B4,26995
109
130
  ck/circuit/__init__.py,sha256=B1jwDE_Xb6hOQE8DecjaTVotOnDxJaT7jsvPfGDXqCU,401
110
- ck/circuit/_circuit_cy.cpython-313-darwin.so,sha256=PMk_7zZcOvO799o1OX7YVvVO_s_stRgaepU_eQtttNo,334944
131
+ ck/circuit/_circuit_cy.cpython-313-darwin.so,sha256=SY4hnHIgnxQvxXoQBVv_lvE5e-ON1PkxWeVJ45mm0Sk,334944
111
132
  ck/circuit/_circuit_cy.pxd,sha256=ZcW8xjw4oGQqD5gwz73GXc1H8NxpdAswFWzc2CUWWcA,1025
112
133
  ck/circuit/_circuit_py.py,sha256=hADjCFDC1LJKUdyiKZzNLFt7ZkUNJ0IYwEYRj594K4g,27495
113
- ck/circuit/tmp_const.py,sha256=wgi4P3xrTRLPXNMmWYpYaJWlm-lekQOdxg4rkXZC3Wk,2298
134
+ ck/circuit/tmp_const.py,sha256=q01bkIvTEg1l-qFcfl2B8NrSzKlqcWU7McNm4HKv7bU,2300
114
135
  ck/sampling/wmc_metropolis_sampler.py,sha256=jfXb-MG0jAoMyepgq9zel2amqK-gmYrCtKuxJStl8VY,6305
115
136
  ck/sampling/wmc_direct_sampler.py,sha256=Pkv-u4GjN3npBrcQ92raoTrEIel1vpiDoE8LrlcfYJE,7094
116
- ck/sampling/sampler_support.py,sha256=ACOn4G2djon5Yna4nZw4J7xeTuPvBYW2Ucal3uf7pjA,9573
137
+ ck/sampling/sampler_support.py,sha256=AD47QPXlXSTiy7Jm-adD6US3cYeSwBimOY2jB5b2qn4,9534
117
138
  ck/sampling/wmc_rejection_sampler.py,sha256=Kk7hDvfnI37CQhFlAW2-UoxtoSbQBoMesghMlwrX6_Y,4782
118
139
  ck/sampling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
119
140
  ck/sampling/marginals_direct_sampler.py,sha256=S4kfmvgPfh_dyn-D2WumrH6SMvLc6sFF7fRswGOS1gA,4353
@@ -125,9 +146,9 @@ ck/utils/random_extras.py,sha256=l9CfQM6k-b6KGESJXw9zF--Hqp4yadw2IU9uSoklai0,179
125
146
  ck/utils/map_set.py,sha256=T5E3j4Lz08vg8eviRBc-4F10xz1-CKIg6KiHVoGhdts,3681
126
147
  ck/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
127
148
  ck/utils/tmp_dir.py,sha256=Emln4TIyO-cFrhgcpoH10awakJoRgoDCVgwFKmt1-So,2574
128
- ck/utils/iter_extras.py,sha256=9BQpCKltbM_hcMIPFfJhqvWSvY2Mz3vzXdoSbfezR5k,4316
149
+ ck/utils/iter_extras.py,sha256=61I4xnFfZD9biC8VAqYRCdh4B2q5BRI6xDQ9jjpQv4E,4328
129
150
  ck/utils/np_extras.py,sha256=3wqIJ8Lc4CCpcKmzDiIOtzslW_IFw9HYUC2QaYYN-mM,1701
130
- ck/utils/local_config.py,sha256=RsP1QwIINw3F7KFVeJEML0Zul3Pm4YEkadVENfqHE6I,9265
151
+ ck/utils/local_config.py,sha256=9b7KAA1-HIjOORa6Z-L90dCKWg0-ZGBmsjYtr1cBwQU,9322
131
152
  ck/utils/map_list.py,sha256=0UkTDg-ZlWkuxiM-1OhaUYh5MRgMz0rAppDtE2RryEY,3719
132
153
  ck/pgm_compiler/__init__.py,sha256=Ga0dTOetOovHwNN4WS-o4fyyh7255xL0bUTdK29p2LY,110
133
154
  ck/pgm_compiler/recursive_conditioning.py,sha256=vdDSrMO1yPQHNlLQha5ybg3a7l1SiygsmniI_pQhU-Q,7705
@@ -141,39 +162,39 @@ ck/pgm_compiler/support/clusters.py,sha256=r1Z8b4IvXMfY5xeyg5AHoU3TxUI0yNDvh3Xkv
141
162
  ck/pgm_compiler/support/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
142
163
  ck/pgm_compiler/support/named_compiler_maker.py,sha256=Qz8a9gwY46Q3dtRCZEZ2czq5z52QroGVKN5UDcoXI3c,1377
143
164
  ck/pgm_compiler/support/circuit_table/__init__.py,sha256=1kWjAZR5Rj6PYNdbCEbuyE2VtIDQU4Qf-3HPFzBlezs,562
144
- ck/pgm_compiler/support/circuit_table/_circuit_table_cy.cpython-313-darwin.so,sha256=JcpLDrwGk3r78Nr8wUT5rKBGQWEvv4zwepAh90MHiqo,164776
165
+ ck/pgm_compiler/support/circuit_table/_circuit_table_cy.cpython-313-darwin.so,sha256=Ltqp5-V7RYIU4gcC0UqXEInxf7AkK28de4RBB6Yl2HE,164776
145
166
  ck/pgm_compiler/support/circuit_table/_circuit_table_cy.pyx,sha256=Fsjw8P9clKQioqlLyr1JirUK5oYkeotpDMy5sMo7Khk,11683
146
167
  ck/pgm_compiler/support/circuit_table/_circuit_table_py.py,sha256=OZJC-JGX3ovCSv7nJtNYq7735KZ2eb4TQOlZdZbhPmk,10983
147
- ck/pgm_compiler/support/circuit_table/_circuit_table_cy.c,sha256=gIlvTH2anpV8zXVpzsq7QRwYIR3uwyNip2MufCOxPmA,714044
168
+ ck/pgm_compiler/support/circuit_table/_circuit_table_cy.c,sha256=sFO4i4V2TE72Ms92Iljw27WQquRm1eLLMq0fA7cIu3g,714044
148
169
  ck/pgm_compiler/ace/ace.py,sha256=An83dHxE_gQFcEs6H5qgm0PlNFnJSGGuvLJNC2H3hGU,10098
149
170
  ck/pgm_compiler/ace/__init__.py,sha256=5HWep-yL1Mr6z5VWEaIYpLumCdeso85J-l_-hQaVusM,96
150
- ck/program/raw_program.py,sha256=aUYLEcK8mstDspz6M9wOE1W7TrnDNBmJjPtfIVA3CLw,4158
171
+ ck/program/raw_program.py,sha256=U7kLBCSLtP1CfG09RrzmGo7E3sZdNr7wr2V1qkTfVGc,4106
151
172
  ck/program/program_buffer.py,sha256=IHwAHTKIaUlhcbNFTuSxPWKyExIsOxxX6ffUn4KfheU,5485
152
173
  ck/program/__init__.py,sha256=Rifdxk-l6cCjXLpwc6Q0pVXNDsllAwaFlRqRx3cURho,107
153
174
  ck/program/program.py,sha256=ohsnE0CEy8O4q8uGB_YEjoJKAPhY1Mz_a08Z7fy7TLw,4047
154
- ck/circuit_compiler/llvm_compiler.py,sha256=SFhfrthrDuAYUjH_DYRD7FBU8eg2db5T4QGBGfoewnw,13635
175
+ ck/circuit_compiler/llvm_compiler.py,sha256=XaAPrMaR5Y0EQT7Zukpa5TFybdBXVLo8_A2cU2lzPtw,13656
155
176
  ck/circuit_compiler/circuit_compiler.py,sha256=Sl7FS42GXrDL6eG_WNKILcSQl7Wlccgs5Dd1l0EZMsU,1121
156
177
  ck/circuit_compiler/__init__.py,sha256=eRN6chBEt64PK5e6EFGyBNZBn6BXhXb6R3m12zPA1Qg,130
157
178
  ck/circuit_compiler/named_circuit_compilers.py,sha256=paKyG876tdG_bdSHJU6KW5HxQrutmV_T80GPpz8A65s,2227
158
- ck/circuit_compiler/interpret_compiler.py,sha256=tZirNkAOe7evvray4-wOqO-KdaI39qRFEI0xD6IRBY0,8531
179
+ ck/circuit_compiler/interpret_compiler.py,sha256=kbbUbDAGhgOxhD_kVjW-dwnClOU3kTgn9ju5iEBNztE,8535
159
180
  ck/circuit_compiler/llvm_vm_compiler.py,sha256=rM_6F5st3k9X5K1_MwzKJwDhQo1794vooPJ5yKrgSX8,21648
160
181
  ck/circuit_compiler/cython_vm_compiler/cython_vm_compiler.py,sha256=GdtBkipud8vylXYArOJvZ-10U9L_PL0oJrkyrnFGH2Q,4345
161
182
  ck/circuit_compiler/cython_vm_compiler/__init__.py,sha256=ks0sISOJ-XHIHgHnESyFsheNWvcSJQkbsrj1wVlnzTE,48
162
183
  ck/circuit_compiler/cython_vm_compiler/_compiler.pyx,sha256=RssdkoAcB3Ahes8xisqFy0PQyOPmC3GLEC2xR-miQaE,12898
163
- ck/circuit_compiler/cython_vm_compiler/_compiler.c,sha256=UOdOqsX59_fHea4HLszjHgQ2gB8t0BSG9uFq4aV4eK8,857789
164
- ck/circuit_compiler/cython_vm_compiler/_compiler.cpython-313-darwin.so,sha256=ly5wMEmiJEe8bxLjci4jdatobf3Zl7V3oWTQKDFCIhk,163296
165
- ck/circuit_compiler/support/llvm_ir_function.py,sha256=1uC4gAu2g1nl9lycMN2sM7FMI_h4iJG_ufZ3Gc3rMA8,8361
166
- ck/circuit_compiler/support/input_vars.py,sha256=EZrvyhD9XVtf5GuDBluFNWhAOVixP7-_ETxAHLTpBcs,4664
184
+ ck/circuit_compiler/cython_vm_compiler/_compiler.c,sha256=7u3m3mmNOR0G3tZ8zUxNRUi-NmQX2sRmwmV6SE4e_e4,857789
185
+ ck/circuit_compiler/cython_vm_compiler/_compiler.cpython-313-darwin.so,sha256=Kfj5101qv2ZQPu2CS5xTE7sqeW2I1ZJFuai9H5imwvg,163296
186
+ ck/circuit_compiler/support/llvm_ir_function.py,sha256=sMLKfwz90YcsrVyxsuY0Ymo1ibFOcul4Qiwdake-VkI,8321
187
+ ck/circuit_compiler/support/input_vars.py,sha256=0g1I5GezT6Dt6ptJJgNFPTyHfRrpunTIkJOUqZhkP84,4673
167
188
  ck/circuit_compiler/support/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
168
189
  ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.pyx,sha256=a0fKmkwRNscJmy6qoO2AOqJYmHYptrQmkRSrDg3G-wg,3233
169
- ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.cpython-313-darwin.so,sha256=80HxCNFHhNt8GyrQwh_D6iEXrilFhYM9NgS7pRtEhDU,104760
190
+ ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.cpython-313-darwin.so,sha256=CIKW8cQiKQuBDTshBzFZZ9CcazDeSUYjWTQrCmpv-MY,104760
170
191
  ck/circuit_compiler/support/circuit_analyser/__init__.py,sha256=WhNwfg7GHVeI4k_m7owPGWxX0MyZg_wtcp2MA07qbWg,523
171
- ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.c,sha256=i5ULOzxs7fT4JUyeAX8sQG2jNd_wil_34imoByTuiQw,438223
192
+ ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.c,sha256=u7n5EsEeLA_u14mRNoMAUEEwIPLlqABa4fhF-hmwaY8,438223
172
193
  ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_py.py,sha256=CMdXV6Rot5CCoK1UsurQdGK0UOx_09B6V7mCc_6-gfI,2993
173
194
  ck/in_out/render_net.py,sha256=VePvN6aYWuzEkW-Hv-qGT9QneOvsnrBMmS_KYueuj2I,4970
174
195
  ck/in_out/render_bugs.py,sha256=c39KbaD4gEiauFsZq2KUhDEEa-3cuY5kuvz97pEWVpw,3272
175
- ck/in_out/parse_net.py,sha256=AtgSkLFI6HDcVnmxZ5CP0C5Q4GZL9lcySDIK9uSvY_c,13822
176
- ck/in_out/parser_utils.py,sha256=HV9cYw_-zxHN7fUBs4wG2A4Zl5P4YEAuSLGQRFNWV9c,5255
196
+ ck/in_out/parse_net.py,sha256=ITTI_nG8W8ZR2Y578BkcWYEx4tAQPHd_TaFe6AP8SAQ,13825
197
+ ck/in_out/parser_utils.py,sha256=tWMiytVeKO8_48hzvt9Lq0TnN0yOB2rtRTjXZQAEmi8,5378
177
198
  ck/in_out/__init__.py,sha256=3sLg8hHG_AWEJ7Kn06ZziFbVBUybKVTUPZCyqhr2qAw,109
178
199
  ck/in_out/parse_ace_lmap.py,sha256=UqZpkW1yNXNpdLEcMeXlve6tataaFuKP7caoKysQ8pE,7675
179
200
  ck/in_out/render_pomegranate.py,sha256=tU7iDHkLWTJyFrxPa2LbZnD06qia8mG2FGi0aZAKuk0,5580