compiled-knowledge 4.0.0a20__cp313-cp313-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of compiled-knowledge might be problematic. Click here for more details.

Files changed (178) hide show
  1. ck/__init__.py +0 -0
  2. ck/circuit/__init__.py +17 -0
  3. ck/circuit/_circuit_cy.c +37523 -0
  4. ck/circuit/_circuit_cy.cp313-win32.pyd +0 -0
  5. ck/circuit/_circuit_cy.pxd +32 -0
  6. ck/circuit/_circuit_cy.pyx +768 -0
  7. ck/circuit/_circuit_py.py +836 -0
  8. ck/circuit/tmp_const.py +74 -0
  9. ck/circuit_compiler/__init__.py +2 -0
  10. ck/circuit_compiler/circuit_compiler.py +26 -0
  11. ck/circuit_compiler/cython_vm_compiler/__init__.py +1 -0
  12. ck/circuit_compiler/cython_vm_compiler/_compiler.c +19824 -0
  13. ck/circuit_compiler/cython_vm_compiler/_compiler.cp313-win32.pyd +0 -0
  14. ck/circuit_compiler/cython_vm_compiler/_compiler.pyx +380 -0
  15. ck/circuit_compiler/cython_vm_compiler/cython_vm_compiler.py +121 -0
  16. ck/circuit_compiler/interpret_compiler.py +223 -0
  17. ck/circuit_compiler/llvm_compiler.py +388 -0
  18. ck/circuit_compiler/llvm_vm_compiler.py +546 -0
  19. ck/circuit_compiler/named_circuit_compilers.py +57 -0
  20. ck/circuit_compiler/support/__init__.py +0 -0
  21. ck/circuit_compiler/support/circuit_analyser/__init__.py +13 -0
  22. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.c +10618 -0
  23. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.cp313-win32.pyd +0 -0
  24. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_cy.pyx +98 -0
  25. ck/circuit_compiler/support/circuit_analyser/_circuit_analyser_py.py +93 -0
  26. ck/circuit_compiler/support/input_vars.py +148 -0
  27. ck/circuit_compiler/support/llvm_ir_function.py +234 -0
  28. ck/example/__init__.py +53 -0
  29. ck/example/alarm.py +366 -0
  30. ck/example/asia.py +28 -0
  31. ck/example/binary_clique.py +32 -0
  32. ck/example/bow_tie.py +33 -0
  33. ck/example/cancer.py +37 -0
  34. ck/example/chain.py +38 -0
  35. ck/example/child.py +199 -0
  36. ck/example/clique.py +33 -0
  37. ck/example/cnf_pgm.py +39 -0
  38. ck/example/diamond_square.py +68 -0
  39. ck/example/earthquake.py +36 -0
  40. ck/example/empty.py +10 -0
  41. ck/example/hailfinder.py +539 -0
  42. ck/example/hepar2.py +628 -0
  43. ck/example/insurance.py +504 -0
  44. ck/example/loop.py +40 -0
  45. ck/example/mildew.py +38161 -0
  46. ck/example/munin.py +22982 -0
  47. ck/example/pathfinder.py +53747 -0
  48. ck/example/rain.py +39 -0
  49. ck/example/rectangle.py +161 -0
  50. ck/example/run.py +30 -0
  51. ck/example/sachs.py +129 -0
  52. ck/example/sprinkler.py +30 -0
  53. ck/example/star.py +44 -0
  54. ck/example/stress.py +64 -0
  55. ck/example/student.py +43 -0
  56. ck/example/survey.py +46 -0
  57. ck/example/triangle_square.py +54 -0
  58. ck/example/truss.py +49 -0
  59. ck/in_out/__init__.py +3 -0
  60. ck/in_out/parse_ace_lmap.py +216 -0
  61. ck/in_out/parse_ace_nnf.py +322 -0
  62. ck/in_out/parse_net.py +480 -0
  63. ck/in_out/parser_utils.py +185 -0
  64. ck/in_out/pgm_pickle.py +42 -0
  65. ck/in_out/pgm_python.py +268 -0
  66. ck/in_out/render_bugs.py +111 -0
  67. ck/in_out/render_net.py +177 -0
  68. ck/in_out/render_pomegranate.py +184 -0
  69. ck/pgm.py +3475 -0
  70. ck/pgm_circuit/__init__.py +1 -0
  71. ck/pgm_circuit/marginals_program.py +352 -0
  72. ck/pgm_circuit/mpe_program.py +237 -0
  73. ck/pgm_circuit/pgm_circuit.py +79 -0
  74. ck/pgm_circuit/program_with_slotmap.py +236 -0
  75. ck/pgm_circuit/slot_map.py +35 -0
  76. ck/pgm_circuit/support/__init__.py +0 -0
  77. ck/pgm_circuit/support/compile_circuit.py +83 -0
  78. ck/pgm_circuit/target_marginals_program.py +103 -0
  79. ck/pgm_circuit/wmc_program.py +323 -0
  80. ck/pgm_compiler/__init__.py +2 -0
  81. ck/pgm_compiler/ace/__init__.py +1 -0
  82. ck/pgm_compiler/ace/ace.py +299 -0
  83. ck/pgm_compiler/factor_elimination.py +395 -0
  84. ck/pgm_compiler/named_pgm_compilers.py +63 -0
  85. ck/pgm_compiler/pgm_compiler.py +19 -0
  86. ck/pgm_compiler/recursive_conditioning.py +231 -0
  87. ck/pgm_compiler/support/__init__.py +0 -0
  88. ck/pgm_compiler/support/circuit_table/__init__.py +17 -0
  89. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.c +16396 -0
  90. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.cp313-win32.pyd +0 -0
  91. ck/pgm_compiler/support/circuit_table/_circuit_table_cy.pyx +332 -0
  92. ck/pgm_compiler/support/circuit_table/_circuit_table_py.py +304 -0
  93. ck/pgm_compiler/support/clusters.py +568 -0
  94. ck/pgm_compiler/support/factor_tables.py +406 -0
  95. ck/pgm_compiler/support/join_tree.py +332 -0
  96. ck/pgm_compiler/support/named_compiler_maker.py +43 -0
  97. ck/pgm_compiler/variable_elimination.py +91 -0
  98. ck/probability/__init__.py +0 -0
  99. ck/probability/empirical_probability_space.py +50 -0
  100. ck/probability/pgm_probability_space.py +32 -0
  101. ck/probability/probability_space.py +622 -0
  102. ck/program/__init__.py +3 -0
  103. ck/program/program.py +137 -0
  104. ck/program/program_buffer.py +180 -0
  105. ck/program/raw_program.py +67 -0
  106. ck/sampling/__init__.py +0 -0
  107. ck/sampling/forward_sampler.py +211 -0
  108. ck/sampling/marginals_direct_sampler.py +113 -0
  109. ck/sampling/sampler.py +62 -0
  110. ck/sampling/sampler_support.py +232 -0
  111. ck/sampling/uniform_sampler.py +72 -0
  112. ck/sampling/wmc_direct_sampler.py +171 -0
  113. ck/sampling/wmc_gibbs_sampler.py +153 -0
  114. ck/sampling/wmc_metropolis_sampler.py +165 -0
  115. ck/sampling/wmc_rejection_sampler.py +115 -0
  116. ck/utils/__init__.py +0 -0
  117. ck/utils/iter_extras.py +163 -0
  118. ck/utils/local_config.py +270 -0
  119. ck/utils/map_list.py +128 -0
  120. ck/utils/map_set.py +128 -0
  121. ck/utils/np_extras.py +51 -0
  122. ck/utils/random_extras.py +64 -0
  123. ck/utils/tmp_dir.py +94 -0
  124. ck_demos/__init__.py +0 -0
  125. ck_demos/ace/__init__.py +0 -0
  126. ck_demos/ace/copy_ace_to_ck.py +15 -0
  127. ck_demos/ace/demo_ace.py +49 -0
  128. ck_demos/all_demos.py +88 -0
  129. ck_demos/circuit/__init__.py +0 -0
  130. ck_demos/circuit/demo_circuit_dump.py +22 -0
  131. ck_demos/circuit/demo_derivatives.py +43 -0
  132. ck_demos/circuit_compiler/__init__.py +0 -0
  133. ck_demos/circuit_compiler/compare_circuit_compilers.py +32 -0
  134. ck_demos/circuit_compiler/show_llvm_program.py +26 -0
  135. ck_demos/pgm/__init__.py +0 -0
  136. ck_demos/pgm/demo_pgm_dump.py +18 -0
  137. ck_demos/pgm/demo_pgm_dump_stress.py +18 -0
  138. ck_demos/pgm/demo_pgm_string_rendering.py +15 -0
  139. ck_demos/pgm/show_examples.py +25 -0
  140. ck_demos/pgm_compiler/__init__.py +0 -0
  141. ck_demos/pgm_compiler/compare_pgm_compilers.py +63 -0
  142. ck_demos/pgm_compiler/demo_compiler_dump.py +60 -0
  143. ck_demos/pgm_compiler/demo_factor_elimination.py +47 -0
  144. ck_demos/pgm_compiler/demo_join_tree.py +25 -0
  145. ck_demos/pgm_compiler/demo_marginals_program.py +53 -0
  146. ck_demos/pgm_compiler/demo_mpe_program.py +55 -0
  147. ck_demos/pgm_compiler/demo_pgm_compiler.py +38 -0
  148. ck_demos/pgm_compiler/demo_recursive_conditioning.py +33 -0
  149. ck_demos/pgm_compiler/demo_variable_elimination.py +33 -0
  150. ck_demos/pgm_compiler/demo_wmc_program.py +29 -0
  151. ck_demos/pgm_compiler/time_fe_compiler.py +93 -0
  152. ck_demos/pgm_inference/__init__.py +0 -0
  153. ck_demos/pgm_inference/demo_inferencing_basic.py +188 -0
  154. ck_demos/pgm_inference/demo_inferencing_mpe_cancer.py +45 -0
  155. ck_demos/pgm_inference/demo_inferencing_wmc_and_mpe_sprinkler.py +154 -0
  156. ck_demos/pgm_inference/demo_inferencing_wmc_student.py +110 -0
  157. ck_demos/programs/__init__.py +0 -0
  158. ck_demos/programs/demo_program_buffer.py +24 -0
  159. ck_demos/programs/demo_program_multi.py +24 -0
  160. ck_demos/programs/demo_program_none.py +19 -0
  161. ck_demos/programs/demo_program_single.py +23 -0
  162. ck_demos/programs/demo_raw_program_interpreted.py +21 -0
  163. ck_demos/programs/demo_raw_program_llvm.py +21 -0
  164. ck_demos/sampling/__init__.py +0 -0
  165. ck_demos/sampling/check_sampler.py +71 -0
  166. ck_demos/sampling/demo_marginal_direct_sampler.py +40 -0
  167. ck_demos/sampling/demo_uniform_sampler.py +38 -0
  168. ck_demos/sampling/demo_wmc_direct_sampler.py +40 -0
  169. ck_demos/utils/__init__.py +0 -0
  170. ck_demos/utils/compare.py +120 -0
  171. ck_demos/utils/convert_network.py +45 -0
  172. ck_demos/utils/sample_model.py +216 -0
  173. ck_demos/utils/stop_watch.py +384 -0
  174. compiled_knowledge-4.0.0a20.dist-info/METADATA +50 -0
  175. compiled_knowledge-4.0.0a20.dist-info/RECORD +178 -0
  176. compiled_knowledge-4.0.0a20.dist-info/WHEEL +5 -0
  177. compiled_knowledge-4.0.0a20.dist-info/licenses/LICENSE.txt +21 -0
  178. compiled_knowledge-4.0.0a20.dist-info/top_level.txt +2 -0
ck/example/hepar2.py ADDED
@@ -0,0 +1,628 @@
1
+ from ck.pgm import PGM
2
+
3
+
4
+ class Hepar2(PGM):
5
+ """
6
+ This PGM is the well known 'Hepar2' Bayesian network.
7
+ """
8
+
9
+ def __init__(self):
10
+ super().__init__(self.__class__.__name__)
11
+
12
+ pgm_rv0 = self.new_rv('alcoholism', ('present', 'absent'))
13
+ pgm_rv1 = self.new_rv('vh_amn', ('present', 'absent'))
14
+ pgm_rv2 = self.new_rv('hepatotoxic', ('present', 'absent'))
15
+ pgm_rv3 = self.new_rv('THepatitis', ('present', 'absent'))
16
+ pgm_rv4 = self.new_rv('hospital', ('present', 'absent'))
17
+ pgm_rv5 = self.new_rv('surgery', ('present', 'absent'))
18
+ pgm_rv6 = self.new_rv('gallstones', ('present', 'absent'))
19
+ pgm_rv7 = self.new_rv('choledocholithotomy', ('present', 'absent'))
20
+ pgm_rv8 = self.new_rv('injections', ('present', 'absent'))
21
+ pgm_rv9 = self.new_rv('transfusion', ('present', 'absent'))
22
+ pgm_rv10 = self.new_rv('ChHepatitis', ('active', 'persistent', 'absent'))
23
+ pgm_rv11 = self.new_rv('sex', ('female', 'male'))
24
+ pgm_rv12 = self.new_rv('age', ('age65_100', 'age51_65', 'age31_50', 'age0_30'))
25
+ pgm_rv13 = self.new_rv('PBC', ('present', 'absent'))
26
+ pgm_rv14 = self.new_rv('fibrosis', ('present', 'absent'))
27
+ pgm_rv15 = self.new_rv('diabetes', ('present', 'absent'))
28
+ pgm_rv16 = self.new_rv('obesity', ('present', 'absent'))
29
+ pgm_rv17 = self.new_rv('Steatosis', ('present', 'absent'))
30
+ pgm_rv18 = self.new_rv('Cirrhosis', ('decompensate', 'compensate', 'absent'))
31
+ pgm_rv19 = self.new_rv('Hyperbilirubinemia', ('present', 'absent'))
32
+ pgm_rv20 = self.new_rv('triglycerides', ('a17_4', 'a3_2', 'a1_0'))
33
+ pgm_rv21 = self.new_rv('RHepatitis', ('present', 'absent'))
34
+ pgm_rv22 = self.new_rv('fatigue', ('present', 'absent'))
35
+ pgm_rv23 = self.new_rv('bilirubin', ('a88_20', 'a19_7', 'a6_2', 'a1_0'))
36
+ pgm_rv24 = self.new_rv('itching', ('present', 'absent'))
37
+ pgm_rv25 = self.new_rv('upper_pain', ('present', 'absent'))
38
+ pgm_rv26 = self.new_rv('fat', ('present', 'absent'))
39
+ pgm_rv27 = self.new_rv('pain_ruq', ('present', 'absent'))
40
+ pgm_rv28 = self.new_rv('pressure_ruq', ('present', 'absent'))
41
+ pgm_rv29 = self.new_rv('phosphatase', ('a4000_700', 'a699_240', 'a239_0'))
42
+ pgm_rv30 = self.new_rv('skin', ('present', 'absent'))
43
+ pgm_rv31 = self.new_rv('ama', ('present', 'absent'))
44
+ pgm_rv32 = self.new_rv('le_cells', ('present', 'absent'))
45
+ pgm_rv33 = self.new_rv('joints', ('present', 'absent'))
46
+ pgm_rv34 = self.new_rv('pain', ('present', 'absent'))
47
+ pgm_rv35 = self.new_rv('proteins', ('a10_6', 'a5_2'))
48
+ pgm_rv36 = self.new_rv('edema', ('present', 'absent'))
49
+ pgm_rv37 = self.new_rv('platelet', ('a597_300', 'a299_150', 'a149_100', 'a99_0'))
50
+ pgm_rv38 = self.new_rv('inr', ('a200_110', 'a109_70', 'a69_0'))
51
+ pgm_rv39 = self.new_rv('bleeding', ('present', 'absent'))
52
+ pgm_rv40 = self.new_rv('flatulence', ('present', 'absent'))
53
+ pgm_rv41 = self.new_rv('alcohol', ('present', 'absent'))
54
+ pgm_rv42 = self.new_rv('encephalopathy', ('present', 'absent'))
55
+ pgm_rv43 = self.new_rv('urea', ('a165_50', 'a49_40', 'a39_0'))
56
+ pgm_rv44 = self.new_rv('ascites', ('present', 'absent'))
57
+ pgm_rv45 = self.new_rv('hepatomegaly', ('present', 'absent'))
58
+ pgm_rv46 = self.new_rv('hepatalgia', ('present', 'absent'))
59
+ pgm_rv47 = self.new_rv('density', ('present', 'absent'))
60
+ pgm_rv48 = self.new_rv('ESR', ('a200_50', 'a49_15', 'a14_0'))
61
+ pgm_rv49 = self.new_rv('alt', ('a850_200', 'a199_100', 'a99_35', 'a34_0'))
62
+ pgm_rv50 = self.new_rv('ast', ('a700_400', 'a399_150', 'a149_40', 'a39_0'))
63
+ pgm_rv51 = self.new_rv('amylase', ('a1400_500', 'a499_300', 'a299_0'))
64
+ pgm_rv52 = self.new_rv('ggtp', ('a640_70', 'a69_30', 'a29_10', 'a9_0'))
65
+ pgm_rv53 = self.new_rv('cholesterol', ('a999_350', 'a349_240', 'a239_0'))
66
+ pgm_rv54 = self.new_rv('hbsag', ('present', 'absent'))
67
+ pgm_rv55 = self.new_rv('hbsag_anti', ('present', 'absent'))
68
+ pgm_rv56 = self.new_rv('anorexia', ('present', 'absent'))
69
+ pgm_rv57 = self.new_rv('nausea', ('present', 'absent'))
70
+ pgm_rv58 = self.new_rv('spleen', ('present', 'absent'))
71
+ pgm_rv59 = self.new_rv('consciousness', ('present', 'absent'))
72
+ pgm_rv60 = self.new_rv('spiders', ('present', 'absent'))
73
+ pgm_rv61 = self.new_rv('jaundice', ('present', 'absent'))
74
+ pgm_rv62 = self.new_rv('albumin', ('a70_50', 'a49_30', 'a29_0'))
75
+ pgm_rv63 = self.new_rv('edge', ('present', 'absent'))
76
+ pgm_rv64 = self.new_rv('irregular_liver', ('present', 'absent'))
77
+ pgm_rv65 = self.new_rv('hbc_anti', ('present', 'absent'))
78
+ pgm_rv66 = self.new_rv('hcv_anti', ('present', 'absent'))
79
+ pgm_rv67 = self.new_rv('palms', ('present', 'absent'))
80
+ pgm_rv68 = self.new_rv('hbeag', ('present', 'absent'))
81
+ pgm_rv69 = self.new_rv('carcinoma', ('present', 'absent'))
82
+
83
+ pgm_factor0 = self.new_factor(pgm_rv0)
84
+ pgm_function_2774976234256 = pgm_factor0.set_dense()
85
+ pgm_function_2774976234256.set_flat(0.1359084, 0.8640916)
86
+ pgm_factor1 = self.new_factor(pgm_rv1)
87
+ pgm_function_2774976231296 = pgm_factor1.set_dense()
88
+ pgm_function_2774976231296.set_flat(0.1731044, 0.8268956)
89
+ pgm_factor2 = self.new_factor(pgm_rv2)
90
+ pgm_function_2774976231616 = pgm_factor2.set_dense()
91
+ pgm_function_2774976231616.set_flat(0.08154506, 0.91845494)
92
+ pgm_factor3 = self.new_factor(pgm_rv3, pgm_rv2, pgm_rv0)
93
+ pgm_function_2774976232176 = pgm_factor3.set_dense()
94
+ pgm_function_2774976232176.set_flat(
95
+ 0.2, 0.00191939, 0.08888889, 0.0326087, 0.8, 0.99808061, 0.91111111,
96
+ 0.9673913)
97
+ pgm_factor4 = self.new_factor(pgm_rv4)
98
+ pgm_function_2774976231056 = pgm_factor4.set_dense()
99
+ pgm_function_2774976231056.set_flat(0.5350501, 0.4649499)
100
+ pgm_factor5 = self.new_factor(pgm_rv5)
101
+ pgm_function_2774976233536 = pgm_factor5.set_dense()
102
+ pgm_function_2774976233536.set_flat(0.4234621, 0.5765379)
103
+ pgm_factor6 = self.new_factor(pgm_rv6)
104
+ pgm_function_2774976232816 = pgm_factor6.set_dense()
105
+ pgm_function_2774976232816.set_flat(0.1530758, 0.8469242)
106
+ pgm_factor7 = self.new_factor(pgm_rv7, pgm_rv6)
107
+ pgm_function_2774976232896 = pgm_factor7.set_dense()
108
+ pgm_function_2774976232896.set_flat(0.7102804, 0.03716216, 0.2897196, 0.96283784)
109
+ pgm_factor8 = self.new_factor(pgm_rv8, pgm_rv4, pgm_rv5, pgm_rv7)
110
+ pgm_function_2774976230416 = pgm_factor8.set_dense()
111
+ pgm_function_2774976230416.set_flat(
112
+ 0.8, 0.715847, 0.8333333, 0.4818182, 0.375, 0.2333333, 0.01098901,
113
+ 0.0647482, 0.2, 0.284153, 0.1666667, 0.5181818, 0.625, 0.7666667,
114
+ 0.98901099, 0.9352518)
115
+ pgm_factor9 = self.new_factor(pgm_rv9, pgm_rv4, pgm_rv5, pgm_rv7)
116
+ pgm_function_2774976232416 = pgm_factor9.set_dense()
117
+ pgm_function_2774976232416.set_flat(
118
+ 0.3333333, 0.2896175, 0.1666667, 0.1181818, 0.125, 0.3, 0.01098901,
119
+ 0.01079137, 0.6666667, 0.7103825, 0.8333333, 0.8818182, 0.875, 0.7,
120
+ 0.98901099, 0.98920863)
121
+ pgm_factor10 = self.new_factor(pgm_rv10, pgm_rv9, pgm_rv1, pgm_rv8)
122
+ pgm_function_2774976231456 = pgm_factor10.set_dense()
123
+ pgm_function_2774976231456.set_flat(
124
+ 0.2094241, 0.4615385, 0.06, 0.13043478, 0.15384615, 0.24, 0.07692308,
125
+ 0.13095238, 0.0052356, 0.3076923, 0.06, 0.04347826, 0.05128205, 0.14,
126
+ 0.00591716, 0.05357143, 0.7853403, 0.2307692, 0.88, 0.82608696, 0.7948718,
127
+ 0.62, 0.91715976, 0.81547619)
128
+ pgm_factor11 = self.new_factor(pgm_rv11)
129
+ pgm_function_2774976231136 = pgm_factor11.set_dense()
130
+ pgm_function_2774976231136.set_flat(0.5979971, 0.4020029)
131
+ pgm_factor12 = self.new_factor(pgm_rv12)
132
+ pgm_function_2774976230896 = pgm_factor12.set_dense()
133
+ pgm_function_2774976230896.set_flat(0.07725322, 0.38769671, 0.39771102, 0.13733906)
134
+ pgm_factor13 = self.new_factor(pgm_rv13, pgm_rv11, pgm_rv12)
135
+ pgm_function_2774976232576 = pgm_factor13.set_dense()
136
+ pgm_function_2774976232576.set_flat(
137
+ 0.6571429, 0.700565, 0.6149425, 0.125, 0.3684211, 0.08510638, 0.06730769,
138
+ 0.00156006, 0.3428571, 0.299435, 0.3850575, 0.875, 0.6315789, 0.91489362,
139
+ 0.93269231, 0.99843994)
140
+ pgm_factor14 = self.new_factor(pgm_rv14, pgm_rv10)
141
+ pgm_function_2774976230576 = pgm_factor14.set_dense()
142
+ pgm_function_2774976230576.set_flat(0.3, 0.05, 0.001, 0.7, 0.95, 0.999)
143
+ pgm_factor15 = self.new_factor(pgm_rv15)
144
+ pgm_function_2774976233136 = pgm_factor15.set_dense()
145
+ pgm_function_2774976233136.set_flat(0.03576538, 0.96423462)
146
+ pgm_factor16 = self.new_factor(pgm_rv16, pgm_rv15)
147
+ pgm_function_2774976231216 = pgm_factor16.set_dense()
148
+ pgm_function_2774976231216.set_flat(0.24, 0.06231454, 0.76, 0.93768546)
149
+ pgm_factor17 = self.new_factor(pgm_rv17, pgm_rv16, pgm_rv0)
150
+ pgm_function_2774976230496 = pgm_factor17.set_dense()
151
+ pgm_function_2774976230496.set_flat(
152
+ 0.3636364, 0.1891892, 0.2380952, 0.06349206, 0.6363636, 0.8108108,
153
+ 0.7619048, 0.93650794)
154
+ pgm_factor18 = self.new_factor(pgm_rv18, pgm_rv14, pgm_rv17)
155
+ pgm_function_2774976233696 = pgm_factor18.set_dense()
156
+ pgm_function_2774976233696.set_flat(0.56, 0.49, 0.35, 0.001, 0.24, 0.21, 0.15, 0.001, 0.2, 0.3, 0.5, 0.998)
157
+ pgm_factor19 = self.new_factor(pgm_rv19, pgm_rv12, pgm_rv11)
158
+ pgm_function_2774976233856 = pgm_factor19.set_dense()
159
+ pgm_function_2774976233856.set_flat(
160
+ 0.002849, 0.0052356, 0.01129944, 0.0212766, 0.04597701, 0.07692308, 0.21875,
161
+ 0.453125, 0.997151, 0.9947644, 0.98870056, 0.9787234, 0.95402299,
162
+ 0.92307692, 0.78125, 0.546875)
163
+ pgm_factor20 = self.new_factor(pgm_rv20, pgm_rv17)
164
+ pgm_function_2774976234336 = pgm_factor20.set_dense()
165
+ pgm_function_2774976234336.set_flat(0.1791045, 0.02373418, 0.1641791, 0.03164557, 0.6567164, 0.94462025)
166
+ pgm_factor21 = self.new_factor(pgm_rv21, pgm_rv2)
167
+ pgm_function_2774976231376 = pgm_factor21.set_dense()
168
+ pgm_function_2774976231376.set_flat(0.01754386, 0.02492212, 0.98245614, 0.97507788)
169
+ pgm_factor22 = self.new_factor(pgm_rv22, pgm_rv10, pgm_rv3, pgm_rv21)
170
+ pgm_function_2774976232256 = pgm_factor22.set_dense()
171
+ pgm_function_2774976232256.set_flat(
172
+ 0.6363636, 0.625, 0.6236559, 0.6043956, 0.6071429, 0.5932203, 0.5892857,
173
+ 0.5277778, 0.6153846, 0.6666667, 0.7058823, 0.5359848, 0.3636364, 0.375,
174
+ 0.3763441, 0.3956044, 0.3928571, 0.4067797, 0.4107143, 0.4722222, 0.3846154,
175
+ 0.3333333, 0.2941177, 0.4640151)
176
+ pgm_factor23 = self.new_factor(pgm_rv23, pgm_rv19, pgm_rv13, pgm_rv18, pgm_rv6, pgm_rv10)
177
+ pgm_function_2774976234096 = pgm_factor23.set_dense()
178
+ pgm_function_2774976234096.set_flat(
179
+ 0.04347826, 0.07407407, 0.07894737, 0.01923077, 0.01818182, 0.02189781,
180
+ 0.03571429, 0.05882353, 0.07692308, 0.02020202, 0.01941748, 0.02362205,
181
+ 0.04225352, 0.06, 0.07575758, 0.03030303, 0.02158273, 0.02061856,
182
+ 0.01449275, 0.00398406, 0.00662252, 0.00151286, 0.00144718, 0.00114811,
183
+ 0.00311526, 0.00892857, 0.01388889, 0.00178253, 0.00174825, 0.00144509,
184
+ 0.00255102, 0.0049505, 0.07692308, 0.00146843, 0.00127877, 0.00181159,
185
+ 0.04081633, 0.06818182, 0.07692308, 0.03030303, 0.02173913, 0.02590674,
186
+ 0.04255319, 0.05084746, 0.07042254, 0.032, 0.0234375, 0.02824859,
187
+ 0.04477612, 0.05555556, 0.08536585, 0.03910615, 0.02926829, 0.03030303,
188
+ 0.02830189, 0.01818182, 0.01923077, 0.01449275, 0.01282051, 0.01886792,
189
+ 0.00321543, 0.00621118, 0.04545455, 0.01818182, 0.01694915, 0.03448276,
190
+ 0.00980392, 0.07692308, 0.01587302, 0.01234568, 0.00284091, 0.00070872,
191
+ 0.2173913, 0.22222222, 0.23684211, 0.11538462, 0.11818182, 0.12408759,
192
+ 0.16071429, 0.20588235, 0.23076923, 0.11111111, 0.10679612, 0.11811024,
193
+ 0.15492958, 0.2, 0.22727273, 0.12121212, 0.11510791, 0.12371134, 0.11594203,
194
+ 0.11952191, 0.13245033, 0.04538578, 0.04341534, 0.05740528, 0.03115265,
195
+ 0.00892857, 0.01388889, 0.01782531,
196
+ 0.00174825, 0.00144509, 0.00255102, 0.0049505, 0.07692308, 0.01468429,
197
+ 0.00127877, 0.00181159, 0.14285714, 0.20454545, 0.23076923, 0.14393939,
198
+ 0.13768116, 0.15025907, 0.17021277, 0.20338983, 0.22535211, 0.136,
199
+ 0.1328125, 0.14124294, 0.1641791, 0.19444444, 0.24390244, 0.15083799,
200
+ 0.14634146, 0.16666667, 0.16037736, 0.16363636, 0.19230769, 0.07246377,
201
+ 0.07692308, 0.13207547, 0.09646302, 0.0621118, 0.04545455, 0.01818182,
202
+ 0.01694915, 0.03448276, 0.00980392, 0.07692308, 0.01587302, 0.02469136,
203
+ 0.00284091, 0.02126152, 0.34782609, 0.33333333, 0.34210526, 0.36538462,
204
+ 0.38181818, 0.41605839, 0.39285714, 0.38235294, 0.35897436, 0.34343434,
205
+ 0.34951456, 0.37795276, 0.36619718, 0.36, 0.36363636, 0.35606061,
206
+ 0.37410072, 0.40721649, 0.39130435, 0.35856574, 0.26490066, 0.34795764,
207
+ 0.37626628, 0.44776119, 0.43613707, 0.44642857, 0.41666667, 0.28520499,
208
+ 0.2972028, 0.36127168, 0.33163265, 0.2970297, 0.07692308, 0.30837004,
209
+ 0.33248082, 0.54347827, 0.40816327, 0.36363636, 0.35384615, 0.34090909,
210
+ 0.35507246, 0.38341969, 0.37234043, 0.37288136, 0.36619718, 0.312, 0.3125,
211
+ 0.33898305, 0.34328358, 0.35185185, 0.36585366, 0.32960894, 0.33658537,
212
+ 0.38888889, 0.36792453, 0.34545455,
213
+ 0.01923077, 0.24637681, 0.26923077, 0.43396226, 0.41800643, 0.43478261,
214
+ 0.45454545, 0.14545455, 0.10169492, 0.10344828, 0.19607843, 0.07692308,
215
+ 0.01587302, 0.14814815, 0.05681818, 0.13465627, 0.39130435, 0.37037037,
216
+ 0.34210526, 0.5, 0.48181818, 0.4379562, 0.41071429, 0.35294118, 0.33333333,
217
+ 0.52525253, 0.52427184, 0.48031496, 0.43661972, 0.38, 0.33333333,
218
+ 0.49242424, 0.48920863, 0.44845361, 0.47826087, 0.51792829, 0.59602649,
219
+ 0.60514372, 0.5788712, 0.49368542, 0.52959502, 0.53571429, 0.55555555,
220
+ 0.69518717, 0.6993007, 0.63583814, 0.66326531, 0.6930693, 0.76923076,
221
+ 0.67547724, 0.66496164, 0.45289855, 0.40816327, 0.36363636, 0.33846154,
222
+ 0.48484848, 0.48550725, 0.44041451, 0.41489362, 0.37288136, 0.33802817,
223
+ 0.52, 0.53125, 0.49152542, 0.44776119, 0.39814815, 0.30487805, 0.48044693,
224
+ 0.48780488, 0.41414141, 0.44339623, 0.47272727, 0.76923077, 0.66666667,
225
+ 0.64102564, 0.41509434, 0.48231511, 0.49689441, 0.45454545, 0.81818181,
226
+ 0.86440678, 0.8275862, 0.78431373, 0.76923076, 0.95238094, 0.81481481,
227
+ 0.9375, 0.84337349)
228
+ pgm_factor24 = self.new_factor(pgm_rv24, pgm_rv23)
229
+ pgm_function_2774976231536 = pgm_factor24.set_dense()
230
+ pgm_function_2774976231536.set_flat(
231
+ 0.875, 0.6865672, 0.5477387, 0.3333333, 0.125, 0.3134328, 0.4522613,
232
+ 0.6666667)
233
+ pgm_factor25 = self.new_factor(pgm_rv25, pgm_rv6)
234
+ pgm_function_2774976232336 = pgm_factor25.set_dense()
235
+ pgm_function_2774976232336.set_flat(0.411215, 0.3868243, 0.5887851, 0.6131757)
236
+ pgm_factor26 = self.new_factor(pgm_rv26, pgm_rv6)
237
+ pgm_function_2774976232496 = pgm_factor26.set_dense()
238
+ pgm_function_2774976232496.set_flat(0.1775701, 0.2804054, 0.8224299, 0.7195946)
239
+ pgm_factor27 = self.new_factor(pgm_rv27, pgm_rv17, pgm_rv19)
240
+ pgm_function_2774976230736 = pgm_factor27.set_dense()
241
+ pgm_function_2774976230736.set_flat(
242
+ 0.3934426, 0.4776119, 0.2857143, 0.421875, 0.6065574, 0.5223881, 0.7142857,
243
+ 0.578125)
244
+ pgm_factor28 = self.new_factor(pgm_rv28, pgm_rv6, pgm_rv13, pgm_rv10)
245
+ pgm_function_2774976233216 = pgm_factor28.set_dense()
246
+ pgm_function_2774976233216.set_flat(
247
+ 0.3333333, 0.328125, 0.3292683, 0.4, 0.09090909, 0.2857143, 0.3424658,
248
+ 0.3227513, 0.2929293, 0.4691358, 0.4285714, 0.4532374, 0.6666667, 0.671875,
249
+ 0.6707317, 0.6, 0.90909091, 0.7142857, 0.6575342, 0.6772487, 0.7070707,
250
+ 0.5308642, 0.5714286, 0.5467626)
251
+ pgm_factor29 = self.new_factor(pgm_rv29, pgm_rv21, pgm_rv3, pgm_rv18, pgm_rv10)
252
+ pgm_function_2774976234176 = pgm_factor29.set_dense()
253
+ pgm_function_2774976234176.set_flat(
254
+ 0.04166667, 0.04347826, 0.04166667, 0.03773585, 0.025, 0.02702703,
255
+ 0.03571429, 0.02272727, 0.02325581, 0.02898551, 0.03389831, 0.04545455,
256
+ 0.02985075, 0.02040816, 0.02083333, 0.02597403, 0.015625, 0.00584795,
257
+ 0.04761905, 0.04918033, 0.05555556, 0.04166667, 0.03703704, 0.05357143,
258
+ 0.04651163, 0.04054054, 0.07407407, 0.04597701, 0.04494382, 0.06896552,
259
+ 0.04494382, 0.03896104, 0.06451613, 0.03296703, 0.02777778, 0.2118451,
260
+ 0.29166667, 0.30434783, 0.33333333, 0.26415094, 0.25, 0.27027027,
261
+ 0.21428571, 0.20454545, 0.18604651, 0.28985507, 0.3220339, 0.37878788,
262
+ 0.29850746, 0.28571429, 0.3125, 0.24675325, 0.234375, 0.23391813,
263
+ 0.28571429, 0.31147541, 0.34722222, 0.27777778, 0.25925926, 0.26785714,
264
+ 0.22093023, 0.2027027, 0.14814815, 0.29885057, 0.33707865, 0.48275862,
265
+ 0.33707865, 0.31168831, 0.38709677, 0.21978022, 0.19444444, 0.3394077,
266
+ 0.66666666, 0.65217391, 0.625, 0.69811321, 0.725, 0.7027027, 0.75,
267
+ 0.77272728, 0.79069768, 0.68115942, 0.64406779, 0.57575757, 0.67164179,
268
+ 0.69387755, 0.66666667, 0.72727272, 0.75, 0.76023392, 0.66666666,
269
+ 0.63934426, 0.59722222, 0.68055555, 0.7037037, 0.67857143, 0.73255814,
270
+ 0.75675676, 0.77777778, 0.65517242,
271
+ 0.61797753, 0.44827586, 0.61797753, 0.64935065, 0.5483871, 0.74725275,
272
+ 0.77777778, 0.4487472)
273
+ pgm_factor30 = self.new_factor(pgm_rv30, pgm_rv23)
274
+ pgm_function_2774976232976 = pgm_factor30.set_dense()
275
+ pgm_function_2774976232976.set_flat(
276
+ 0.99378882, 0.8955224, 0.7035176, 0.1822542, 0.00621118, 0.1044776,
277
+ 0.2964824, 0.8177458)
278
+ pgm_factor31 = self.new_factor(pgm_rv31, pgm_rv13)
279
+ pgm_function_2774976232736 = pgm_factor31.set_dense()
280
+ pgm_function_2774976232736.set_flat(0.5678571, 0.01193317, 0.4321429, 0.98806683)
281
+ pgm_factor32 = self.new_factor(pgm_rv32, pgm_rv13)
282
+ pgm_function_2774976234016 = pgm_factor32.set_dense()
283
+ pgm_function_2774976234016.set_flat(0.1214286, 0.04057279, 0.8785714, 0.95942721)
284
+ pgm_factor33 = self.new_factor(pgm_rv33, pgm_rv13)
285
+ pgm_function_2774976230816 = pgm_factor33.set_dense()
286
+ pgm_function_2774976230816.set_flat(0.1285714, 0.1002387, 0.8714286, 0.8997613)
287
+ pgm_factor34 = self.new_factor(pgm_rv34, pgm_rv13, pgm_rv33)
288
+ pgm_function_2774976231856 = pgm_factor34.set_dense()
289
+ pgm_function_2774976231856.set_flat(
290
+ 0.3888889, 0.147541, 0.8095238, 0.1830239, 0.6111111, 0.852459, 0.1904762,
291
+ 0.8169761)
292
+ pgm_factor35 = self.new_factor(pgm_rv35, pgm_rv18)
293
+ pgm_function_2774976233056 = pgm_factor35.set_dense()
294
+ pgm_function_2774976233056.set_flat(0.99827883, 0.99678457, 0.98032787, 0.00172117, 0.00321543, 0.01967213)
295
+ pgm_factor36 = self.new_factor(pgm_rv36, pgm_rv18)
296
+ pgm_function_2774976233296 = pgm_factor36.set_dense()
297
+ pgm_function_2774976233296.set_flat(0.3448276, 0.06451613, 0.1311475, 0.6551724, 0.93548387, 0.8688525)
298
+ pgm_factor37 = self.new_factor(pgm_rv37, pgm_rv18, pgm_rv13)
299
+ pgm_function_2774976233376 = pgm_factor37.set_dense()
300
+ pgm_function_2774976233376.set_flat(
301
+ 0.06547619, 0.06896552, 0.06557377, 0.06451613, 0.06428571, 0.09393939,
302
+ 0.63690476, 0.46551724, 0.63934426, 0.64516129, 0.67142857, 0.73636364,
303
+ 0.17857143, 0.27586207, 0.17486339, 0.16129032, 0.15714286, 0.13939394,
304
+ 0.11904762, 0.18965517, 0.12021858, 0.12903226, 0.10714286, 0.03030303)
305
+ pgm_factor38 = self.new_factor(pgm_rv38, pgm_rv10, pgm_rv18, pgm_rv3, pgm_rv19)
306
+ pgm_function_2774976233456 = pgm_factor38.set_dense()
307
+ pgm_function_2774976233456.set_flat(
308
+ 0.01754386, 0.01298701, 0.02150538, 0.01666667, 0.025, 0.01333333,
309
+ 0.02409639, 0.01960784, 0.02197802, 0.01923077, 0.024, 0.02197802,
310
+ 0.03030303, 0.03225806, 0.02898551, 0.02469136, 0.03508772, 0.04081633,
311
+ 0.03571429, 0.03333333, 0.05084746, 0.05, 0.05333333, 0.08333333,
312
+ 0.03448276, 0.01428571, 0.02173913, 0.00172117, 0.01785714, 0.01785714,
313
+ 0.02816901, 0.00321543, 0.03508772, 0.03703704, 0.05357143, 0.065,
314
+ 0.84210526, 0.81818182, 0.8172043, 0.8, 0.85, 0.86666667, 0.86746988,
315
+ 0.85294118, 0.89010989, 0.90384615, 0.904, 0.9010989, 0.84848485,
316
+ 0.79032259, 0.79710145, 0.75308642, 0.8245614, 0.83673469, 0.85714285,
317
+ 0.83333334, 0.88135593, 0.9, 0.90666667, 0.88888889, 0.81034483, 0.75714286,
318
+ 0.75, 0.60240964, 0.76785715, 0.78571429, 0.80281691, 0.67524116,
319
+ 0.84210526, 0.92592592, 0.89285714, 0.875, 0.14035088, 0.16883117,
320
+ 0.16129032, 0.18333333, 0.125, 0.12, 0.10843373, 0.12745098, 0.08791209,
321
+ 0.07692308, 0.072, 0.07692308, 0.12121212, 0.17741935, 0.17391304,
322
+ 0.22222222, 0.14035088, 0.12244898, 0.10714286, 0.13333333, 0.06779661,
323
+ 0.05, 0.04, 0.02777778, 0.15517241, 0.22857143, 0.22826087, 0.39586919,
324
+ 0.21428571, 0.19642857, 0.16901408, 0.32154341, 0.12280702, 0.03703704,
325
+ 0.05357143, 0.06)
326
+ pgm_factor39 = self.new_factor(pgm_rv39, pgm_rv37, pgm_rv38)
327
+ pgm_function_2774976010768 = pgm_factor39.set_dense()
328
+ pgm_function_2774976010768.set_flat(
329
+ 0.1428571, 0.106383, 0.09090909, 0.1304348, 0.1373494, 0.425, 0.2,
330
+ 0.1333333, 0.25, 0.5, 0.255814, 0.6666667, 0.8571429, 0.893617, 0.90909091,
331
+ 0.8695652, 0.8626506, 0.575, 0.8, 0.8666667, 0.75, 0.5, 0.7441861,
332
+ 0.3333333)
333
+ pgm_factor40 = self.new_factor(pgm_rv40, pgm_rv6)
334
+ pgm_function_2774976010848 = pgm_factor40.set_dense()
335
+ pgm_function_2774976010848.set_flat(0.3925234, 0.4307432, 0.6074766, 0.5692568)
336
+ pgm_factor41 = self.new_factor(pgm_rv41, pgm_rv18)
337
+ pgm_function_2774976009088 = pgm_factor41.set_dense()
338
+ pgm_function_2774976009088.set_flat(0.2068966, 0.2258064, 0.1114754, 0.7931035, 0.7741936, 0.8885246)
339
+ pgm_factor42 = self.new_factor(pgm_rv42, pgm_rv18, pgm_rv13)
340
+ pgm_function_2774976008928 = pgm_factor42.set_dense()
341
+ pgm_function_2774976008928.set_flat(
342
+ 0.05325444, 0.05172414, 0.04891304, 0.00321543, 0.05357143, 0.01515152,
343
+ 0.94674556, 0.94827586, 0.95108696, 0.99678457, 0.94642857, 0.98484848)
344
+ pgm_factor43 = self.new_factor(pgm_rv43, pgm_rv42)
345
+ pgm_function_2774976008528 = pgm_factor43.set_dense()
346
+ pgm_function_2774976008528.set_flat(0.2173913, 0.03550296, 0.1304348, 0.06508876, 0.6521739, 0.89940828)
347
+ pgm_factor44 = self.new_factor(pgm_rv44, pgm_rv35)
348
+ pgm_function_2774976008208 = pgm_factor44.set_dense()
349
+ pgm_function_2774976008208.set_flat(0.1280932, 0.5833333, 0.8719068, 0.4166667)
350
+ pgm_factor45 = self.new_factor(pgm_rv45, pgm_rv21, pgm_rv3, pgm_rv17, pgm_rv19)
351
+ pgm_function_2774976010608 = pgm_factor45.set_dense()
352
+ pgm_function_2774976010608.set_flat(
353
+ 0.6097561, 0.68, 0.5918367, 0.673913, 0.5901639, 0.6527778, 0.5555556,
354
+ 0.7058823, 0.6, 0.6756757, 0.5897436, 0.7777778, 0.5866667, 0.6865672,
355
+ 0.375, 0.6973684, 0.3902439, 0.32, 0.4081633, 0.326087, 0.4098361,
356
+ 0.3472222, 0.4444444, 0.2941177, 0.4, 0.3243243, 0.4102564, 0.2222222,
357
+ 0.4133333, 0.3134328, 0.625, 0.3026316)
358
+ pgm_factor46 = self.new_factor(pgm_rv46, pgm_rv45)
359
+ pgm_function_2774976011328 = pgm_factor46.set_dense()
360
+ pgm_function_2774976011328.set_flat(0.3142251, 0.03070175, 0.6857749, 0.96929825)
361
+ pgm_factor47 = self.new_factor(pgm_rv47, pgm_rv42)
362
+ pgm_function_2774976010528 = pgm_factor47.set_dense()
363
+ pgm_function_2774976010528.set_flat(0.7391304, 0.3772189, 0.2608696, 0.6227811)
364
+ pgm_factor48 = self.new_factor(pgm_rv48, pgm_rv13, pgm_rv10, pgm_rv17, pgm_rv19)
365
+ pgm_function_2774976011248 = pgm_factor48.set_dense()
366
+ pgm_function_2774976011248.set_flat(
367
+ 0.2704918, 0.2972973, 0.2941177, 0.3205575, 0.3093923, 0.3315508, 0.3333333,
368
+ 0.368, 0.3425926, 0.3629893, 0.3636364, 0.4321429, 0.2682927, 0.175,
369
+ 0.1045752, 0.03296703, 0.06024096, 0.08602151, 0.05434783, 0.05555556,
370
+ 0.07594937, 0.13432836, 0.01785714, 0.04733728, 0.1721312, 0.1837838,
371
+ 0.1911765, 0.2055749, 0.1767956, 0.171123, 0.172043, 0.184, 0.1712963,
372
+ 0.1779359, 0.1818182, 0.2107143, 0.1768293, 0.1625, 0.1633987, 0.21978022,
373
+ 0.12048193, 0.08602151, 0.07608696, 0.05555556, 0.06329114, 0.05970149,
374
+ 0.07142857, 0.05325444, 0.5573771, 0.5189189, 0.5147059, 0.4738676,
375
+ 0.5138122, 0.4973262, 0.4946237, 0.448, 0.4861111, 0.4590747, 0.4545455,
376
+ 0.3571429, 0.5548781, 0.6625, 0.7320261, 0.74725275, 0.81927711, 0.82795698,
377
+ 0.86956521, 0.88888888, 0.86075949, 0.80597015, 0.91071429, 0.89940828)
378
+ pgm_factor49 = self.new_factor(pgm_rv49, pgm_rv10, pgm_rv21, pgm_rv3, pgm_rv17, pgm_rv18)
379
+ pgm_function_2774976012048 = pgm_factor49.set_dense()
380
+ pgm_function_2774976012048.set_flat(
381
+ 0.05882353, 0.05454545, 0.04761905, 0.06451613, 0.07017544, 0.07936508,
382
+ 0.06849315, 0.05882353, 0.0625, 0.075, 0.08333333, 0.08988764, 0.0617284,
383
+ 0.05479452, 0.05882353, 0.06976744, 0.07792208, 0.08333333, 0.06862745,
384
+ 0.0625, 0.064, 0.08148148, 0.08661417, 0.1208791, 0.05172414, 0.02173913,
385
+ 0.0021692, 0.02272727, 0.00269542, 0.00262467, 0.01923077, 0.002079,
386
+ 0.00181488, 0.01886792, 0.02272727, 0.02083333, 0.01724138, 0.00191939,
387
+ 0.00166389, 0.01724138, 0.02040816, 0.01818182, 0.02777778, 0.01492537,
388
+ 0.01190476, 0.03409091, 0.02631579, 0.02777778, 0.02, 0.00212314,
389
+ 0.00191939, 0.02, 0.00249377, 0.0023753, 0.01666667, 0.00178253, 0.00144718,
390
+ 0.02816901, 0.01724138, 0.00584795, 0.01818182, 0.00172117, 0.00131406,
391
+ 0.025, 0.01470588, 0.00369004, 0.02666667, 0.01176471, 0.00149031,
392
+ 0.06896552, 0.03225806, 0.04569892, 0.15686275, 0.16363636, 0.15873016,
393
+ 0.17741935, 0.19298246, 0.19047619, 0.16438356, 0.17647059, 0.175, 0.1875,
394
+ 0.20833333, 0.2247191, 0.1728395, 0.16438356, 0.15294118, 0.1627907,
395
+ 0.18181818, 0.1875, 0.16666667, 0.1666667, 0.168, 0.17777778, 0.19685039,
396
+ 0.2307692, 0.15517241, 0.13043478, 0.1084599, 0.11363636,
397
+ 0.13477089, 0.1312336, 0.11538462, 0.1247401, 0.12704174, 0.13207547,
398
+ 0.15909091, 0.16666667, 0.12068966, 0.11516315, 0.09983361, 0.10344828,
399
+ 0.12244898, 0.10909091, 0.11111111, 0.11940299, 0.10714286, 0.11363636,
400
+ 0.13157895, 0.13888889, 0.12, 0.12738854, 0.11516315, 0.12, 0.14962594,
401
+ 0.1425178, 0.11666667, 0.12477718, 0.11577424, 0.12676056, 0.15517241,
402
+ 0.23391813, 0.10909091, 0.10327022, 0.09198423, 0.1, 0.11764706, 0.07380074,
403
+ 0.09333333, 0.10588235, 0.08941878, 0.12068966, 0.19354839, 0.17473118,
404
+ 0.41176471, 0.41818182, 0.41269841, 0.41935484, 0.42105263, 0.41269841,
405
+ 0.42465753, 0.42647059, 0.4125, 0.425, 0.43055556, 0.41573034, 0.4197531,
406
+ 0.42465753, 0.41176471, 0.41860465, 0.41558442, 0.40625, 0.42156863,
407
+ 0.4270833, 0.416, 0.42222222, 0.42519685, 0.3956044, 0.39655172, 0.41304348,
408
+ 0.3904555, 0.40909091, 0.40431267, 0.36745407, 0.40384615, 0.4158004,
409
+ 0.39927405, 0.41509434, 0.40909091, 0.375, 0.39655172, 0.40307102,
410
+ 0.38269551, 0.39655172, 0.3877551, 0.34545455, 0.38888889, 0.40298507,
411
+ 0.38095238, 0.38636364, 0.39473684, 0.27777778, 0.4, 0.42462845, 0.42226488,
412
+ 0.44, 0.44887781, 0.4275534, 0.45, 0.46345811,
413
+ 0.44862518, 0.46478873, 0.48275862, 0.46783626, 0.43636364, 0.4475043,
414
+ 0.42049934, 0.425, 0.44117647, 0.36900369, 0.42666667, 0.44705882,
415
+ 0.41728763, 0.46551724, 0.51612903, 0.42741935, 0.37254902, 0.36363636,
416
+ 0.38095238, 0.33870968, 0.31578947, 0.31746032, 0.34246575, 0.33823529,
417
+ 0.35, 0.3125, 0.27777778, 0.26966292, 0.345679, 0.35616438, 0.37647059,
418
+ 0.34883721, 0.32467532, 0.32291667, 0.34313725, 0.34375, 0.352, 0.31851852,
419
+ 0.29133858, 0.2527472, 0.39655172, 0.43478261, 0.4989154, 0.45454545,
420
+ 0.45822102, 0.49868766, 0.46153846, 0.4573805, 0.47186933, 0.43396226,
421
+ 0.40909091, 0.4375, 0.46551724, 0.47984645, 0.51580699, 0.48275862,
422
+ 0.46938776, 0.52727272, 0.47222222, 0.46268657, 0.5, 0.46590909, 0.44736842,
423
+ 0.55555555, 0.46, 0.44585987, 0.46065259, 0.42, 0.39900249, 0.4275534,
424
+ 0.41666667, 0.40998217, 0.4341534, 0.38028169, 0.34482759, 0.29239766,
425
+ 0.43636364, 0.4475043, 0.48620237, 0.45, 0.42647059, 0.55350553, 0.45333333,
426
+ 0.43529412, 0.49180328, 0.34482759, 0.25806452, 0.35215054)
427
+ pgm_factor50 = self.new_factor(pgm_rv50, pgm_rv10, pgm_rv21, pgm_rv3, pgm_rv17, pgm_rv18)
428
+ pgm_function_2774976008848 = pgm_factor50.set_dense()
429
+ pgm_function_2774976008848.set_flat(
430
+ 0.01960784, 0.01818182, 0.01612903, 0.01612903, 0.01818182, 0.03225806,
431
+ 0.02777778, 0.02941176, 0.02531646, 0.025, 0.02777778, 0.03370787,
432
+ 0.02469136, 0.02739726, 0.02380952, 0.02352941, 0.02597403, 0.03125,
433
+ 0.02912621, 0.03125, 0.03174603, 0.03676471, 0.03937008, 0.05494505,
434
+ 0.01754386, 0.00221729, 0.00212314, 0.00221729, 0.00269542, 0.00269542,
435
+ 0.00191939, 0.00203666, 0.00181488, 0.00184843, 0.00226757, 0.00212314,
436
+ 0.00172117, 0.00191939, 0.00166389, 0.00172117, 0.00203666, 0.00181488,
437
+ 0.00142653, 0.00149031, 0.00120337, 0.01136364, 0.01315789, 0.02777778,
438
+ 0.00199601, 0.00212314, 0.00191939, 0.00199601, 0.00249377, 0.00243309,
439
+ 0.00166389, 0.00175131, 0.00142653, 0.00140647, 0.00172117, 0.00584795,
440
+ 0.00181488, 0.00172117, 0.00133156, 0.00126422, 0.00149031, 0.00369004,
441
+ 0.00133156, 0.00116144, 0.00149031, 0.01724138, 0.03225806, 0.01075269,
442
+ 0.1372549, 0.12727273, 0.14516129, 0.16129032, 0.16363636, 0.17741935,
443
+ 0.15277778, 0.14705882, 0.15189873, 0.175, 0.18055556, 0.20224719,
444
+ 0.16049383, 0.1369863, 0.14285714, 0.16470588, 0.16883117, 0.1875,
445
+ 0.16504854, 0.15625, 0.15873016, 0.17647059, 0.18110236, 0.23076923,
446
+ 0.14035088, 0.0886918, 0.08492569, 0.11086475,
447
+ 0.08086253, 0.08086253, 0.09596929, 0.0814664, 0.0907441, 0.11090573,
448
+ 0.09070295, 0.10615711, 0.10327022, 0.07677543, 0.08319468, 0.10327022,
449
+ 0.0814664, 0.0907441, 0.09985735, 0.08941878, 0.08423586, 0.10227273,
450
+ 0.09210526, 0.11111111, 0.0998004, 0.08492569, 0.07677543, 0.0998004,
451
+ 0.07481297, 0.0729927, 0.09983361, 0.08756567, 0.08559201, 0.11251758,
452
+ 0.10327022, 0.11695906, 0.0907441, 0.06884682, 0.0665779, 0.08849558,
453
+ 0.07451565, 0.07380074, 0.09320905, 0.08130081, 0.07451565, 0.13793103,
454
+ 0.06451613, 0.22580645, 0.47058824, 0.49090909, 0.46774194, 0.48387097,
455
+ 0.50909091, 0.48387097, 0.48611111, 0.5, 0.48101266, 0.5, 0.52777777,
456
+ 0.50561797, 0.4691358, 0.47945205, 0.45238095, 0.45882353, 0.48051948,
457
+ 0.4583333, 0.46601942, 0.4791667, 0.46031746, 0.47058824, 0.49606299,
458
+ 0.46153846, 0.45614035, 0.48780488, 0.44585987, 0.46563193, 0.51212938,
459
+ 0.45822102, 0.46065259, 0.48879837, 0.45372051, 0.4805915, 0.52154195,
460
+ 0.48832272, 0.4475043, 0.46065259, 0.41597338, 0.4302926, 0.46843177,
461
+ 0.41742287, 0.44222539, 0.46199702, 0.433213, 0.44318182, 0.47368421,
462
+ 0.36111111, 0.45908184, 0.48832272, 0.46065259, 0.47904192, 0.54862842,
463
+ 0.51094891, 0.49916805, 0.52539405,
464
+ 0.49928673, 0.52039381, 0.58519794, 0.64327486, 0.47186933, 0.48192771,
465
+ 0.43941411, 0.4551201, 0.49180328, 0.36900369, 0.45272969, 0.48780488,
466
+ 0.43219076, 0.5, 0.67741936, 0.46774194, 0.37254902, 0.36363636, 0.37096774,
467
+ 0.33870968, 0.30909091, 0.30645161, 0.33333333, 0.32352941, 0.34177215, 0.3,
468
+ 0.26388889, 0.25842697, 0.34567901, 0.35616438, 0.38095238, 0.35294118,
469
+ 0.32467532, 0.3229167, 0.33980583, 0.3333333, 0.34920635, 0.31617647,
470
+ 0.28346457, 0.25274725, 0.38596491, 0.42128603, 0.4670913, 0.42128603,
471
+ 0.40431267, 0.45822102, 0.44145873, 0.42769857, 0.45372051, 0.40665434,
472
+ 0.38548753, 0.40339703, 0.4475043, 0.46065259, 0.49916805, 0.46471601,
473
+ 0.44806517, 0.49001815, 0.45649073, 0.44709389, 0.48134777, 0.44318182,
474
+ 0.42105263, 0.5, 0.43912176, 0.42462845, 0.46065259, 0.41916168, 0.37406484,
475
+ 0.4136253, 0.39933444, 0.38528897, 0.41369472, 0.36568214, 0.30981067,
476
+ 0.23391813, 0.43557169, 0.4475043, 0.49267643, 0.4551201, 0.43219076,
477
+ 0.55350553, 0.45272969, 0.42973287, 0.49180328, 0.34482759, 0.22580645,
478
+ 0.29569892)
479
+ pgm_factor51 = self.new_factor(pgm_rv51, pgm_rv6)
480
+ pgm_function_2774976009488 = pgm_factor51.set_dense()
481
+ pgm_function_2774976009488.set_flat(0.01869159, 0.01013514, 0.04672897, 0.01689189, 0.93457944, 0.97297297)
482
+ pgm_factor52 = self.new_factor(pgm_rv52, pgm_rv13, pgm_rv3, pgm_rv21, pgm_rv17, pgm_rv10, pgm_rv19)
483
+ pgm_function_2774976011008 = pgm_factor52.set_dense()
484
+ pgm_function_2774976011008.set_flat(
485
+ 0.1590909, 0.1696429, 0.1546392, 0.1730769, 0.1666667, 0.1854839, 0.1694915,
486
+ 0.1832061, 0.1759259, 0.1913044, 0.1885246, 0.2108843, 0.1666667, 0.1768707,
487
+ 0.1652893, 0.1742424, 0.1726619, 0.1893491, 0.1741935, 0.1857923, 0.1748252,
488
+ 0.19375, 0.1918605, 0.2142857, 0.1756757, 0.18, 0.1666667, 0.1782946,
489
+ 0.1764706, 0.1939394, 0.1776316, 0.1899441, 0.1785714, 0.1987179, 0.1964286,
490
+ 0.2207792, 0.178771, 0.1804878, 0.1698113, 0.1843575, 0.1822917, 0.1977612,
491
+ 0.1826087, 0.1939799, 0.1846847, 0.2007435, 0.1986755, 0.2392857, 0.1509434,
492
+ 0.10526316, 0.05555556, 0.06122449, 0.05649718, 0.07393715, 0.06557377,
493
+ 0.078125, 0.04166667, 0.04761905, 0.04338395, 0.06651885, 0.05714286,
494
+ 0.07142857, 0.04545455, 0.04615385, 0.04285714, 0.0617284, 0.06024096,
495
+ 0.07070707, 0.04166667, 0.03030303, 0.02702703, 0.07380074, 0.06349206,
496
+ 0.07594937, 0.0483871, 0.05, 0.04615385, 0.06756757, 0.06410256, 0.07692308,
497
+ 0.04545455, 0.03448276, 0.03076923, 0.11695906, 0.06493506, 0.07692308,
498
+ 0.04444444, 0.04210526, 0.03703704, 0.07462687, 0.05660377, 0.08791209,
499
+ 0.04395604, 0.00277008, 0.00177936, 0.08, 0.1477273, 0.1607143, 0.1443299,
500
+ 0.1538462,
501
+ 0.1481482, 0.1612903, 0.1610169, 0.1755725, 0.1574074, 0.173913, 0.1639344,
502
+ 0.1836735, 0.1590909, 0.1632653, 0.1487603, 0.1590909, 0.1510791, 0.1656805,
503
+ 0.1677419, 0.1857923, 0.1678322, 0.18125, 0.1744186, 0.1932773, 0.1621622,
504
+ 0.1666667, 0.15, 0.1627907, 0.1544118, 0.169697, 0.1710526, 0.1899441,
505
+ 0.1714286, 0.1858974, 0.1785714, 0.1991342, 0.1731844, 0.1756098, 0.1572327,
506
+ 0.1675978, 0.1614583, 0.1791045, 0.1782609, 0.1939799, 0.1846847, 0.197026,
507
+ 0.192053, 0.225, 0.1415094, 0.09210526, 0.03703704, 0.02040816, 0.00188324,
508
+ 0.00184843, 0.04918033, 0.078125, 0.02083333, 0.02380952, 0.0021692,
509
+ 0.00221729, 0.04285714, 0.07142857, 0.03030303, 0.03076923, 0.01428571,
510
+ 0.01234568, 0.04819277, 0.08080808, 0.04166667, 0.03030303, 0.01351351,
511
+ 0.00369004, 0.04761905, 0.07594937, 0.03225806, 0.03333333, 0.01538462,
512
+ 0.01351351, 0.05128205, 0.08791209, 0.04545455, 0.03448276, 0.01538462,
513
+ 0.00584795, 0.06493506, 0.08547009, 0.04444444, 0.04210526, 0.02777778,
514
+ 0.02985075, 0.06603774, 0.14285714, 0.07692308, 0.05540166, 0.00177936,
515
+ 0.096, 0.1136364, 0.125, 0.1134021, 0.125, 0.1111111, 0.1209677, 0.1186441,
516
+ 0.129771,
517
+ 0.1111111, 0.1217391, 0.1065574, 0.1156463, 0.1212121, 0.1292517, 0.1157025,
518
+ 0.1287879, 0.1151079, 0.1242604, 0.1225806, 0.1311475, 0.1188811, 0.125,
519
+ 0.1104651, 0.1176471, 0.1216216, 0.1333333, 0.125, 0.131783, 0.1176471,
520
+ 0.1272727, 0.125, 0.1340782, 0.1214286, 0.1282051, 0.1130952, 0.1212121,
521
+ 0.122905, 0.1365854, 0.1257862, 0.1340782, 0.1197917, 0.1268657, 0.126087,
522
+ 0.1371237, 0.1261261, 0.133829, 0.1225166, 0.1321429, 0.1226415, 0.13157895,
523
+ 0.09259259, 0.10204082, 0.07532957, 0.09242144, 0.09836066, 0.125,
524
+ 0.08333333, 0.0952381, 0.04338395, 0.0443459, 0.1, 0.13095238, 0.10606061,
525
+ 0.12307692, 0.08571429, 0.09876543, 0.09638554, 0.12121212, 0.09722222,
526
+ 0.10606061, 0.05405405, 0.03690037, 0.11111111, 0.13924051, 0.11290323,
527
+ 0.13333333, 0.09230769, 0.10810811, 0.1025641, 0.13186813, 0.10606061,
528
+ 0.12068966, 0.06153846, 0.05847953, 0.11688312, 0.14529915, 0.12222222,
529
+ 0.13684211, 0.10185185, 0.13432836, 0.12264151, 0.17582418, 0.13186813,
530
+ 0.19390582, 0.01779359, 0.144, 0.5795455, 0.5446429, 0.5876289, 0.5480769,
531
+ 0.5740741, 0.5322581, 0.5508475, 0.5114504, 0.5555556, 0.5130435, 0.5409836,
532
+ 0.4897959,
533
+ 0.5530303, 0.5306122, 0.5702479, 0.5378788, 0.5611511, 0.5207101, 0.5354839,
534
+ 0.4972678, 0.5384615, 0.5, 0.5232558, 0.4747899, 0.5405405, 0.52, 0.5583333,
535
+ 0.5271318, 0.5514706, 0.5090909, 0.5263158, 0.4860335, 0.5285714, 0.4871795,
536
+ 0.5119048, 0.4588745, 0.5251397, 0.5073171, 0.5471698, 0.5139665, 0.5364583,
537
+ 0.4962687, 0.5130435, 0.4749164, 0.5045045, 0.4684015, 0.486755, 0.4035714,
538
+ 0.5849057, 0.67105263, 0.81481481, 0.81632653, 0.86629001, 0.83179298,
539
+ 0.78688524, 0.71875, 0.85416667, 0.83333333, 0.9110629, 0.88691796, 0.8,
540
+ 0.72619048, 0.81818181, 0.8, 0.85714286, 0.82716049, 0.79518073, 0.72727273,
541
+ 0.81944444, 0.83333333, 0.90540541, 0.88560885, 0.77777778, 0.70886075,
542
+ 0.80645161, 0.78333334, 0.84615384, 0.81081081, 0.78205129, 0.7032967,
543
+ 0.80303029, 0.81034482, 0.89230769, 0.81871346, 0.75324676, 0.69230768,
544
+ 0.7888889, 0.77894737, 0.83333333, 0.76119402, 0.75471698, 0.59340659,
545
+ 0.74725275, 0.74792244, 0.97864769, 0.68)
546
+ pgm_factor53 = self.new_factor(pgm_rv53, pgm_rv13, pgm_rv17, pgm_rv10)
547
+ pgm_function_2774976009808 = pgm_factor53.set_dense()
548
+ pgm_function_2774976009808.set_flat(
549
+ 0.08965517, 0.09659091, 0.1034483, 0.1015873, 0.1050955, 0.125, 0.09174312,
550
+ 0.06918239, 0.04477612, 0.03296703, 0.00277008, 0.00044425, 0.28275862,
551
+ 0.30113636, 0.3256705, 0.3047619, 0.3152866, 0.3642857, 0.27981651,
552
+ 0.23899371, 0.2238806, 0.06593407, 0.02770083, 0.09773434, 0.62758621,
553
+ 0.60227273, 0.5708812, 0.5936508, 0.5796178, 0.5107143, 0.62844037,
554
+ 0.6918239, 0.73134328, 0.9010989, 0.96952909, 0.90182141)
555
+ pgm_factor54 = self.new_factor(pgm_rv54, pgm_rv1, pgm_rv10)
556
+ pgm_function_2774976008368 = pgm_factor54.set_dense()
557
+ pgm_function_2774976008368.set_flat(
558
+ 0.5, 0.4615385, 0.1125, 0.1904762, 0.04347826, 0.04674797, 0.5, 0.5384615,
559
+ 0.8875, 0.8095238, 0.95652174, 0.95325203)
560
+ pgm_factor55 = self.new_factor(pgm_rv55, pgm_rv1, pgm_rv10, pgm_rv54)
561
+ pgm_function_2774976010928 = pgm_factor55.set_dense()
562
+ pgm_function_2774976010928.set_flat(
563
+ 0.0070922, 0.07142857, 0.01639344, 0.01408451, 0.01098901, 0.04225352,
564
+ 0.08333333, 0.00195695, 0.09090909, 0.00452489, 0.004329, 0.01492537,
565
+ 0.9929078, 0.92857143, 0.98360656, 0.98591549, 0.98901099, 0.95774648,
566
+ 0.91666667, 0.99804305, 0.90909091, 0.99547511, 0.995671, 0.98507463)
567
+ pgm_factor56 = self.new_factor(pgm_rv56, pgm_rv21, pgm_rv3)
568
+ pgm_function_2774976009168 = pgm_factor56.set_dense()
569
+ pgm_function_2774976009168.set_flat(
570
+ 0.1818182, 0.1176471, 0.2222222, 0.280916, 0.8181818, 0.8823529, 0.7777778,
571
+ 0.719084)
572
+ pgm_factor57 = self.new_factor(pgm_rv57, pgm_rv21, pgm_rv3)
573
+ pgm_function_2774976008608 = pgm_factor57.set_dense()
574
+ pgm_function_2774976008608.set_flat(
575
+ 0.3636364, 0.3529412, 0.3703704, 0.2854962, 0.6363636, 0.6470588, 0.6296296,
576
+ 0.7145038)
577
+ pgm_factor58 = self.new_factor(pgm_rv58, pgm_rv18, pgm_rv21, pgm_rv3)
578
+ pgm_function_2774976011088 = pgm_factor58.set_dense()
579
+ pgm_function_2774976011088.set_flat(
580
+ 0.3235294, 0.3703704, 0.3623188, 0.4827586, 0.3023256, 0.2444444, 0.2156863,
581
+ 0.2580645, 0.1621622, 0.1176471, 0.1111111, 0.1007067, 0.6764706, 0.6296296,
582
+ 0.6376812, 0.5172414, 0.6976744, 0.7555556, 0.7843137, 0.7419355, 0.8378378,
583
+ 0.8823529, 0.8888889, 0.8992933)
584
+ pgm_factor59 = self.new_factor(pgm_rv59, pgm_rv42)
585
+ pgm_function_2774976011408 = pgm_factor59.set_dense()
586
+ pgm_function_2774976011408.set_flat(0.3043478, 0.01627219, 0.6956522, 0.98372781)
587
+ pgm_factor60 = self.new_factor(pgm_rv60, pgm_rv18)
588
+ pgm_function_2774976011168 = pgm_factor60.set_dense()
589
+ pgm_function_2774976011168.set_flat(0.6034483, 0.483871, 0.1836066, 0.3965517, 0.516129, 0.8163934)
590
+ pgm_factor61 = self.new_factor(pgm_rv61, pgm_rv23)
591
+ pgm_function_2774976009008 = pgm_factor61.set_dense()
592
+ pgm_function_2774976009008.set_flat(
593
+ 0.75, 0.5671642, 0.3467337, 0.1942446, 0.25, 0.4328358, 0.6532663,
594
+ 0.8057554)
595
+ pgm_factor62 = self.new_factor(pgm_rv62, pgm_rv18)
596
+ pgm_function_2774976011648 = pgm_factor62.set_dense()
597
+ pgm_function_2774976011648.set_flat(
598
+ 0.91222031, 0.96463023, 0.7393443, 0.08605852, 0.00321543, 0.1426229,
599
+ 0.00172117, 0.03215434, 0.1180328)
600
+ pgm_factor63 = self.new_factor(pgm_rv63, pgm_rv18)
601
+ pgm_function_2774976011488 = pgm_factor63.set_dense()
602
+ pgm_function_2774976011488.set_flat(0.7586207, 0.4516129, 0.2344262, 0.2413793, 0.5483871, 0.7655738)
603
+ pgm_factor64 = self.new_factor(pgm_rv64, pgm_rv18)
604
+ pgm_function_2774976008128 = pgm_factor64.set_dense()
605
+ pgm_function_2774976008128.set_flat(0.6034483, 0.3548387, 0.1065574, 0.3965517, 0.6451613, 0.8934426)
606
+ pgm_factor65 = self.new_factor(pgm_rv65, pgm_rv1, pgm_rv10)
607
+ pgm_function_2774976009408 = pgm_factor65.set_dense()
608
+ pgm_function_2774976009408.set_flat(
609
+ 0.00355872, 0.00763359, 0.0875, 0.07936508, 0.1304348, 0.101626, 0.99644128,
610
+ 0.99236641, 0.9125, 0.92063492, 0.8695652, 0.898374)
611
+ pgm_factor66 = self.new_factor(pgm_rv66, pgm_rv1, pgm_rv10)
612
+ pgm_function_2774976008768 = pgm_factor66.set_dense()
613
+ pgm_function_2774976008768.set_flat(
614
+ 0.00355872, 0.00763359, 0.00124844, 0.00158479, 0.004329, 0.00203252,
615
+ 0.99644128, 0.99236641, 0.99875156, 0.99841521, 0.995671, 0.99796748)
616
+ pgm_factor67 = self.new_factor(pgm_rv67, pgm_rv18)
617
+ pgm_function_2774976009328 = pgm_factor67.set_dense()
618
+ pgm_function_2774976009328.set_flat(0.5, 0.2903226, 0.1409836, 0.5, 0.7096774, 0.8590164)
619
+ pgm_factor68 = self.new_factor(pgm_rv68, pgm_rv1, pgm_rv10)
620
+ pgm_function_2774976008288 = pgm_factor68.set_dense()
621
+ pgm_function_2774976008288.set_flat(
622
+ 0.00355872, 0.00763359, 0.00124844, 0.00158479, 0.04347826, 0.00203252,
623
+ 0.99644128, 0.99236641, 0.99875156, 0.99841521, 0.95652174, 0.99796748)
624
+ pgm_factor69 = self.new_factor(pgm_rv69, pgm_rv18, pgm_rv13)
625
+ pgm_function_2774976011568 = pgm_factor69.set_dense()
626
+ pgm_function_2774976011568.set_flat(
627
+ 0.3636364, 0.3, 0.2727273, 0.2, 0.1, 0.01, 0.6363636, 0.7, 0.7272727, 0.8,
628
+ 0.9, 0.99)